Carbocyclic Reactant Containing -c-c(=x)-x, E.g., Containing Carboxyl, Etc. Patents (Class 521/185)
  • Patent number: 9441082
    Abstract: A process includes the steps of: casting or coating a polyamic acid organic solvent solution on a support and drying the polyamic acid organic solvent solution thereon, so as to form a partially cured and/or partially dried polyamic acid film; dipping the polyamic acid film in tertiary amine or a solution of tertiary amine, or coating tertiary amine or a solution of tertiary amine on the polyamic acid film; and drying the film while imidizing the polyamic acid. In another process, a chemical converting agent and a catalyst are mixed in an organic solvent solution of polyamic acid. After casting and heating the mixture on a support, a partially cured and/or partially dried polyamic acid film is detached from the support. The film contains, with respect to the remaining volatile component, not less than 50 parts of catalyst, not more than 30 parts of solvent, and not more than 20 parts of chemical converting agent and/or a chemical converting agent derived component.
    Type: Grant
    Filed: December 24, 2014
    Date of Patent: September 13, 2016
    Assignee: KANEKA CORPORATION
    Inventors: Hisayasu Kaneshiro, Toshihisa Itoh, Kiyokazu Akahori
  • Publication number: 20150102528
    Abstract: Provided are composite material comprising hollow glass microspheres and a microcellular thermoplastic resin, articles molded from such materials, and methods of making such materials.
    Type: Application
    Filed: March 7, 2013
    Publication date: April 16, 2015
    Inventors: Ibrahim S. Gunes, Baris Yalcin, Stephen E. Amos, Onur S. Yordem, Charles T. Stone
  • Publication number: 20140350134
    Abstract: The present disclosure provides a method for producing an aerogel, the method comprising reacting at least one acid monomer with at least one diamino monomer in a first solvent under conditions appropriate to form a polyimide polymer; conducting a solvent exchange wherein the first solvent is exchanged for a second solvent, said second solvent having a freezing point, wherein said solvent exchange further comprises (1) submersing the polyimide polymer in the second solvent in a pressure vessel and (2) creating a high pressure environment inside the pressure vessel for a first period of time; cooling the polyimide polymer to a first temperature below the freezing point of the second solvent; and subjecting cooled polyimide polymer to a first vacuum for a second period of time at a second temperature.
    Type: Application
    Filed: May 23, 2013
    Publication date: November 27, 2014
    Inventors: David L. Rodman, Garrett D. Poe, Brandon S. Farmer, Joseph C. Smith
  • Patent number: 8808723
    Abstract: Polymers containing poly(ester amides) and agents for use with medical articles and methods of fabricating the same are disclosed. The medical article generally comprises an implantable substrate having a coating, and the coating contains a polymer comprising a polymeric product of a reaction comprising a polyol, a polycarboxylic acid, an amino acid and an agent.
    Type: Grant
    Filed: July 16, 2009
    Date of Patent: August 19, 2014
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Stephen D. Pacetti, Charles Claude, Thierry Glauser, Jessica R. DesNoyer, Syed F. A. Hossainy
  • Publication number: 20140220330
    Abstract: The present invention is related to a polymer resin composition capable of providing an insulating material having a low dielectric constant and excellent mechanical properties, a polyimide resin film obtained by using the polymer resin composition, a preparation method of a polyimide resin film, and a circuit board and a metal laminate including the polyimide resin film.
    Type: Application
    Filed: August 28, 2012
    Publication date: August 7, 2014
    Applicant: LG CHEM, LTD.
    Inventor: Soon Yong Park
  • Publication number: 20140142198
    Abstract: The invention provides a non-particulate cross-linked poly-?-lysine polymer. The poly-?-lysine and cross linker are linked by amide bonds and may the cross linker has at least two functional groups capable of reacting with an alpha carbon amine of poly-?-lysine. The polymer is suitably insoluble in water and other solvents and is provided in macro form for example a sheet, article or fibre. The macro form polymer is useful in a wide range of applications including wound treatment, as a medical diagnostic comprising a particulate support and a functional material bound or retained by the support and solid phase synthesis of peptides, oligonucleotides, oligosaccharides, immobilisation of species, cell culturing and in chromatographic separation.
    Type: Application
    Filed: April 20, 2012
    Publication date: May 22, 2014
    Applicant: SPHERITECH LTD
    Inventor: Donald Wellings
  • Patent number: 8709205
    Abstract: Disclosed are polyimide short fibers having an extremely high heat resistance, suitable for non-woven fabrics and paper, and having many branches. Specifically, disclosed are polyimide short fibers having many branches, which are produced by beating and loosening a specific foamed polyimide material. The foamed material preferably comprises a polyimide produced using 2,3,3?,4?-biphenyltetracarboxylic acid as an aromatic tetracarboxylic acid component, preferably has a glass transition temperature of 300° C. or higher, and preferably has an expansion ratio of 20 times or more.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: April 29, 2014
    Assignee: UBE Industries, Ltd.
    Inventors: Hideki Ozawa, Fumio Aoki
  • Patent number: 8658757
    Abstract: Provided is a polyamide polymer in which a partial structure represented by the following formula (C) constitutes a portion of the main chain: wherein in Formula (C), RA and RB each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms; n and m each independently represent an integer from 0 to 2; Cy represents an unsaturated 6-membered or 7-membered ring which may contain a heteroatom; and * and ** each represent a bonding hand, while * may be a bonding hand extending from RA.
    Type: Grant
    Filed: June 20, 2013
    Date of Patent: February 25, 2014
    Assignee: Fujifilm Corporation
    Inventors: Shigeki Uehira, Toshihide Yoshitani, Toshimitsu Sakuma, Kozo Sato
  • Publication number: 20130281563
    Abstract: Provided is a polyamide polymer in which a partial structure represented by the following formula (C) constitutes a portion of the main chain: wherein in Formula (C), RA and RB each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms; n and m each independently represent an integer from 0 to 2; Cy represents an unsaturated 6-membered or 7-membered ring which may contain a heteroatom; and * and ** each represent a bonding hand, while * may be a bonding hand extending from RA.
    Type: Application
    Filed: June 20, 2013
    Publication date: October 24, 2013
    Inventors: Shigeki UEHIRA, Toshihide YOSHITANI, Toshimitsu SAKUMA, Kozo SATO
  • Patent number: 8436060
    Abstract: An organic aerogel includes a polymer prepared from a substituted or unsubstituted maleimide compound and a compound having at least two vinyl groups. A composition for the organic aerogel includes a substituted or unsubstituted maleimide compound and a compound having at least two vinyl groups.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: May 7, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kwang-Hee Kim, Myung-Dong Cho, Sang-Ho Park, Sung-Woo Hwang
  • Publication number: 20130085194
    Abstract: Disclosed herein is a method for making polyimide articles that are suitable for high temperature applications. The articles disclosed herein are rigid, oxidatively stable, wear-resistant, and permeable to heated moisture and gases, and comprise co-polymer based polyimide, and at least one additive or filler, and are made using 20,000 to 50,000 psi of compression pressure.
    Type: Application
    Filed: September 30, 2011
    Publication date: April 4, 2013
    Applicant: E.I. DU PONT DE NEMOURS AND COMPANY
    Inventors: John P. Cunningham, Jeffrey L. Loudin
  • Publication number: 20130084515
    Abstract: Disclosed is a polyimide porous web with good porosity, good dimensional stability, and uniform pore; a method for manufacturing the same; and an electrolyte membrane with improved ion conductivity and good dimensional stability owing to ion conductors uniformly impregnated in the porous web, the polyimide porous web having a porosity of 60% to 90%, wherein not less than 80% of entire pores of the porous web have a pore diameter which differs from an average pore diameter of the porous web by not more than 1.5 ?m.
    Type: Application
    Filed: May 24, 2011
    Publication date: April 4, 2013
    Applicant: KOLON FASHION MATERIAL, INC.
    Inventors: Yun Kyung Kang, Heung Ryul Oh
  • Publication number: 20130085195
    Abstract: Disclosed herein is a method for making polyimide articles that are suitable for high temperature applications. The articles disclosed herein are rigid, oxidatively stable, wear-resistant, and permeable to heated moisture and gases, and comprise co-polymer based polyimide, and at least one additive or filler, and are made using 20,000 to 50,000 psi of compression pressure.
    Type: Application
    Filed: September 30, 2011
    Publication date: April 4, 2013
    Applicant: E.I. DU PONT DE NEMOURS AND COMPANY
    Inventors: John P. Cunningham, Jeffrey L. Loudin
  • Publication number: 20130053467
    Abstract: The present invention relates to a porous ABPBI (phosphoric acid doped poly(2,5-benzimidazole)) membrane and process of preparing the same. A stable porous ABPBI (Phosphoric Acid Doped Poly(2,5-benzimidazole)) membrane stable to acids, bases, solvents and autoclaving is disclosed.
    Type: Application
    Filed: February 22, 2011
    Publication date: February 28, 2013
    Applicant: Council of Scientific and Industrial Research
    Inventors: Ulhas Kharul, Harshada Lohokare
  • Publication number: 20120309053
    Abstract: A 3-dimensional porous polymeric structure comprising a porous polymer structure optionally with particles within the pores of the polymer and wherein the pores have a narrow pore-size distribution. The structure may be made by closely packing particles in a zone to provide a 3-dimensional array, contacting a polymerisable monomer with the array such that the composition fills interstitial spaces between the particles and effecting polymerisation of the monomer whereby a polymer structure is formed around the particles and optionally removing the particles from the structure. The 3-dimensional porous structure may be used in solid phase synthesis, immobilisation, cell culturing and preparation of a stationary phase for chromatographic separation, as an absorbent, an insulating material or in tissue regeneration.
    Type: Application
    Filed: September 16, 2010
    Publication date: December 6, 2012
    Applicant: SPHERITECH LTD
    Inventor: Donald A. Wellings
  • Patent number: 8324285
    Abstract: Provided are methods of treating an open cell polyimide foam product to produce a treated polyimide foam product having a property of repelling water or oil. The method includes the steps of: selecting a polyimide foam product having an external surface area and an open cell structure that has an interior surface area, wetting the exterior surface area and the interior surface area with a chemical treatment fluid comprising a treatment chemical that has a property of repelling water or oil, and distributing the treatment chemical onto at least a portion of the interior surface area sufficient to modify a surface property of the interior surface. Also provided are treated polyimide foam products that have an open cell polyimide foam substrate with an interior surface area and a treatment chemical on at least a portion of the interior surface area. The treatment chemical renders the interior surface hydrophobic or oleophobic.
    Type: Grant
    Filed: November 6, 2007
    Date of Patent: December 4, 2012
    Assignee: The Boeing Company
    Inventor: George F. Nicholas
  • Publication number: 20120111191
    Abstract: A composition of and a method of making high performance crosslinked membranes are described. The membranes have a high resistance to plasticization by use of crosslinking. The preferred polymer material for the membrane is a polyimide polymer comprising covalently bonded ester crosslinks. The resultant membrane exhibits a high permeability of CO2 in combination with a high CO2/CH4selectivity. Another embodiment provides a method of making the membrane from a monesterified polymer followed by final crosslinking after the membrane is formed.
    Type: Application
    Filed: December 17, 2010
    Publication date: May 10, 2012
    Inventors: William J. Koros, David Wallace, John D. Wind, Stephen J. Miller, Claudia Staudt-Bickel
  • Publication number: 20120028167
    Abstract: The present invention relates to a method for preparing a porous polyimide film, comprising reacting an aromatic dianhydride with one or more aromatic diamines in a suitable solvent to form poly(amic acid), adding a dehydrated agent of an acid anhydride and an organic base to the reaction mixture to convert the poly(amic acid) to a polyimide precursor, casting the reaction mixture comprising the polyimide precursor onto a solid support to form a film, coagulating the polyimide precursor in a coagulating bath comprising a mixture of a solvent and a non-solvent to develop a porous structure, and drying the coagulated polyimide precursor in air to form the porous polyimide film. A composite membrane comprising same and its use are also provided.
    Type: Application
    Filed: July 28, 2011
    Publication date: February 2, 2012
    Applicant: NANYANG TECHNOLOGICAL UNIVERSITY
    Inventors: Xin Wang, Tien Hoa Nguyen
  • Publication number: 20110278227
    Abstract: The present invention discloses a new type of high performance polymer membranes prepared from aromatic polyimide membranes by thermal treating and crosslinking and methods for making and using these membranes. The polymer membranes were prepared from aromatic polyimide membranes by thermal treating under inert atmosphere followed by crosslinking preferably by using a UV radiation source. The aromatic polyimide membranes were made from aromatic polyimide polymers comprising both pendent hydroxy functional groups ortho to the heterocyclic imide nitrogen and cross-linkable functional groups in the polymer backbone. The membranes showed significantly improved selectivity and permeability for gas separations compared to the aromatic polyimide membranes without any treatment. The membranes can be fabricated into any convenient geometry and are not only suitable for a variety of liquid, gas, and vapor separations, but also can be used for other applications such as for catalysis and fuel cell applications.
    Type: Application
    Filed: June 22, 2011
    Publication date: November 17, 2011
    Applicant: UOP LLC
    Inventors: Chunqing Liu, Peter K. Coughlin, Man-Wing Tang, Raisa Minkov, Lubo Zhou
  • Patent number: 8058321
    Abstract: Fibered particles combine microscale spheroid particles and nanoscale fibers in an integrated body. Fibered particles may be combined with a matrix precursor to form syntactic foams incorporating both particles and fibers.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: November 15, 2011
    Assignee: Trelleborg Offshore Boston, Inc.
    Inventors: Gary Gladysz, Kipp B Carlisle, Daniel Mendoza
  • Publication number: 20110269857
    Abstract: Disclosed is a polymer derived from polyamic acid or a polyimide. The polymer derived from polyamic acid or a polyimide includes picopores, and the polyamic acid and the polyimide include a repeating unit obtained from an aromatic diamine including at least one ortho-positioned functional group with respect to an amine group and a dianhydride.
    Type: Application
    Filed: October 9, 2009
    Publication date: November 3, 2011
    Applicant: Industry-University Cooperation Foundation, HANYANG UNIVERSITY
    Inventors: Young Moo Lee, Ho-Bum Park, Chul-Ho Jung, Sang-Hoon Han
  • Patent number: 8022110
    Abstract: A porous polyimide obtained by removing a silica phase from an organic-inorganic polymer hybrid having a molecule structure in which a polyimide phase and the silica phase are held together by covalent bond.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: September 20, 2011
    Assignee: Ibiden Co., Ltd.
    Inventors: Yasuharu Yamada, Tomoyuki Suzuki, Jun Sakai, Norihiro Tomokiyo
  • Publication number: 20100275617
    Abstract: The invention involves composite materials containing a polymer foam and an aerogel. The composite materials have improved thermal insulation ability, good acoustic insulation, and excellent physical mechanical properties. The composite materials can be used, for instance, for heat and acoustic insulation on aircraft, spacecraft, and maritime ships in place of currently used foam panels and other foam products. The materials of the invention can also be used in building construction with their combination of light weight, strength, elasticity, ability to be formed into desired shapes, and superior thermal and acoustic insulation power. The materials have also been found to have utility for storage of cryogens. A cryogenic liquid or gas, such as N2 or H2, adsorbs to the surfaces in aerogel particles. Thus, another embodiment of the invention provides a storage vessel for a cryogen.
    Type: Application
    Filed: July 13, 2010
    Publication date: November 4, 2010
    Applicants: Space Administration
    Inventors: Martha K. Williams, Trent M. Smith, James E. Fesmire, Erik S. Weiser, Jared P. Sass
  • Publication number: 20100236291
    Abstract: Disclosed herein is a method for making polyimide articles that are suitable for high temperature applications. The articles disclosed herein are rigid, oxidatively stable, wear-resistant, and permeable to heated moisture and gases, and comprise co-polymer based polyimide, and at least one additive or filler, and are made using 20,000 to 50,000 psi of compression pressure.
    Type: Application
    Filed: March 16, 2010
    Publication date: September 23, 2010
    Applicant: E.I. DU PONT DE NEMOURS AND COMPANY
    Inventors: John P. Cunningham, Jeffrey L. Loudin
  • Patent number: 7781492
    Abstract: The invention involves composite materials containing a polymer foam and an aerogel. The composite materials have improved thermal insulation ability, good acoustic insulation, and excellent physical mechanical properties. The composite materials can be used, for instance, for heat and acoustic insulation on aircraft, spacecraft, and maritime ships in place of currently used foam panels and other foam products. The materials of the invention can also be used in building construction with their combination of light weight, strength, elasticity, ability to be formed into desired shapes, and superior thermal and acoustic insulation power. The materials have also been found to have utility for storage of cryogens. A cryogenic liquid or gas, such as N2 or H2, adsorbs to the surfaces in aerogel particles. Thus, another embodiment of the invention provides a storage vessel for a cryogen.
    Type: Grant
    Filed: June 7, 2007
    Date of Patent: August 24, 2010
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Martha K. Williams, Trent M. Smith, James E. Fesmire, Erik S. Weiser, Jared P. Sass
  • Patent number: 7074880
    Abstract: A preparation process of polyimide aerogels that composed of aromatic dianhydrides and aromatic diamines or a combined aromatic and aliphatic diamines is described. Also descried is a process to produce carbon aerogels derived from polyimide aerogel composed of a rigid aromatic diamine and an aromatic dianhydride. Finally, the processes to produce carbon aerogels or xerogel-aerogel hybrid, both of which impregnated with highly dispersed transition metal clusters, and metal carbide aerogels, deriving from the polyimide aerogels composed of a rigid aromatic diamine and an aromatic dianhydride, are described. The polyimide aerogels and the polyimide aerogel derivatives consist of interconnecting mesopores with average pore size at 10 to 30 nm and a mono-dispersed pore size distribution. The gel density could be as low as 0.008 g/cc and accessible surface area as high as 1300 m2/g.
    Type: Grant
    Filed: July 22, 2003
    Date of Patent: July 11, 2006
    Assignee: Aspen Aerogels, Inc.
    Inventors: Wendell Rhine, Jing Wang, Redouane Begag
  • Patent number: 6924322
    Abstract: An organic aerogel or xerogel formed by a sol-gel reaction using starting materials that exhibit similar reactivity to the most commonly used resorcinol starting material. The new starting materials, including thio-, amine- and nitro-containing molecules and functionalized macrocyclic molecules will produce organic xerogels and aerogels that have improved performance in the areas of detection and sensor technology, as well as water stream remediation. Also, further functionalization of these new organic aerogels or xerogels will yield material that can be extracted with greater facility than current organic aerogels.
    Type: Grant
    Filed: March 18, 2003
    Date of Patent: August 2, 2005
    Assignee: The Regents of the University of California
    Inventors: Glenn A. Fox, Thomas M. Tillotson
  • Patent number: 6814910
    Abstract: A flexible polyimide foam having an apparent density of 13.5 to 900 kg/m3 and a glass transition temperature of 300° C. or higher can be prepared by mixing an aromatic tetracarboxylic acid comprising 2,3,3′,4′-biphenyltetracarboxylic dianhydride a portion of which is converted into its mono- or di-lower primary alcohol ester with an aromatic polyamine containing diaminodisiloxane in an amount of 0.1 to 10 mol. %, based on the amount of total amine compounds, to give a solid of polyimide precursor; heating the solid of polyimide precursor to a temperature of 300° C. to 500° C. to produce a polyimide foam; and compressing the polyimide foam.
    Type: Grant
    Filed: September 16, 2002
    Date of Patent: November 9, 2004
    Assignee: Ube Industries, Ltd.
    Inventors: Hideki Ozawa, Shigeru Yamamoto
  • Patent number: 6576683
    Abstract: A flexible polyimide foam having an apparent density of 70 kg/m3 or less and a glass transition temperature of 300° C. or higher can be prepared by mixing an aromatic tetracarboxylic acid comprising 2,3,3′,4′-biphenyltetracarboxylic dianhydride a portion of which is converted into its mono- or di-lower primary alcohol ester with an aromatic polyamine containing diaminodisiloxane in an amount of 0.1 to 10 mol. %, based on the amount of total amine compounds, to give a solid of polyimide precursor; and heating the solid of polyimide precursor to a temperature of 300° C. to 500° C.
    Type: Grant
    Filed: June 28, 2001
    Date of Patent: June 10, 2003
    Assignee: Ube Industries, Ltd.
    Inventors: Hiroaki Yamaguchi, Shigeru Yamamoto
  • Patent number: 6486285
    Abstract: A water-swellable polymer gel prepared by reacting an ester of a carboxyl group-containing polysaccharide with a compound having at least two &agr;-amino groups, which is derived from a natural amino acid, and a foamed article thereof. The water-swellable polymer gel can be used in the fields such as industry, agriculture, food and medicine. The applications of the water-swellable gel in the medical field include wound dressings, adhesion-preventing materials, dialysis membranes, hemostatic materials, adhesive materials, sealants, contact lenses, materials for tissue regeneration, microcapsule materials and drug delivery systems.
    Type: Grant
    Filed: January 23, 2001
    Date of Patent: November 26, 2002
    Assignee: Kuraray Co., Ltd.
    Inventor: Akio Fujita
  • Patent number: 6472443
    Abstract: Highly crosslinked monolithic porous polymer materials for chromatographic applications. By using solvent compositions that provide not only for polymerization of acrylate monomers in such a fashion that a porous polymer network is formed prior to phase separation but also for exchanging the polymerization solvent for a running buffer using electroosmotic flow, the need for high pressure purging is eliminated. The polymer materials have been shown to be an effective capillary electrochromatographic separations medium at lower field strengths than conventional polymer media. Further, because of their highly crosslinked nature these polymer materials are structurally stable in a wide range of organic and aqueous solvents and over a pH range of 2-12.
    Type: Grant
    Filed: June 22, 2000
    Date of Patent: October 29, 2002
    Assignee: Sandia National Laboratories
    Inventor: Timothy J. Shepodd
  • Patent number: 6399669
    Abstract: A porous material made of a dry gel of a polyimide resin having an apparent density of 800 kg/m3 or less and a mean pore size of 1 &mgr;m or less is disclosed. The porous material exhibits high heat resistance and is low in density and mean pore size. The use of the porous material provided by the present invention can produce not only a heat insulator with a low thermal conductivity and high heat insulation but also an insulating material having a low dielectric constant and exhibiting excellent dielectric characteristics at high frequencies. The present invention can also provide a semiconductor circuit including the insulating material.
    Type: Grant
    Filed: September 17, 1999
    Date of Patent: June 4, 2002
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Masaaki Suzuki, Takashi Hashida, Yukiyoshi Ono
  • Patent number: 6391932
    Abstract: Porous polyimide dielectric materials having low dielectric constants useful in electronic component manufacture are disclosed along with methods of preparing the porous polyimide dielectric materials. Also disclosed are methods of forming integrated circuits containing such porous polyimide dielectric material.
    Type: Grant
    Filed: August 8, 2000
    Date of Patent: May 21, 2002
    Assignee: Shipley Company, L.L.C.
    Inventors: Robert H. Gore, Michael K. Gallagher, Scott A. Ibbitson
  • Patent number: 6342454
    Abstract: A novel dielectric composition is provided that is useful in the manufacture of electronic devices such as integrated circuit devices and integrated circuit packaging devices. The dielectric composition is prepared by crosslinking a thermally decomposable porogen to a host polymer via a coupling agent, followed by heating to a temperature suitable to decompose the porogen. The porous materials that result have dielectric constants less than about 3.0, with some materials having dielectric constants less than about 2.5. Integrated circuit devices, integrated circuit packaging devices, and methods of manufacture are provided as well.
    Type: Grant
    Filed: November 16, 1999
    Date of Patent: January 29, 2002
    Assignee: International Business Machines Corporation
    Inventors: Craig Jon Hawker, James L. Hedrick, Robert D. Miller, Willi Volksen
  • Patent number: 6235803
    Abstract: A shaped article composed of an aromatic polyimide has a hollow, essentially spherical structure and a particle size of about 100 to about 1500 &mgr;m, a density of about 1 to about 6 pounds/ft3 and a volume change of 1 to about 20% by a pressure treatment of 30 psi for 10 minutes at room temperature. A syntactic foam, made of a multiplicity of the shaped articles which are bonded together by a matrix resin to form an integral composite structure, has a density of about 3 to about 30 pounds/ft3 and a compression strength of about 100 to about 1400 pounds/in2.
    Type: Grant
    Filed: September 9, 1999
    Date of Patent: May 22, 2001
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Erik S. Weiser, Terry L. St. Clair, Yoshiaki Echigo, Hisayasu Kaneshiro
  • Patent number: 6172127
    Abstract: The invention herein relates to a process of preparing a novel polyimide foam having superior heat-resistance, flame retardancy, homogeneous size and distribution of cells, and low density, wherein a polyimide precursor in a granular form is prepared by means of using heterocyclic amine as catalyst and then foaming. According to the present invention, the preparing process of a polyimide foam comprises reacting aromatic carboxylic acid or the anhydrides thereof with an excess of aliphatic univalent alcohol to yield an aromatic ester solution. To the aromatic ester solution, divalent amines or the mixture thereof were added in the equivalent amount of said carboxylic acid or the anhydrides thereof in addition to a catalyst and surfactant to yield a polyimide. Then, the precursor in a granular form mixture was imidized while foaming by means of pre-heating and then heating in a microwave oven, after which was cured at a high temperature.
    Type: Grant
    Filed: September 11, 1998
    Date of Patent: January 9, 2001
    Assignee: Korea Research Institute of Chemical Technology
    Inventors: Kil Yeong Choi, Jae Heung Lee, Sung Goo Lee, Mi Hie Yi, Seung Su Kim
  • Patent number: 6133330
    Abstract: A mechanically undensified aromatic polyimide foam is made from an aromatic polyimide precursor solid residuum and has the following combination of properties: a density according to ASTM D-3574A of about 0.5 pounds/ft.sup.3 to about 20 pounds/ft.sup.3 ; a compression strength according to ASTM D-3574C of about 1.5 psi to about 1500 psi; and a limiting oxygen index according to ASTM D-2863 of about 35% oxygen to about 75% oxygen at atmospheric pressure. The aromatic polyimide foam has no appreciable solid inorganic contaminants which are residues of inorganic blowing agents. The aromatic polyimide which constitutes the aromatic polyimide foam has a glass transition temperature (Tg) by differential scanning calorimetry of about 235.degree. C. to about 400.degree. C.; and a thermal stability of 0 to about 1% weight loss at 204.degree. C. as determined by thermogravimetric analysis (TGA).
    Type: Grant
    Filed: May 21, 1999
    Date of Patent: October 17, 2000
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Erik S. Weiser, Terry L. St. Clair, Yoshiaki Echigo, Hisayasu Kaneshiro
  • Patent number: 6057379
    Abstract: A method of preparing polyimide foam produces a foam with excellent flexibility properties. The method of preparing polyimide foam is performed by foaming polyimide percursor which is prepared by employing linear aliphatic diamine and aromatic diamine containing 4 to 12 carbon atoms, at specific weight ration into the esterified reaction mixture prepared by reacting an aromatic carboxylic acid or its anhydride with excess amount of an alcohol compound. The polyimide foam produced by the method described retins superior characteristics of conventional polyimide foams and in addition have excellent flexibility so that it is used widely as adiabatic material, acoustical absorbent and cushion material in the aerospace industry, submarine and express trains etc.
    Type: Grant
    Filed: June 23, 1999
    Date of Patent: May 2, 2000
    Assignee: Korea Research Institute of Chemical Technology
    Inventors: Kil Y. Choi, Jae H. Lee, Sung G. Lee, Mi H. Yi, Seung S. Kim
  • Patent number: 5994418
    Abstract: A shaped article composed of an aromatic polyimide has a hollow, essentially spherical structure and a particle size of about 100 to about 1500 .mu.m, a density of about 1 to about 6 pounds/ft.sup.3 and a volume change of 1 to about 20% by a pressure treatment of 30 psi for 10 minutes at room temperature. A syntactic foam, made of a multiplicity of the shaped articles which are bounded together by a matrix resin to form an integral composite structure, has a density of about 3 to about 30 pounds/ft.sup.3 and a compression strength of about 100 to about 1400 pounds/in.sup.2.
    Type: Grant
    Filed: May 21, 1999
    Date of Patent: November 30, 1999
    Assignees: The United States of America as represented by the Administrator of the National Aeronautica and Space Administration, Unitika, Ltd.
    Inventors: Erik S. Weiser, Terry L. St. Clair, Yoshiaki Echigo, Hisayasu Kaneshiro
  • Patent number: 5830987
    Abstract: An amino-acrylate polymer is prepared by the reaction of an aliphatic hydroxyl polyacrylate monomer, like pentaerythritol triacrylate, with a polyamine like a hexyldiamine to provide a rigid fast gelling and curing polymer, which polymer may be modified with resin modifiers. The amino-acrylate polymer may be used in the preparation of composite structures with fibers and filler materials.
    Type: Grant
    Filed: March 11, 1997
    Date of Patent: November 3, 1998
    Assignee: Hehr International Inc.
    Inventor: Stuart B. Smith
  • Patent number: 5824766
    Abstract: A polyamideamic acid resin prepolymer represented by formula A having isophorone diamine as one of monomers, ##STR1## in which k, l, m and n are integer of 1 or more, respectively, and ##EQU1## --R-- is at least one group selected from the group consisting of ##STR2## --R'-- is a cis- and trans-conformational mixture of ##STR3## high heat resistant polyamideimide foam produced therefrom, and processes for producing them are disclosed.
    Type: Grant
    Filed: January 16, 1996
    Date of Patent: October 20, 1998
    Assignee: Korea Research Institute of Chemical Technology
    Inventors: Kil-Yeong Choi, Mi-Hie Yi, Moon-Young Jin, Young-Taik Hong
  • Patent number: 5731359
    Abstract: A vibration-absorbing element comprised of a foamed thermoplastic polymer selected from the group consisting of polyamide elastomers, EPDM polymers and SEBS polymers containing conventional additives, the foam structure having a pore size which decreases from the inside towards the outer surface and terminating in a smooth closed surface.
    Type: Grant
    Filed: July 5, 1995
    Date of Patent: March 24, 1998
    Assignees: A. Raymond GmbH & Co. KG, EMS-Inventa AG
    Inventors: Rene Moser, Hans-Jurgen Lesser
  • Patent number: 5525644
    Abstract: This invention relates to an article comprising a potted electrical component in a structure, wherein the electrical component is potted in a polyimide composition. The invention also relates to a method of potting electrical components comprising the steps of (1) adding a polyimide precursor to a structure including an electrical component, (2) curing the polyimide precursor to form a polyimide composition encapsulating the electrical component.
    Type: Grant
    Filed: September 24, 1993
    Date of Patent: June 11, 1996
    Assignee: Simmonds Precision Engine Systems
    Inventors: David E. Artus, Philip J. Morton
  • Patent number: 5510395
    Abstract: A film forming solution which does not require aprotic polar solvents, a porous film of poly(4,4'-oxydiphenylenepyromellitimide) obtained from the film forming solution which has excellent heat and chemical resistances, which is controllable in terms of porosity and pore size of the film and which has excellent electrical characteristics, and a coated material where the porous film is formed on a base material.Particularly, a film forming solution of a precursor of poly(4,4'-oxydiphenylenepyromellitimide) and a mixture of at least three solvents which are poor solvents for the precursor when each solvent is used alone, a porous film of poly(4,4'-oxydiphenylenepyromellitimide) obtained from the film forming solution and a coated material where the porous film is formed on a base material.
    Type: Grant
    Filed: February 10, 1994
    Date of Patent: April 23, 1996
    Assignee: Unitika, Ltd.
    Inventors: Isao Tomioka, Minoru Saito, Hiroshi Yamada, Yoshiaki Iwaya, Yoshiaki Echigo
  • Patent number: 5338765
    Abstract: A method of and apparatus for continuously foaming a polyimide prepolymer powder which is not susceptible to heating by microwave energy utilize a preheated conveyor belt to heat the powder in contact with and adjacent the surface of the conveyor belt to commence the reaction and foaming of the powder as it enters an oven which further heats the powder by convection and infrared radiation to form a continuous foam bun. The conveyor belt is cooled as it exits the oven to cool a bottom surface of the foam product to enable the foam product to be removed from the conveyor before interior portions of the foam product have cooled. Foam adhering to the conveyor belt, after the product has been removed, is cleaned from the conveyor belt, collected and mixed with and used as a filler in the prepolymer powder used in the process. In addition the mass of the powder entering the oven and the density and degree of cure of the foam bun exiting the oven are monitored to continuously control the process.
    Type: Grant
    Filed: November 23, 1993
    Date of Patent: August 16, 1994
    Assignee: Schuller International, Inc.
    Inventors: Daniel E. Near, Royce M. Feagans, Ward T. Hobert
  • Patent number: 5322916
    Abstract: A polyamide precursor of a polybenzazole polymer is prepared by reacting an aromatic bis(alkenyl)ester with a ring forming, aromatic diamine. The precursor can be prepared in an organic solvent for the monomers to form a soluble polyamide precursor which can be subsequently cyclocondensed to form a PBX polymer. A polybenzoxazole precursor is prepared by the reaction of a bis(alkenyl)ester and a bis(ortho-hydroxyamine). A polybenzazole polymer is easily prepared by heating the polyamide, PBX precursor.
    Type: Grant
    Filed: March 16, 1993
    Date of Patent: June 21, 1994
    Assignee: The Dow Chemical Company
    Inventors: James J. O'Brien, Edmund P. Woo
  • Patent number: 5298531
    Abstract: A polyimide foam is prepared by heating a mixture comprising an alkyl ester of 4,4'-oxydiphthalic acid and a diamine at a temperature of 60.degree. to 350.degree. C. This foam is elastic and flame-retardant and has an excellent resistance to acid and alkali.
    Type: Grant
    Filed: March 3, 1993
    Date of Patent: March 29, 1994
    Assignee: Daicel Chemical Industries, Ltd.
    Inventors: Motoshi Ishikura, Nobuyuki Watanabe
  • Patent number: 5286760
    Abstract: Disclosed herein is a process for preparing a reaction product containing methylene diphenylamine comprising reacting aniline with an aldehyde, in the presence of a low level of an acid wherein the acid level is reduced before digesting reaction mixture at a high temperature which is sufficient to effect a rearrangement of the intermediates to produce a reaction product containing methylene diphenylamines and low levels of impurities.
    Type: Grant
    Filed: October 9, 1992
    Date of Patent: February 15, 1994
    Assignee: Miles, Inc.
    Inventors: Jeffrey S. Bolton, Robert L. Mayen
  • Patent number: 5234966
    Abstract: Polyimide foam of desired density is produced by adding to a polyimide precursor comprising carboxylic and diamine components at least one foam-enhancing polar, protic additive of the formula ROH, where R is hydrogen, or C.sub.1 to C.sub.12 linear or branched alkyl or cycloalkyl, unsubstituted or substituted with halo, aryl, alkoxy or hydroxy, and heating the resultant slurry to a temperature that does not exceed about 105.degree. C. to form a homogeneous melt. When heated to a higher temperature the melt foams and cures. The density of the foam is affected by the amount of foam-enhancing additive which is utilized.
    Type: Grant
    Filed: October 13, 1992
    Date of Patent: August 10, 1993
    Assignee: Ethyl Corporation
    Inventors: James R. Barringer, H. Eugene Broemmelsiek, Carroll W. Lanier, Raymond Lee
  • Patent number: 5225450
    Abstract: The invention is directed to an unfoamed foil of at least one thermoplastic resin, said foil being capable of serving as an adhesive when softened and having included therein at least one blowing agent, and to the use thereof in preparing laminates.
    Type: Grant
    Filed: March 15, 1991
    Date of Patent: July 6, 1993
    Assignee: Schreiner Luchtvaart Groep B.V.
    Inventor: Adriaan Beukers