Chemically Treated Solid Polymer Patents (Class 521/30)
  • Publication number: 20140031734
    Abstract: A silicone adhesive composition including an ionic silicone and useful for healthcare applications such as wound care and drug delivery.
    Type: Application
    Filed: December 20, 2012
    Publication date: January 30, 2014
    Applicant: Momentive Performance Materials Inc.
    Inventor: Momentive Performance Materials Inc.
  • Publication number: 20140024728
    Abstract: Anion exchange polymer electrolytes that include guanidinium functionalized polymers may be used as membranes and binders for electrocatalysts in preparation of anodes for electrochemical cells such as solid alkaline fuel cells.
    Type: Application
    Filed: August 13, 2012
    Publication date: January 23, 2014
    Applicant: LOS ALAMOS NATIONAL SECURITY, LLC
    Inventors: Yu Seung Kim, Dae Sik Kim
  • Patent number: 8629216
    Abstract: Ionomers and ionomer membranes, consisting of a non-fluorinated or partly fluorinated non-, partly or fully-aromatic main chain and a non- or partly-fluorinated side chain with ionic groups or their non-ionic precursors, have a positive impact on the proton conductivity of the ionomers. Various processes produce these polymeric proton conductors.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: January 14, 2014
    Assignee: Thomas Häring and Rima Häring
    Inventors: Thomas Haring, Jochen Kerres, Martin Hein
  • Publication number: 20130299430
    Abstract: Methods for producing or regenerating an iodinated anion exchange resin are presented. The methods include treating an iodide loaded anionic resin with an aqueous solution comprising an in situ formed I2 to produce the iodinated resin. The iodinated resins show reduced and stable levels of iodine elution compared to resins produced by conventional methods. Methods and systems for purifying water are also presented.
    Type: Application
    Filed: May 8, 2012
    Publication date: November 14, 2013
    Applicant: Water Security Corporation
    Inventors: Sivarooban Theivendran, Terryll Riley Smith, James J. Kubinec
  • Publication number: 20130237112
    Abstract: With respect to the anionic polymer ion-exchange material used in an alkaline fuel cell, an electrodialysis apparatus, water treatment industry, catalyst industry, and the like, there are provided an anionic polymer ion-exchange material having both excellent ionic conductivity and excellent mechanical strength, as compared to the materials conventionally used, and a method for producing the same. An anionic polymer ion-exchange material having a polymer base material mainly made of an amide resin having both an aromatic structure and an aliphatic chain in the principal chain thereof, wherein the polymer base material has an anionic monomer graft-polymerized on the aliphatic chain in the principal chain of the amide resin, wherein the anionic monomer has an aromatic structure and a quaternary ammonium structure.
    Type: Application
    Filed: February 27, 2013
    Publication date: September 12, 2013
    Applicant: JAPAN ATOMIC ENERGY AGENCY
    Inventors: Jinhua CHEN, Masaharu ASANO, Yasunari MAEKAWA
  • Patent number: 8530530
    Abstract: The invention relates to a process for producing non-agglomerating mixed bed ion exchangers or mixed bed components.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: September 10, 2013
    Assignee: LANXESS Deutschland GmbH
    Inventors: Wolfgang Zarges, Stefan Hilger, Pierre Vanhoorne, Hans-Jurgen Wedemeyer
  • Patent number: 8476324
    Abstract: A method for manufacturing an anion exchange resin, in which remaining of impurities and generation of decomposition products are suppressed and leachables are reduced, the method including the following steps (1-a) to (1-e) of: (1-a) obtaining a cross-linked copolymer by copolymerizing a monovinyl aromatic monomer and a cross-linkable aromatic monomer; (1-b) specifying the content of a specific leachable compound to be 400 ?g or less relative to 1 g of the cross-linked copolymer; (1-c) haloalkylating the cross-linked copolymer so as to introduce 80 percent by mole or less of haloalkyl group relative to the monovinyl aromatic monomer; (1-d) removing a specific leachable compound from the haloalkylated cross-linked copolymer; and (1-e) subjecting the haloalkylated cross-linked copolymer to a reaction with an amine compound.
    Type: Grant
    Filed: April 15, 2008
    Date of Patent: July 2, 2013
    Assignees: Kurita Water Industries Ltd., Mitsubishi Chemical Corporation
    Inventors: Takeo Fukui, Tetsuo Mizuniwa, Kazuhiko Tokunaga, Masako Yasutomi
  • Patent number: 8440730
    Abstract: The present invention relates to a method for improved removal of cations, preferably alkaline earth metals, in particular calcium and barium, from aqueous solutions using chelating resins having aminomethylphosphonic acid groups and iminodimethylphosphonic acid groups having high dynamic absorption capacity for cations at a low residual content of the cations and high regeneration efficiency, and a markedly lengthened loading duration of the chelating resin, to the chelating exchangers themselves, and also to uses thereof.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: May 14, 2013
    Assignee: LANXESS Deutschland GmbH
    Inventors: Reinhold Klipper, Stefan Neumann, Jens Stoll, Michael Schelhaas, Pierre Vanhoorne
  • Patent number: 8436057
    Abstract: An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: May 7, 2013
    Assignee: U.S. Department of Energy
    Inventors: John G. Verkade, Kuldeep Wadhwa, Xueqian Kong, Klaus Schmidt-Rohr
  • Patent number: 8436055
    Abstract: The present invention provides an ion-exchange resin catalyst, as a catalyst for preparing bisphenol from phenol compounds and ketone, which has a higher selectivity to bisphenol and a longer life time, as compared to a conventional ion-exchange resin, and a method for preparing the same. The present invention also provides a method for preparing bisphenol comprising reacting phenol compounds with ketone, wherein the modified acidic ion-exchange resin in which at least one kind of cationic compound selected from the following (a), (b), (c) and (d) ionically binds to an acidic functional group, is used as a catalyst: (a) a quaternary phosphonium ion, (b) a quaternary ammonium ion, (c) a bis(phosphoranylidene) ammonium ion, and (d) an N-substituted nitrogen-containing aromatic cation.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: May 7, 2013
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Takashi Terajima, Toshihiro Takai, Kenji Fujiwara
  • Patent number: 8426479
    Abstract: There is provided a modified ion exchange resin catalyst which exhibits higher bisphenols selectivity than the conventional modified ion exchange resins in processes wherein bisphenols are produced by reacting a phenolic compound with ketones, and to provide such a process for producing bisphenols.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: April 23, 2013
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Takashi Terajima, Toshihiro Takai, Hideaki Nakamura
  • Patent number: 8399528
    Abstract: The present invention relates to a method for improved removal of cations, preferably alkaline earth metals, in particular calcium and barium, from aqueous solutions using chelating resins having acetic acid and/or iminodiacetic acid groups having high dynamic absorption capacity for cations at a low residual content of the cations and high regeneration efficiency, to the chelating exchangers themselves, and also to uses thereof.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: March 19, 2013
    Assignee: LANXESS Deutschland GmbH
    Inventors: Reinhold Klipper, Stefan Neumann, Jens Stoll, Michael Schelhaas, Pierre Vanhoorne
  • Patent number: 8389639
    Abstract: A proton exchange membrane comprising modified hyper-branched polymer is disclosed. The proton exchange membrane includes 85-90 wt % of sulfonated tetrafluorethylene copolymer and 15-10 wt % of modified hyper-branched polymer. The modified hyper-branched polymer comprises the bismaleimide (BMI)-based hyper-branched polymer, and parts of the chain ends of the hyper-branched polymer are sulfonated by the sulfonic compound. Also, the modified hyper-branched polymer and sulfonated tetrafluorethylene copolymer are interpenetrated to form an interpenetrating polymer. Furthermore, the modification step could be performed before or after forming the interpenetrating polymer. For example, the sulfonation is proceeded after forming the interpenetrating polymer. Alternatively, the sulfonation of the hyper-branched polymer could be proceeded before the formation of the interpenetrating polymer.
    Type: Grant
    Filed: November 23, 2009
    Date of Patent: March 5, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Chung-Liang Chang, Ya-Ting Hsu, Jing-Pin Pan
  • Patent number: 8357398
    Abstract: Oral dosage forms of benzonatate useful for anti-tussive and anti-tussive/combination applications.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: January 22, 2013
    Assignee: Alitair Pharmaceuticals Inc.
    Inventors: William Wayne Howard, Russell Francis Somma, Doreen Marie Frank
  • Publication number: 20120321970
    Abstract: Embodiments of the invention are related to anion exchange membranes used in electrochemical metal-air cells in which the membranes function as the electrolyte material, or are used in conjunction with electrolytes such as ionic liquid electrolytes.
    Type: Application
    Filed: June 18, 2012
    Publication date: December 20, 2012
    Applicant: FLUIDIC, INC.
    Inventors: Cody A. Friesen, Derek WOLFE, Paul Bryan JOHNSON
  • Patent number: 8329766
    Abstract: A functional membrane and a production method thereof including: an ion irradiation step in which a polymer film substrate is irradiated with high energy heavy ions at 104 to 1014 ions/cm2, to generate active species in the film substrate; and a graft polymerization step in which after the ion irradiation step, the film substrate is added with one or more monomers selected from a group A consisting of monomers each having a functional group and 1 to 80 mol % of a monomer including a group B consisting of a crosslinking agent(s) for the group A monomer(s), and the film substrate and the monomer(s) are graft-polymerized. There is obtained a functional membrane having high functionality in conjunction with the gas barrier property intrinsically possessed by a polymer film substrate, in particular, a polymer electrolyte membrane optimal as a polymer electrolyte membrane for use in fuel cells, high in proton conductivity and excellent in gas barrier property.
    Type: Grant
    Filed: February 23, 2006
    Date of Patent: December 11, 2012
    Assignees: Japan Atomic Energy Agency, Toyota Jidosha Kabushiki Kaisha
    Inventors: Shigeharu Takagi, Toshiya Saito, Misaki Kobayashi, Masaru Yoshida, Tetsuya Yamaki, Masaharu Asano
  • Publication number: 20120283485
    Abstract: A modified ion exchange resin catalyst having an attached dimethyl thiazolidine promoter is disclosed. Also disclosed is a process for catalyzing condensation reactions between phenols and ketones, wherein reactants are contacted with a modified ion exchange resin catalyst having an attached dimethyl thiazolidine promoter. Also disclosed is a process for catalyzing condensation reactions between phenols and ketones that does not utilize a bulk promoter.
    Type: Application
    Filed: May 2, 2011
    Publication date: November 8, 2012
    Inventors: Umesh Krishna Hasyagar, Rathinam Jothi Mahalingam, Kishan Gurram, Paul Eijsbouts
  • Patent number: 8304133
    Abstract: The invention provides a method for producing a polymer electrolyte membrane including (A) a membrane formation step of forming a membrane-form product of an ionic group-containing polymer electrolyte on a support, (B) an acid treatment step of exchanging the ionic group into an acid type by bringing the membrane into contact with an inorganic acid-containing acidic liquid, (C) an acid removal step of removing a free acid in the acid-treated membrane, and (D) a drying step of drying the acid-removed membrane, wherein the steps (B) to (D) are carried out without separating the membrane from the support.
    Type: Grant
    Filed: December 26, 2007
    Date of Patent: November 6, 2012
    Assignee: Toyo Boseki Kabushiki Kaisha
    Inventors: Kousuke Sasai, Hiroki Yamaguchi, Yoshimitsu Sakaguchi, Kouta Kitamura, Masahiro Yamashita
  • Publication number: 20120264835
    Abstract: A method of producing a sulfonated polyarylether block copolymer is provided. The method includes producing a sulfonated polyarylether block copolymer containing a hydrophobic segment having a structural unit represented by formula (5) and a hydrophilic segment having a structural unit having a sulfonic acid groups or derivative thereof incorporated into a structure represented by formula (6). A hydrophilic segment prepolymer having a sulfonic acid group in a potassium salt form and a hydrophobic segment prepolymer are block copolymerized. A proton conductor that includes the sulfonated polyarylether block copolymer is also provided.
    Type: Application
    Filed: March 2, 2012
    Publication date: October 18, 2012
    Applicant: UBE INDUESTIRES, LTD.
    Inventors: Tetsuji HIRANO, Nobuharu HISANO, Tatsuya ARAI, Masayuki KINOUCHI
  • Publication number: 20120245237
    Abstract: Ionomers and ionomer membranes with the ionic group on a flexible side chain have a positive impact on the proton conductivity of the ionomers. Various processes produce these polymeric proton conductors.
    Type: Application
    Filed: December 19, 2011
    Publication date: September 27, 2012
    Inventors: Thomas Häring, Jochen Kerres, Martin Hein
  • Patent number: 8273799
    Abstract: The invention generally relates to amination reactions and amination reaction products, and particularly to methods for aminating vinyl aromatic polymers utilizing tertiary amines. In one embodiment, the invention includes conducting an amination reaction by combining a tertiary amine and a vinyl aromatic polymer comprising benzyl chloride groups to form a reaction mixture and maintaining the pH of the reaction mixture within a designated range. In another embodiment, the invention includes an aminated vinyl aromatic polymer. In yet another embodiment, the invention includes an ion exchange resin including quaternary ammonium functionality. The invention is useful in preparing ion exchange resins suitable for a variety of applications such as the removal of perchlorate ions from water sources and recovery of gold cyanide from mining leach solutions.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: September 25, 2012
    Assignee: Dow Global Technologies LLC
    Inventors: William I. Harris, Dennis A. Keeley, Daryl J. Gisch, Marvin H. Tegen, James A. Jagodzinski, David C. McDonald
  • Publication number: 20120238648
    Abstract: Provided according to some embodiments of the invention are anion exchange polyelectrolytes that include an at least partially fluorinated polyaromatic polymer backbone; and at least one cationic functional group pendant therefrom. Also provided are anion exchange membranes (AEMs) formed from at least one anion exchange polyelectrolyte according to an embodiment of the invention, and fuel cells including such AEMs.
    Type: Application
    Filed: September 24, 2010
    Publication date: September 20, 2012
    Inventors: Junfeng Zhou, Paul A. Kohl, Murat Unlu
  • Publication number: 20120211419
    Abstract: A method of producing a scale-control resin including combining in an aqueous solution a cation-exchange resin and a weak-acid anion mineral or salt having a multivalent cation to allow ion exchange between the resin and the multivalent cation. The cation-exchange resin may a weak-acid ion exchange resin. The method may further include adding a strong-acid salt having the same multivalent cation as the weak-acid anion mineral or salt to the aqueous solution.
    Type: Application
    Filed: April 27, 2009
    Publication date: August 23, 2012
    Applicant: WATTS WATER TECHNOLOGIES, INC.
    Inventor: Evan E. Koslow
  • Publication number: 20120205315
    Abstract: There are provided ligand compositions and stationary phases comprising a polyhedral oligomeric silsequioxane moiety. Also provided are chromatographic devices comprising the stationary phases, and methods of making and using the ligands, stationary phases and chromatographic devices of the invention.
    Type: Application
    Filed: February 14, 2012
    Publication date: August 16, 2012
    Applicant: Dionex Corporation
    Inventors: Xiaodong Liu, Christopher A. Pohl
  • Patent number: 8242042
    Abstract: The present invention aims at providing an optimal constitution and production method for an OH-type anion-exchange hydrocarbon-based elastomer used when manufacturing a catalyst electrode layer of a solid polymer type fuel cell, in view of a balance of stability, durability and flexibility. Also, the present invention aims to provide an ion-conductivity imparting agent comprising the OH-type anion-exchange hydrocarbon-based elastomer, wherein the elastomer is uniformly dissolved or dispersed and has appropriate viscosity even with a high concentration. The anion-exchange hydrocarbon-based elastomer of the present invention has an iodine value of 3 to 25, contains an anion-exchange group having OH?, CO32? and/or HCO3? as a counterion in its molecule and is poorly-soluble in water. The hydrocarbon-based elastomer can preferably be used as an ion-conductivity imparting agent for forming a catalyst electrode layer by mixing an organic solvent.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: August 14, 2012
    Assignee: Tokuyama Corporation
    Inventors: Hitoshi Matsuoka, Kenji Fukuta
  • Patent number: 8232324
    Abstract: A curable resin composition comprising (a) a compound having at least one ethylenically unsaturated group and at least one ion conductive group, (b) a compound having at least two ethylenically unsaturated groups, (c) an organosilicon compound having at least two SiH groups, (d) a platinum group catalyst, and (e) a solvent is dried and cured by heating into a cured film having excellent ionic conduction and serving as electrolyte membrane. The electrolyte membrane and an electrolyte membrane/electrode assembly satisfy fuel cell-related properties including ionic conduction and film strength as well as productivity.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: July 31, 2012
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Toshio Ohba, Mitsuhito Takahashi
  • Patent number: 8222367
    Abstract: A proton conducting hydrocarbon-based polymer has acid groups on side chains attached to the main chain, where the acid groups are between 7 and 12 atoms away from the main chain. Another polymer includes a semi-fluorinated aromatic hydrocarbon main chain and side chains that include at least one —CF2— group and an acid group. Another polymer includes an aromatic hydrocarbon main chain and side chains that include at least one —CH2-CF2— group and an acid group. Another aromatic polymer includes acid groups attached to both the main chain and the side chains where less than about 65 weight percent of the acid groups are attached to the side chains. Another aromatic polymer includes side chains attached to the main chain that include at least one aryl ring, and acid groups attached to both the main chain and to the aryl groups. Another polymer includes an aliphatic hydrocarbon main chain, side chains that include at least one deactivating aryl ring, and acid groups attached to the deactivating aryl rings.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: July 17, 2012
    Assignee: Battelle Memorial Institute
    Inventors: Ramanathan S. Lalgudi, Bhima R. Vijayendran, Jeffrey Cafmeyer, Jay R. Sayre
  • Patent number: 8211558
    Abstract: There are provided a new crosslinked polymer electrolyte excellent in water resistance and solvent resistance, high in heat resistance, inexpensive and low in methanol permeability, and suitable for the proton conductive membrane of a fuel cell, by means of the crosslinked polymer electrolyte obtained by the following (1) or (2), and its production method. (1) A compound having two or three or more reactive groups is reacted with a polymer electrolyte. (2) A compound having two or three or more reactive groups is reacted with a polymer to obtain a crosslinked polymer and then an ion exchange group is introduced into the resultant polymer.
    Type: Grant
    Filed: April 4, 2006
    Date of Patent: July 3, 2012
    Assignee: Sumitomo Chemical Company, Limited
    Inventor: Ken Yoshimura
  • Patent number: 8173713
    Abstract: A new class of membranes for use in protective clothing. More specifically, the present invention relates to a polymer-polymer membrane with an ionic polymer located within the nanopores of a porous polymer host membrane. A method for making the polymer-polymer membranes involves filling porous polymers with ionic polymers. The porous polymers may be fabricated by a template synthesis which involves sorption. The ionic polymers may be filled in the nanopores of the porous polymer by plasma-induced graft copolymerization of the ionic polymer with the porous polymeric host membrane.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: May 8, 2012
    Assignee: Drexel University
    Inventors: Yossef A. Elabd, Giuseppe R. Palmese
  • Patent number: 8163864
    Abstract: The invention relates to the field of polymer chemistry and relates to sulfonated polyarylene compounds such as can be used for example in ion exchange membranes in fuel cells, as well as a method for the production thereof and the use thereof. The object of the present invention is to disclose hydrolytically and thermally resistant sulfonated polyarylene compounds with a defined degree and position of sulfonation, from which membrane materials with an improved resistance to hydrolysis can be produced. The object is attained through sulfonated polyarylene compounds according to at least one of the general formulas (I)-(IV).
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: April 24, 2012
    Assignee: Leibniz-Institut fuer Polymerforschung Dresden E.V.
    Inventors: Dieter Lehmann, Jochen Meier-Haack, Claus Vogel, Wladimir Butwilowski
  • Publication number: 20120094212
    Abstract: A polyurea electrolyte includes a polyurea resin formed by a polymerization of a first compound having two or more isocyanate groups and a second compound having two or more amino groups. The first compound or the second compound contains ten or more carbon chains, and the first compound or the second compound contains a sulfonic acid group or a carboxylic acid group. A method for manufacturing the polyurea electrolyte includes neutralizing the sulfonic acid group or the carboxylic acid group in the first compound or the second compound by a neutralizing agent; after the neutralizing, polymerizing the first compound and the second compound; and after the polymerizing, removing the neutralizing agent from a polymer of the first compound and the second compound.
    Type: Application
    Filed: June 10, 2010
    Publication date: April 19, 2012
    Inventors: Takuya Hasegawa, Shogo Takamuku, Tetsuya Samura, Hiroshi Tabata, Toyo Yano
  • Publication number: 20120083541
    Abstract: An aromatic polyether sulfone block copolymer comprises hydrophilic segments which have sulfonic acid groups and hydrophobic segments which have no sulfonic acid groups, wherein the proportion by weight of hydrophilic segments is from 0.02 to 0.35.
    Type: Application
    Filed: June 15, 2010
    Publication date: April 5, 2012
    Applicant: BASF SE
    Inventors: Alexander Khvorost, Martin Weber, Christian Schmidt, Jörg Belack, Cecile Gibon, Bernd-Steffen Von Bernstorff
  • Patent number: 8133928
    Abstract: A process for the storage or transportation of pretreated, conditioned ion exchangers as catalysts for chemical reactions is disclosed. The preconditioned ion-exchange resin is kept as preconditioned ion-exchange resin suspension in a storage or transporting container. The container with the preconditioned ion-exchange resin suspension is transported to either a storage site for storage or to a reactor for transfer of the resin to the reactor.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: March 13, 2012
    Assignee: Bayer MaterialScience AG
    Inventors: Ernst-Joachim Alps, Ulrich Blaschke, Christian Münnich, Stefan Westernacher
  • Publication number: 20120052412
    Abstract: A polyarylene copolymer having a sulfonic acid group which has high proton conductivity and reduced swelling in hot water and reduced shrinkage in drying; a solid polymer electrolyte and a proton conductive membrane comprising the copolymer; and a membrane-electrode assembly using these. The polyarylene block copolymer comprises a polymer segment (A) having a sulfonic acid group, and a polymer segment (B) having substantially no sulfonic acid group, the polymer segment (B) having substantially no sulfonic acid group comprising a structural unit represented by the following formula (1).
    Type: Application
    Filed: August 19, 2011
    Publication date: March 1, 2012
    Applicants: HONDA MOTOR CO., LTD., JSR CORPORATION
    Inventors: Yoshitaka YAMAKAWA, Toshiaki KADOTA, Takuya MURAKAMI, Yuuji TSUNODA, Masaru IGUCHI, Kaoru FUKUDA
  • Patent number: 8124660
    Abstract: A polymer electrolyte membrane is made from a polymer electrolyte and a coordination polymer, and finds use in a fuel cell. The polymer electrolyte membrane may be made by dissolving a polymer electrolyte in a solvent to provide a first solution, adding a coordination polymer to the first solution to yield a second solution, and forming the second solution into a film.
    Type: Grant
    Filed: May 21, 2008
    Date of Patent: February 28, 2012
    Assignees: Gkss-Forshungszentrum Geesthacht GmbH, Technische Universitat Dresden
    Inventors: Dominique de Figueiredo Gomes, Suzana Nunes, Klaus-Viktor Peinemann, Stefan Kaskel, Volker Abetz
  • Publication number: 20120035281
    Abstract: A phosphorus-adsorbing material is produced to include a polymer-based material modified with at least either of a primary and a secondary amine and a metal supported on the polymer-based material, and a phosphorus recovery system is structured by using the phosphorus-adsorbing material.
    Type: Application
    Filed: August 11, 2011
    Publication date: February 9, 2012
    Inventors: Akiko SUZUKI, Hideyuki TSUJI, Shinji MURAI, Tatsuoki KOHNO, Katsuya YAMAMOTO, Shinobu MONIWA, Hidetake SHIIRE, Satoshi HARAGUCHI, Nobuyuki ASHIKAGA
  • Publication number: 20120029099
    Abstract: The present invention relates generally to electrolyte materials. According to an embodiment, the present invention provides for a solid polymer electrolyte material that has high ionic conductivity and is mechanically robust. An exemplary material can be characterized by a copolymer that includes at least one structural block, such as a vinyl polymer, and at least one ionically conductive block with a siloxane backbone. In various embodiments, the electrolyte can be a diblock copolymer or a triblock copolymer. Many uses are contemplated for the solid polymer electrolyte materials. For example, the novel electrolyte material can be used in Li-based batteries to enable higher energy density, better thermal and environmental stability, lower rates of self-discharge, enhanced safety, lower manufacturing costs, and novel form factors.
    Type: Application
    Filed: August 22, 2009
    Publication date: February 2, 2012
    Applicant: SEEO, INC
    Inventors: Bing Hsieh, Hany Basam Eitouni, Mohit Singh
  • Publication number: 20120018377
    Abstract: A dialysate regeneration chamber is provided. In one embodiment, the dialysate regeneration chamber may include a toxin trap configured to selectively trap toxins and repel select cations.
    Type: Application
    Filed: August 1, 2011
    Publication date: January 26, 2012
    Applicant: Chemica Technologies, Inc.
    Inventor: Takuji Tsukamoto
  • Publication number: 20120016043
    Abstract: The present invention relates to a poly(arylene ether) copolymer having an ion exchange group, particularly a positive ion exchange group, a method for manufacturing the same, and use thereof. In the poly(arylene ether) copolymer having the ion exchange group according to the present invention, physical characteristics, ion exchanging ability, metal ion adsorption ability and a proccessability are excellent, and thus the copolymer can be molded in various shapes and can be extensively applied to various fields such as recovering of organic metal, air purification, catalysts, water treatment, medical fields and separating of proteins.
    Type: Application
    Filed: December 6, 2010
    Publication date: January 19, 2012
    Applicant: HYUNDAI MOTOR COMPANY
    Inventors: Inchul Hwang, Nak Hyun Kwon, Young Taek Kim, Dong Il Kim, Ju Ho Lee
  • Publication number: 20120004330
    Abstract: A non crosslinked, covalently crosslinked and/or ionically crosslinked polymer, having repeating units of the general formula (1) —K—R—??(1) In which K is a bond, oxygen, sulfur, the radical R is a divalent radical of an aromatic or heteroaromatic compound.
    Type: Application
    Filed: March 14, 2011
    Publication date: January 5, 2012
    Inventor: Thomas Häring
  • Publication number: 20110317253
    Abstract: Provided are poly(ferrocenyl)silane based network polymers, methods of preparing the same, and films including the poly(ferrocenyl)silane based network polymers. The network polymers have a steric network structure and are prepared by using a simplified process.
    Type: Application
    Filed: June 21, 2011
    Publication date: December 29, 2011
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Moon Gyu Han, Gennadi A. Emelchenko, Alexander M. Kalsin, Nikolai A. Ustynyuk, Tatyana A. Peganova
  • Publication number: 20110311899
    Abstract: The polymer electrolyte membrane according to the present invention comprises a polymer electrolyte having ion-exchange groups, wherein Sp and Snp satisfy a relationship expressed by the following expression (I): Sp/Snp?0.42??(I) where Sp represents the total of peak areas obtained by measurement of a 13C-solid state nuclear magnetic resonance spectrum of the polymer electrolyte membrane, the polymer electrolyte membrane having been subjected to a first immersion treatment comprising immersing the polymer electrolyte membrane in 5 mmol/L iron (II) chloride tetrahydrate aqueous solution at 25° C. for 1 hour, and thereafter drying the polymer electrolyte membrane at 25° C.
    Type: Application
    Filed: May 21, 2009
    Publication date: December 22, 2011
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Toru Onodera, Taisuke Nakamura, Sho Kanesaka, Arihiro Yashiro, Takashi Yamada, Masamitsu Ishitobi, Shigeru Sasaki, Isao Kaito, Akira Kaito, Yuko Kaito
  • Patent number: 8076379
    Abstract: The present invention relates to a novel proton-conducting polymer membrane based on aromatic polyazoles which contain sulfonic acid groups and in which the sulfonic acid groups are covalently bound to the aromatic ring of the polymer and which can, owing to their excellent chemical and thermal properties, be used for a variety of purposes. Such materials are particularly useful for the production of polymer electrolyte membranes (PEMs) in PEM fuel cells.
    Type: Grant
    Filed: June 14, 2003
    Date of Patent: December 13, 2011
    Assignee: BASF Fuel Cell GmbH
    Inventors: Gordon Calundann, Michael J. Sansone, Oemer Uensal, Joachim Kiefer
  • Publication number: 20110287067
    Abstract: Described herein is the synthesis of reinforced adhesive complex coacervates and their use thereof. The reinforced adhesive complex coacervates are composed of (a) at least one polycation, (b) at least one polyanion, and (c) a reinforcing component. The adhesive complex coacervates described herein can be subsequently cured to produce strong, cohesive adhesives. The reinforced adhesive complex coacervates have several desirable features when compared to conventional adhesives. The reinforced adhesive complex coacervates are effective in wet or underwater applications. The reinforced adhesive complex coacervates described herein, being phase separated from water, can be applied underwater without dissolving or dispersing into the water. The reinforced adhesive complex coacervates have numerous biological applications as bioadhesives and bioactive delivery devices.
    Type: Application
    Filed: May 24, 2011
    Publication date: November 24, 2011
    Inventor: Russell John STEWART
  • Patent number: 8058383
    Abstract: The preparation of aromatic sulfonimide polymers useful as membranes in electrochemical cells is described.
    Type: Grant
    Filed: December 6, 2007
    Date of Patent: November 15, 2011
    Assignee: E. I. du Pont de Nemours and Company
    Inventor: Mark F. Teasley
  • Publication number: 20110263727
    Abstract: A PBI compound includes imidazole nitrogens at least a portion of which are substituted with a moiety containing a carbonyl group, the substituted imidazole nitrogens being bonded to carbon of the carbonyl group. At least 85% of the nitrogens may be substituted. The carbonyl-containing moiety may include RCO—, where R is alkoxy or haloalkyl. The PBI compound may exhibit a first temperature marking an onset of weight loss corresponding to reversion of the substituted PBI that is less than a second temperature marking an onset of decomposition of an otherwise identical PBI compound without the substituted moiety. The PBI compound may be included in separatory media. A substituted PBI synthesis method may include providing a parent PBI in a less than 5 wt % solvent solution. Substituting may use more than 5 equivalents in relation to the imidazole nitrogens to be substituted.
    Type: Application
    Filed: November 1, 2007
    Publication date: October 27, 2011
    Inventors: John R. Klaehn, Eric S. Peterson, Christopher J. Orme, Michael G. Jones, Alan K. Wertsching, Thomas A. Luther, Tammy L. Trowbridge
  • Publication number: 20110257278
    Abstract: A polymer useful as an ion conducting membrane for fuel cell applications includes both main chain and side chain protogenic groups. Methods for preparing the polymer include addition of the side chains both before and after addition of the protogenic groups.
    Type: Application
    Filed: April 16, 2010
    Publication date: October 20, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Lijun Zou, Sean M. MacKinnon, Timothy J. Fuller
  • Publication number: 20110247981
    Abstract: This invention provides an adsorbent material capable of effectively trapping a target component in a sample solution and releasing the same, which has the satisfactory trapping capacity via hydrophobic interactions and via ion exchange reactions. The invention relates to an adsorbent material comprising a porous material of a polymer compound which is a copolymer obtained via copolymerization of a hydrophobic monomer (A), a hydrophilic monomer (B) capable of undergoing a second-order reaction, and a hydrophilic monomer (C) exhibiting a hydrogen-bonding capacity, and via introduction of an ion exchange group into a repeat unit derived from the hydrophilic monomer (B).
    Type: Application
    Filed: December 11, 2009
    Publication date: October 13, 2011
    Inventors: Tetsuyoshi Ono, Yoshinori Inoue
  • Publication number: 20110237690
    Abstract: This invention provides a family of functionalized polymers capable of forming membranes having exceptional OH? ionic conductivity as well as advantageous mechanical properties. The invention also provides membranes including the provided polymers and AEMFC/HEMFC fuel cells including such membranes. In a preferred embodiment, preferred function groups include a quaternary phosphonium, and in a more preferred embodiment the provided polymer is (tris(2,4,6-trimethoxyphenyl) phosphine)3 functionalized phosphonium polysulfone hydroxide.
    Type: Application
    Filed: October 9, 2009
    Publication date: September 29, 2011
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Yushan Yan, Shuang Gu, Rui Cai
  • Publication number: 20110226699
    Abstract: Silica polyamine composites (SPC) made from silanized amorphous nano-porous silica gel and poly(allylamine) (BP-1) were functionalized with phosphorus acid using the Mannich reaction, resulting in a phosphonic acid modified composite (BPAP). Zirconium (IV) was immobilized on BPAP. Arsenate anions strongly adsorbed on the ZrBPAP composite in the pH range 2 to 8, while arsenite only adsorbed well at pH 10. Regeneration of the resin was carried out successfully for As(V) and As(III) using 2M-H2SO4. Four adsorption/desorption cycles were performed for As(V) at pH 4 without significant decrease in the uptake performance. ZrBPAP capture capacity and kinetics for arsenate were tested for longevity over 1000 cycles with only a marginal loss of performance.
    Type: Application
    Filed: March 22, 2011
    Publication date: September 22, 2011
    Inventors: Edward Rosenberg, Varadharajan Kailasam