Liquid-solid Drag Reduction Composition Or Process Of Preparing Patents (Class 523/175)
-
Patent number: 12103051Abstract: In certain embodiments, the invention is directed to apparatus comprising a liquid-impregnated surface, said surface comprising an impregnating liquid and a matrix of solid features spaced sufficiently close to stably contain the impregnating liquid therebetween or therewithin, and methods thereof. In some embodiments, one or both of the following holds: (i) 0<??0.25, where ? is a representative fraction of the projected surface area of the liquid-impregnated surface corresponding to non-submerged solid at equilibrium; and (ii) Sow(a)<0, where Sow(a) is spreading coefficient, defined as ?wa??wo??oa, where ? is the interfacial tension between the two phases designated by subscripts w, a, and o, where w is water, a is air, and o is the impregnating liquid.Type: GrantFiled: December 1, 2020Date of Patent: October 1, 2024Assignee: Massachusetts Institute of TechnologyInventors: J. David Smith, Sushant Anand, Srinivas Prasad Bengaluru Subramanyam, Konrad Rykaczewski, Kripa K. Varanasi
-
Patent number: 11767487Abstract: An oxyalkylated branched aliphatic compound produced by oxyalkylating a branched aliphatic compound having 12 or more carbon atoms in which the branched aliphatic compound having 12 or more carbon atoms is grafted with a polyether via a crosslinking reaction, wherein the polyether is a polymer of ethylene oxide, propylene oxide, butylene oxide, and combinations thereof, may be useful as an inverting aid for increasing the dissolution rate of a latex-based drag reducing agent in a liquid hydrocarbon.Type: GrantFiled: July 13, 2020Date of Patent: September 26, 2023Assignee: BAKER HUGHES OILFIELD OPERATIONS LLCInventors: Analette Carrasco, Joey Dacula Mangadlao
-
Patent number: 11199296Abstract: A drag reducing agent has a core comprising a polyolefin; and a temporary container encapsulating the core. The temporary container contains a container material, which includes an ethylene vinyl acetate copolymer, an ethylene vinyl alcohol copolymer, a polyvinylpyrrolidone, an ethylene vinylpyrrolidone copolymer, a vinylpyrrolidone vinyl acetate copolymer, a polyvinyl acetate, a polyvinyl alcohol, a polyethylene oxide, a polyethylene glycol, polyvinylidene chloride, a polysaccharide or its derivative, or a combination comprising at least one of the foregoing. A largest dimension of the drag reducing agent is greater than about 1,000 microns.Type: GrantFiled: December 17, 2019Date of Patent: December 14, 2021Assignee: BAKER HUGHES OILFIELD OPERATIONS LLCInventors: Jian Zou, David J. Jurek, Brandon M. Vittur, Anthony D. Bravo
-
Patent number: 10982017Abstract: A process of manufacturing a polyolefin drag reducing agent comprises: injecting a catalyst and a drag reducing agent forming component comprising (i) at least one olefin monomer, or (ii) at least one olefin oligomer, or a combination of (i) and (ii) into a temporary container comprising a container material, sealing the temporary container; allowing the drag reducing agent forming component to polymerize in the sealed temporary container to form the polyolefin drag reducing agent; and at least partially dissolving the container material.Type: GrantFiled: June 14, 2019Date of Patent: April 20, 2021Assignee: BAKER HUGHES, A GE COMPANY, LLCInventors: Jian Zou, David J. Jurek, Brandon M. Vittur, Anthony D. Bravo
-
Patent number: 10836849Abstract: A method includes combining an aqueous fluid and an oleaginous fluid to prepare an invert emulsion comprising a polymerizable composition, degassing the invert emulsion under an extensional flow regime through an elongated passageway of an extender and thereby removing oxygen to produce a degassed invert emulsion. A flow rate of the invert emulsion and a diameter of the elongated passageway are sufficient to achieve a Reynolds number of 20,000 or greater. The method also includes transferring at least a portion of the degassed invert emulsion to the second extender at one or more time intervals and returning the portion of the degassed invert emulsion to the reactor, and isolating a polymer product from the degassed invert emulsion. A flow rate of the invert emulsion and a diameter of the elongated passageway are sufficient to achieve a Reynolds number of 20,000 or greater.Type: GrantFiled: June 12, 2020Date of Patent: November 17, 2020Assignee: PfP Industries, LLCInventors: Asoke Kumar Deysarkar, Michael Joseph Callanan, IV, Robert Ray McDaniel, Brian James Keola DeCaires
-
Patent number: 10829685Abstract: Compositions include a hydratable additive concentrate comprising a hydratable additive that is at least substantially hydrated and a hydrating liquid, wherein the hydratable additive concentrate is a mixture produced according to a method that includes flowing a hydrating liquid in a extensional flow regime through an elongated passageway of an extender, wherein a flow rate of the hydrating liquid and a diameter of the elongated passageway are sufficient to achieve a Reynolds number of 20,000 or greater; and adding a hydratable additive to the hydrating liquid in the elongated passageway to produce a mixture comprising the hydratable additive that is at least partially hydrated.Type: GrantFiled: June 25, 2020Date of Patent: November 10, 2020Assignee: PfP Industries, LLCInventors: Asoke Kumar Deysarkar, Michael Joseph Callanan, IV, Robert Ray McDaniel, Brian James Keola DeCaires
-
Patent number: 10683397Abstract: The present embodiment can teach a method of feeding to a materials processor a mixture containing an agglomerated drag reducer. The mixture is then homogenized to produce a remediated drag reducer. The maximum particle size diameter of the agglomerated drag reducing polymer is at least 5% larger than the maximum particle diameter of the remediated drag reducer.Type: GrantFiled: September 26, 2016Date of Patent: June 16, 2020Assignee: LIQUIDPOWER SPECIALTY PRODUCTS INC.Inventors: William F. Harris, Jr., Ray L. Johnston
-
Patent number: 10578252Abstract: A method of forming a drag reducing polymer formulation. The method begins by forming a drag reducing polymer. A hydrocarbon additive is then incorporated with the drag reducing polymer to form a drag reducing polymer formulation. The drag reducing polymer formulation is then used as a drag reducer in hydrocarbon pipelines.Type: GrantFiled: April 9, 2018Date of Patent: March 3, 2020Assignee: LIQUIDPOWER SPECIALTY PRODUCTS INC.Inventors: Michael Olechnowicz, Timothy L. Burden, Tommy C. Ross
-
Patent number: 10501675Abstract: A polymer microsphere for use as a fluid loss additive in drilling muds including a hydrophobic core of hydrophobic monomers and a hydrophilic shell of hydrophilic monomers wherein the hydrophilic shell surrounds the hydrophobic core. The polymer microsphere is capable of forming micelles or microgels in water without using surfactants and can be block, graft, and random copolymers. The hydrophilic shell is physically or chemically linked to the hydrophobic core. The polymer microsphere further includes crosslinkers, preferably where the crosslinkers are monomers containing at least two ethylenically unsaturated groups.Type: GrantFiled: December 17, 2018Date of Patent: December 10, 2019Assignee: Halliburton Energy Services, Inc.Inventors: Weibin Zha, Hui Zhou
-
Patent number: 10370502Abstract: A drag reducing composition comprising at least one non-polyalphaolefin polymer having an average particle size in the range of from about 5 to about 800 micrometers. The non-polyalphaolefin polymer can initially be formed via emulsion polymerization. The initial polymer particles can then be at least partially consolidated and then reduced in size and suspended in a carrier fluid. The resulting drag reducing composition can be added to a hydrocarbon-containing fluid to decrease the pressure drop associated with the turbulent flow of the hydrocarbon-containing fluid through a conduit.Type: GrantFiled: October 9, 2017Date of Patent: August 6, 2019Assignee: LIQUIDPOWER SPECIALTY PRODUCTS INC.Inventors: Timothy L. Burden, Ray L. Johnston, William F. Harris, Kenneth W. Smith, Wayne R. Dreher, Stuart N. Milligan
-
Patent number: 10179872Abstract: A polymer microsphere for use as a fluid loss additive in drilling muds including a hydrophobic core of hydrophobic monomers and a hydrophilic shell of hydrophilic monomers wherein the hydrophilic shell surrounds the hydrophobic core. The polymer microsphere is capable of forming micelles or microgels in water without using surfactants and can be block, graft, and random copolymers. The hydrophilic shell is physically or chemically linked to the hydrophobic core. The polymer microsphere further includes crosslinkers, preferably where the crosslinkers are monomers containing at least two ethylenically unsaturated groups.Type: GrantFiled: December 26, 2013Date of Patent: January 15, 2019Assignee: Halliburton Energy Services, Inc.Inventors: Weibin Zha, Hui Zhou
-
Patent number: 10144685Abstract: A process for the preparation of a chemical composition comprising an aromatic compound a in a concentration B by weight, based on the total weight of the chemical composition, including: providing the following reaction components: a chemical composition comprising the following: the aromatic compound a in a concentration A by weight based on the total weight of the chemical composition, and an olefin in an amount of about 50 to about 99.99 wt. %, based on the total weight of the chemical composition, and an acidic solid; reacting the components to obtain the chemical composition comprising the aromatic compound a in a concentration B by weight based on the total weight of the chemical composition; wherein the concentration B is less than the concentration A.Type: GrantFiled: February 5, 2015Date of Patent: December 4, 2018Assignee: SAUDI BASIC INDUSTRIES CORPORATIONInventors: Roland Schmidt, Shahid Azam
-
Patent number: 10023790Abstract: A long term dust free proppant comprising a mass of free flowing particles, where the particles are coated with a dust suppression solution containing 90 to 99.5 percent by weight water, 0.05 to 3.0 percent by weight a soluble polymer and an added, small amount of a surfactant. The mass has a very low dosage of the solution so the mass has a moisture content of less than 0.30 percent by weight. Preferably the solution is applied to the particles by an air mist jet.Type: GrantFiled: April 5, 2016Date of Patent: July 17, 2018Assignee: Covia Holdings CorporationInventors: Richard C. Zielke, Feipeng P. Liu
-
Patent number: 9939113Abstract: A method of forming a drag reducing polymer formulation. The method begins by forming a drag reducing polymer. A hydrocarbon additive is then incorporated with the drag reducing polymer to form a drag reducing polymer formulation. The drag reducing polymer formulation is then used as a drag reducer in hydrocarbon pipelines.Type: GrantFiled: November 17, 2014Date of Patent: April 10, 2018Assignee: LIQUIDPOWER SPECIALITY POWER SPECIALTY PRODUCTS, INC.Inventors: Michael R. Olechnowicz, Timothy L. Burden, Tommy C. Ross
-
Patent number: 9783644Abstract: A drag reducing composition comprising at least one non-polyalphaolefin polymer having an average particle size in the range of from about 5 to about 800 micrometers. The non-polyalphaolefin polymer can initially be formed via emulsion polymerization. The initial polymer particles can then be at least partially consolidated and then reduced in size and suspended in a carrier fluid. The resulting drag reducing composition can be added to a hydrocarbon-containing fluid to decrease the pressure drop associated with the turbulent flow of the hydrocarbon-containing fluid through a conduit.Type: GrantFiled: October 13, 2010Date of Patent: October 10, 2017Assignee: LIQUIDPOWER SPECIALTY POWER SPECIALTY PRODUCTS, INC.Inventors: Timothy L. Burden, Ray L. Johnston, William F. Harris, Kenneth W. Smith, Wayne R. Dreher, Jr., Stuart N. Milligan
-
Patent number: 9416331Abstract: A drag reducing composition and method of use wherein the drag reducing composition comprises a polyolefin, drag reducing polymer, a carrier or suspending medium, and a polycarboxylate dispersion agent.Type: GrantFiled: August 23, 2011Date of Patent: August 16, 2016Assignee: Flowchem, Ltd.Inventors: Brad A. Bucher, Tom M. Weatherford
-
Patent number: 9267094Abstract: A drag reducing composition for use in hydrocarbon streams which contains a finely divided, solid polyolefin friction reducing agent, a suspending medium comprised of water and a liquid organic carrier containing from 10 to 14 carbon atoms and having at least one hydroxyl group and a partitioning agent comprising a compound having a hydrophobic group and a hydrophilic group and exhibiting at least some surface activity.Type: GrantFiled: August 22, 2014Date of Patent: February 23, 2016Assignee: Flowchem, Ltd.Inventors: Brad Bucher, Tom Weatherford, Alan Ebert
-
Patent number: 9139744Abstract: The present disclosure describes compositions comprising an acrylic polymer binder and nano-particles less than about 100 nm that provide a hydrophobic or superhydrophobic coating that may also display oleophobicity. The coating composition may advantageously be prepared using VOC exempt compounds that are compatible with a variety of surface materials including many electronic components. In addition, the coating composition may also be rapidly dried rendering it useful for the rapid preparation of coated objects and surfaces in manufacturing/assembly line environments.Type: GrantFiled: June 16, 2014Date of Patent: September 22, 2015Assignee: Ross Technology CorporationInventors: Vinod K. Sikka, Michael Hurley, Zenas W. Lim
-
Patent number: 8933149Abstract: A drag reducing composition comprising a finely divided, solid polyolefin friction reducing agent formed from olefins containing from 2 to 30 carbon atoms, the polyolefin drag reducing agent suspended in a suspending medium and comprising 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate containing up to 10% by weight of water.Type: GrantFiled: March 8, 2013Date of Patent: January 13, 2015Assignee: Flowchem, Ltd.Inventors: Brad A. Bucher, Tom M. Weatherford
-
Publication number: 20140373965Abstract: The present invention relates to coatings having improved resistance to corrosion and/or abrasion. In one embodiment, the compositions disclosed herein comprise at least one resin material in combination with at least one type of boron nitride powder. In another embodiment, the compositions disclosed herein comprise at least one resin in combination with at least one type of boron nitride powder, wherein the amount of boron nitride powder in the coating material is in the range of about 1 weight percent to about 25 weight percent.Type: ApplicationFiled: February 22, 2013Publication date: December 25, 2014Inventor: Jon Leist
-
Patent number: 8916626Abstract: Drag reducing compositions comprising polymer particles, where the polymer particles include copolymers comprising the residues of at least one methacrylate monomer and at least one comonomer having a polymerizable vinyl group, where the comonomer has no more than one pendant substituent per vinyl carbon. The drag reducing compositions can have improved dissolution rates in hydrocarbon-containing fluids. The drag reducing compositions can be added to a hydrocarbon-containing fluid to decrease the pressure drop associated with the turbulent flow of the hydrocarbon-containing fluid through a conduit.Type: GrantFiled: July 31, 2008Date of Patent: December 23, 2014Assignee: Lubrizol Specialty Products, Inc.Inventor: Stuart N. Milligan
-
Publication number: 20140360588Abstract: A drag reducing composition for use in hydrocarbon streams which contains a finely divided, solid polyolefin friction reducing agent, a suspending medium comprised of water and a liquid organic carrier containing from 10 to 14 carbon atoms and having at least one hydroxyl group and a partitioning agent comprising a compound having a hydrophobic group and a hydrophilic group and exhibiting at least some surface activity.Type: ApplicationFiled: August 22, 2014Publication date: December 11, 2014Inventors: Brad Bucher, Tom Weatherford, Alan Ebert
-
Publication number: 20140259887Abstract: Described herein are associative polymers capable of controlling one or more physical and/or chemical properties of non-polar compositions and related compositions, methods and systems.Type: ApplicationFiled: March 17, 2014Publication date: September 18, 2014Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGYInventors: Julia A. KORNFIELD, Ming-Hsin WEI, Simon JONES, Virendra SAROHIA
-
Publication number: 20140206794Abstract: A drag reducing composition comprising a finely divided, solid polyolefin friction reducing agent formed from olefins containing from 2 to 30 carbon atoms, the polyolefin drag reducing agent suspended in a suspending medium and comprising 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate containing up to 10% by weight of water.Type: ApplicationFiled: March 8, 2013Publication date: July 24, 2014Inventors: Brad A. Bucher, Tom M. Weatherford
-
Patent number: 8772371Abstract: The invention relates to pearlescent pigments comprising a platelet-shaped substrate, a metal oxide coating comprising a metal oxide layer having a refractive index of greater than 1.8 and a protective layer, wherein the protective layer comprises a metal oxide/hydroxide layer and optionally boroxide, applied to which is an organic aftercoat of an acrylic copolymer, to a method for producing said pigments and the use thereof. The outer layer provides a very good photo-stabilisation of the TiO2 coated platelet-shaped substrates, such as mica, combined with a good water resistance and an anti-yellowing performance.Type: GrantFiled: April 28, 2009Date of Patent: July 8, 2014Assignee: BASF SEInventors: Philippe Bugnon, Karin Karrer, Patrice Bujard
-
Patent number: 8669304Abstract: A drag reducing composition comprising a primary polyolefin obtained by polymerizing mono-olefins containing from about 2 to about 30 carbon atoms, and a surfactant having an HLB in the range of 6.5 to 8.5 in an aqueous suspending media.Type: GrantFiled: June 9, 2009Date of Patent: March 11, 2014Assignee: Flowchem, Ltd.Inventors: Brad A. Bucher, Michael Cox, Tom M. Weatherford
-
Patent number: 8656950Abstract: A method of producing treated liquid hydrocarbons. The method begins by pressurizing a latex in a pressure vessel. This is followed by flowing the latex from the pressure vessel into a pipeline containing liquid hydrocarbons to produce treated liquid hydrocarbons. In this embodiment the latex comprises a drag reducing polymer.Type: GrantFiled: August 12, 2011Date of Patent: February 25, 2014Assignee: Phillips 66 CompanyInventor: Timothy L. Burden
-
Patent number: 8653213Abstract: Hydrophobic coating compositions are provided as are processes to coat articles with the compositions. Extremely hydrophobic coatings are provided by the compositions. Compositions that include perfluorohexyl(meth)acrylate and a branched or high Tg monomer are provided as are articles coated with the polymerization product of the composition. Methods are also provided for forming hydrophobic coatings on articles.Type: GrantFiled: August 16, 2011Date of Patent: February 18, 2014Assignee: Cytonix, LLCInventor: James F Brown
-
Patent number: 8616236Abstract: A method begins by obtaining a slipstream of a liquid. The slipstream of liquid is then mixed upstream of an injection pump with a latex comprising a drag reducing polymer to produce a drag reducing mixture. The drag reducing mixture is then injected into a liquid hydrocarbon to produce a treated liquid hydrocarbon.Type: GrantFiled: August 12, 2011Date of Patent: December 31, 2013Assignee: Phillips 66 CompanyInventor: Timothy L. Burden
-
Patent number: 8512855Abstract: A self-cleaning member comprising a member having a porous surface is disclosed. The member has a contact angle hysteresis ?? (=?a??r), which is a difference between an advancing contact angle ?a and a receding contact angle ?r measured by a dynamic contact angle measurement with an extension/contraction method, of 80 degree or more at the surface layer and a receding contact angle ?r of 25 degree or less, is capable of forming a water film on the surface by water provided and of allowing an ionic or reactive contaminant to be washed away without fixation.Type: GrantFiled: June 1, 2009Date of Patent: August 20, 2013Assignee: Toto Ltd.Inventors: Hiromasa Tokudome, Koji Okubo, Kyoko Kataoka, Saori Sonokawa, Hiroyuki Fujii
-
Publication number: 20130203891Abstract: An aqueous drag reducer comprising a poly(alpha olefin), a winterizing agent and water. In this embodiment the winterizing agent comprises at least about 30 wt % of the aqueous drag reducer. Additionally, water comprises less than about 2.0 times the amount of winterizing agent.Type: ApplicationFiled: February 1, 2013Publication date: August 8, 2013Applicant: PHILLIPS 66 COMPANYInventor: PHILLIPS 66 COMPANY
-
Patent number: 8450249Abstract: A method of introducing a drag reducing polymer into a pipeline such that the friction loss associated with the turbulent flow though the pipeline is reduced by suppressing the growth of turbulent eddies. The drag reducing polymer is introduced into a liquid hydrocarbon having an asphaltene content of at least 3 weight percent and an API gravity of less than about 26° to thereby produce a treated liquid hydrocarbon. The treated liquid hydrocarbon does not have a viscosity less than the viscosity of the liquid hydrocarbon prior to treatment with the drag reducing polymer. Additionally, the drag reducing polymer is added to the liquid hydrocarbon in the range from about 0.1 to about 500 ppmw.Type: GrantFiled: August 11, 2011Date of Patent: May 28, 2013Assignee: Phillips 66 CompanyInventors: Stuart N. Milligan, Ray L. Johnston, Timothy L. Burden, Wayne R. Dreher, Kenneth W. Smith, William F. Harris
-
Patent number: 8450250Abstract: A method of preparing a drag reducing polymer wherein the drag reducing polymer is able to be injected into a pipeline, such that the friction loss associated with the turbulent flow through the pipeline is reduced by suppressing the growth of turbulent eddies. The drag reducing polymer is injected into a pipeline of liquid hydrocarbon hydrocarbon having an asphaltene content of at least 3 weight percent and an API gravity of less than about 26° to thereby produce a treated liquid hydrocarbon wherein the viscosity of the treated liquid hydrocarbon is not less than the viscosity of the liquid hydrocarbon prior to treatment with the drag reducing polymer. The drag reducing polymer has a solubility parameter within 4 MPa1/2 of the solubility parameter of the liquid hydrocarbon. The drag reducing polymer is also added to the liquid hydrocarbon in the range from about 0.1 to about 500 ppmw.Type: GrantFiled: August 11, 2011Date of Patent: May 28, 2013Assignee: Phillips 66 CompanyInventors: Stuart N. Milligan, Ray L. Johnston, Timothy L. Burden, Wayne R. Dreher, Kenneth W. Smith, William F. Harris
-
Patent number: 8450251Abstract: A system for reducing pressure drop associated with the turbulent flow of asphaltenic crude oil through a conduit. The crude oil has a high asphaltene content and/or a low API gravity. Such reduction in pressure drop is achieved by treating the asphaltenic crude oil with a high molecular weight drag reducing polymer that can have a solubility parameter within about 20 percent of the solubility parameter of the heavy crude oil. The drag reducing polymer can also comprise the residues of monomers having at least one heteroatom.Type: GrantFiled: August 11, 2011Date of Patent: May 28, 2013Assignee: Phillips 66 CompanyInventors: Stuart N. Milligan, Ray L. Johnston, Timothy L. Burden, Wayne R. Dreher, Kenneth W. Smith, William F. Harris
-
Patent number: 8426498Abstract: A method of introducing a drag reducing polymer into a pipeline such that the friction loss associated with the turbulent flow though the pipeline is reduced by suppressing the growth of turbulent eddies. The drag reducing polymer is introduced into a liquid hydrocarbon having an asphaltene content of at least 3 weight percent and/or an API gravity of less than about 26° to thereby produce a treated liquid hydrocarbon. The treated liquid hydrocarbon does not have a viscosity less than the viscosity of the liquid hydrocarbon prior to treatment with the drag reducing polymer. Additionally, the drag reducing polymer is added to the liquid hydrocarbon in the range from about 0.1 to about 500 ppmw.Type: GrantFiled: August 11, 2011Date of Patent: April 23, 2013Assignee: Phillips 66 CompanyInventors: Stuart N. Milligan, Ray L. Johnston, Timothy L. Burden, Wayne R. Dreher, Kenneth W. Smith, William F. Harris
-
Patent number: 8394872Abstract: A method for reducing the viscosity of a hydrocarbon fluid encountered in petroleum operations is disclosed. The method includes contacting the hydrocarbon fluid with an effective amount of a composition comprising at least one polymer having at least 25 mole percent cationic monomers.Type: GrantFiled: July 10, 2009Date of Patent: March 12, 2013Assignee: Nalco CompanyInventors: Marcus D. Faust, Jr., Austen K Flatt, Thomas M. Weathers, Jr., Duy T. Nguyen
-
Patent number: 8263684Abstract: It is an object of the present invention to provide a coating composition which can attain low friction performance without impairing the functions of a conventional coating composition, a coated film formed by using the same and a method of reducing friction in water. A coating composition containing an organic polymer particle, wherein said organic polymer particle has the solubility at 23° C. in the artificial seawater specified in ASTM D1141-98 of 15 g/liter or less, the water-absorbing amount for the artificial seawater specified in ASTM D1141-98 of 0.01% by mass or more and a particle diameter of 0.05 to 100 ?m.Type: GrantFiled: May 26, 2005Date of Patent: September 11, 2012Assignee: Nippon Paint Co., Ltd.Inventors: Yoshifumi Ichinose, Isamu Onishi, Naoki Yamamori, Kazuaki Masuda
-
Patent number: 8258206Abstract: A hydrophobic coating has been made for use on interior pipe surfaces, exterior boat surfaces, and in many other applications, to reduce drag in fluid flow, thus providing an energy savings. The coating utilizes a blend of organic and/or inorganic polymers with hydrophobic nanoparticles of fumed silica and/or titania in a solvent. The coating solves the problem of poor resistance to UV light and/or abrasion found in previous coatings of similar nature. The coating of the present invention can be made to be translucent and nearly transparent whereas previous coatings of comparable hydrophobicity have all been white or opaque. The coating can be applied in a single application by an easy spraying method and the super hydrophobic property can be achieved by drying the film at room temperature for 5 to 10 minutes. A preferred coating has good resistance to UV light and some resistance to abrasion.Type: GrantFiled: April 13, 2007Date of Patent: September 4, 2012Assignee: Ashland Licensing and Intellectual Property, LLCInventors: Subbareddy Kanagasabapathy, Richard J. Baumgart, Wen-Chen Su, Frances E. Lockwood
-
Publication number: 20120142814Abstract: A hydrophobic coating has been made for use on interior pipe surfaces, exterior boat surfaces, and in many other applications, to reduce drag in fluid flow, thus providing an energy savings. The coating utilizes a blend of organic and/or inorganic polymers with hydrophobic nanoparticles of fumed silica and/or titania in a solvent. The coating solves the problem of poor resistance to UV light and/or abrasion found in previous coatings of similar nature. The coating of the present invention can be made to be translucent and nearly transparent whereas previous coatings of comparable hydrophobicity have all been white or opaque. The coating can be applied in a single application by an easy spraying method and the super hydrophobic property can be achieved by drying the film at room temperature for 5 to 10 minutes. A preferred coating has good resistance to UV light and some resistance to abrasion.Type: ApplicationFiled: April 13, 2007Publication date: June 7, 2012Inventors: Subbareddy Kanagasabapathy, Richard J. Baumgart, Wen-Chen Su, Frances E. Lockwood
-
Publication number: 20120123019Abstract: A composition comprising a drag reducing latex formulation produced by emulsion polymerization to create solid particles dispersed in an aqueous medium and an additive. The use of the composition results in a decrease of film formation while injected through a pump head when compared to the drag reducing latex formulation injected through the pump head.Type: ApplicationFiled: November 2, 2011Publication date: May 17, 2012Applicant: CONOCOPHILLIPS COMPANYInventors: Ray L. Johnston, Zhiyi Bao, Richard D. Thomas, Timothy L. Burden
-
Patent number: 8124673Abstract: Low-viscosity drag reducers, systems for delivering low-viscosity drag reducers, and methods of making low-viscosity drag reducers are disclosed. The low-viscosity drag reducers have a viscosity less than 350 cP at a shear rate of 250 sec?1 and a temperature of 60° P. This low-viscosity allows the drag reducers to be delivered through a long and relatively small diameter conduit of a subsea umbilical line without an unacceptable level of pressure drop or plugging of the conduit. The low-viscosity drag reducers can be delivered to a subsea flowline carrying fluids produced from a subterranean formation to 10 thereby provide significant drag reduction in the flow line.Type: GrantFiled: May 13, 2009Date of Patent: February 28, 2012Assignee: ConocoPhillips CompanyInventors: Timothy L. Burden, Kenneth W. Smith, William F. Harris, Allan Browne
-
Publication number: 20120035297Abstract: The present embodiment can teach a method of feeding to a materials processor a mixture containing an agglomerated drag reducer. The mixture is then homogenized to produce a remediated drag reducer. The maximum particle size diameter of the agglomerated drag reducing polymer is at least 5% larger than the maximum particle diameter of the remediated drag reducer.Type: ApplicationFiled: July 29, 2011Publication date: February 9, 2012Applicant: CONOCOPHILLIPS COMPANYInventors: William Franklin Harris, JR., Ray Lyle Johnston
-
Patent number: 8106114Abstract: The present invention relates to a drag reducing agent, composition, compound, product, process and method of use for use in petroleum pipelines and the like. A preferred embodiment of the present invention provides a cryogenically-ground polyalphaolefin polymer at 15-25 wt. % of the commercial product formulation. The bulking agents comprise ethylene bis-stearamide alone or in combination with other polyethylene and/or polypropylene polymers at 2.0-5.0 wt. % of the commercial product formulation. In addition, diisobutyl ketone 20-60 wt. % of the commercial product formulation and propylene carbonate 2.8-8.4 wt. % of the commercial product formulation are used.Type: GrantFiled: October 29, 2009Date of Patent: January 31, 2012Assignee: Beta Technologie AGInventors: Gerald Bruce Eaton, Alan Kim Ebert
-
Publication number: 20120004344Abstract: A method of producing treated liquid hydrocarbons. The method begins by pressurizing a latex in a pressure vessel. This is followed by flowing the latex from the pressure vessel into a pipeline containing liquid hydrocarbons to produce treated liquid hydrocarbons. In this embodiment the latex comprises a drag reducing polymer.Type: ApplicationFiled: August 12, 2011Publication date: January 5, 2012Applicant: CONOCOPHILLIPS COMPANYInventor: Timothy L. Burden
-
Publication number: 20120004343Abstract: A method begins by obtaining a slipstream of a liquid. The slipstream of liquid is then mixed upstream of an injection pump with a latex comprising a drag reducing polymer to produce a drag reducing mixture. The drag reducing mixture is then injected into a liquid hydrocarbon to produce a treated liquid hydrocarbon.Type: ApplicationFiled: August 12, 2011Publication date: January 5, 2012Applicant: CONOCOPHILLIPS COMPANYInventor: Timothy L. Burden
-
Publication number: 20110319520Abstract: Fine particulate polymer drag reducing agents (DRAs) in bi-modal or multi-modal particle size distributions may be produced simply and efficiently without cryogenic temperatures. The grinding or pulverizing of polymer, e.g. non-porous poly(alpha-olefin) suitable for reducing drag in hydrocarbons may be achieved by the use of at least one liquid grinding aid and at least two grinding processors in series. The blades of the stators of the grinders are of different configuration so that granulated polymer fed to the first processor having relatively larger gaps between blades is ground to an intermediate size which is fed to the second processor having relatively smaller gaps between blades which grinds the polymer to a second, smaller size. A non-limiting example of a suitable liquid grinding aid includes a blend of propylene glycol, water and hexanol. Particulate DRA may be produced at a size of 300 microns or less in only two passes.Type: ApplicationFiled: July 14, 2011Publication date: December 29, 2011Applicant: Baker Hughes IncorporatedInventors: Thomas Mathew, Nagesh S. Kommareddi, Jack Bradford Ward
-
Patent number: 8022118Abstract: A system for reducing pressure drop associated with the turbulent flow of asphaltenic crude oil through a conduit. The crude oil has a high asphaltene content and/or a low API gravity. Such reduction in pressure drop is achieved by treating the asphaltenic crude oil with a high molecular weight drag reducing polymer that can have a solubility parameter within about 20 percent of the solubility parameter of the heavy crude oil. The drag reducing polymer can also comprise the residues of monomers having at least one heteroatom.Type: GrantFiled: December 22, 2006Date of Patent: September 20, 2011Assignee: ConocoPhillips CompanyInventors: Stuart N. Milligan, Ray L. Johnston, Timothy L. Burden, Wayne R. Dreher, Jr., Kenneth W. Smith, William F. Harris
-
Publication number: 20110132466Abstract: A drag reducing composition comprising a primary polyolefin obtained by polymerizing mono-olefins containing from about 2 to about 30 carbon atoms, and a surfactant having an HLB in the range of 6.5 to 8.5 in an aqueous suspending media.Type: ApplicationFiled: June 9, 2009Publication date: June 9, 2011Inventor: Brad A. Bucher
-
Patent number: 7939584Abstract: Drag reduction of hydrocarbon fluids flowing through pipelines of various lengths is improved by polyolefin drag reducer dispersions or dispersions using bi- or multi-modal particle size distributions. Drag reducers having larger particle sizes dissolve more slowly than drag reducers having smaller particle sizes. By using at least bi-modal particle size distributions drag reduction can be distributed more uniformly over the length of the pipeline where smaller sized particles dissolve sooner or earlier in the pipeline and larger sized particles dissolve later or further along the pipeline.Type: GrantFiled: June 13, 2006Date of Patent: May 10, 2011Assignee: Baker Hughes IncorporatedInventors: Jeffery R. Harris, Lu Chien Chou, George G. Ramsay, John F. Motier, Nagesh S. Kommareddi, Thomas Mathew
-
Publication number: 20110105642Abstract: The present invention relates to a drag reducing agent, composition, compound, product, process and method of use for use in petroleum pipelines and the like. A preferred embodiment of the present invention provides a cryogenically-ground polyalphaolefin polymer at 15-25 wt. % of the commercial product formulation. The bulking agents comprise ethylene bis-stearamide alone or in combination with other polyethylene and/or polypropylene polymers at 2.0-5.0 wt. % of the commercial product formulation. In addition, diisobutyl ketone 20-60 wt. % of the commercial product formulation and propylene carbonate 2.8-8.4 wt. % of the commercial product formulation are used.Type: ApplicationFiled: October 29, 2009Publication date: May 5, 2011Inventors: Gerald Bruce Eaton, Alan Kim Ebert