Material Contains Two Or More Different Compounds Of Same Transition Metal Patents (Class 526/118)
  • Patent number: 7053157
    Abstract: The present invention relates to a method of producing multimodal polyolefins using at least one or more activated metallocene catalysts. The activated metallocene catalysts are used in combination in a single-process method. The method allows for the production of multimodal polyolefins of tunable composition, molecular weight and polydispersity.
    Type: Grant
    Filed: July 19, 2002
    Date of Patent: May 30, 2006
    Assignee: University of Maryland, College Park
    Inventors: Lawrence R Sita, Richard J Keaton, Kumudini C Jayaratne
  • Patent number: 7041617
    Abstract: This invention relates to the field of olefin polymerization catalyst compositions, and methods for the polymerization and copolymerization of olefins, including polymerization methods using a supported catalyst composition. In one aspect, the present invention encompasses a catalyst composition comprising the contact product of a first metallocene compound, a second metallocene compound, at least one chemically-treated solid oxide, and at least one organoaluminum compound. The new resins were characterized by useful properties in impact, tear, adhesion, sealing, extruder motor loads and pressures at comparable melt index values, and neck-in and draw-down.
    Type: Grant
    Filed: January 9, 2004
    Date of Patent: May 9, 2006
    Assignee: Chevron Phillips Chemical Company, L.P.
    Inventors: Michael D. Jensen, Max P. McDaniel, Joel L. Martin, Elizabeth A. Benham, Randy Muninger, Gary Jerdee, Ashish M. Sukhadia, Qing Yang, Matthew G. Thorn
  • Patent number: 7019097
    Abstract: A process for the (co)polymerization ethylene, optionally in mixtures with olefins CH?CHR in which R is hydrogen or a hydrocarbyl radical with 1–12 carbon atoms, carried out in the presence of a catalyst system comprising (A) a solid catalyst component which comprises Mg, halogen an electron donor selected form ethers, esters, or amines, and Ti atoms in an oxidation state such that the weight percentage ratio between Ti(red)/Ti(tot) ranges from about 0.05 to about 1; wherein Ti(red) is the weight percentage on the solid catalyst component of the Ti atoms having a valence less than 4 and Ti(tot) is the weight percentage on the solid catalyst component of all the Ti atoms and (B) an Al-alkyl compound. The said process is capable to produce ethylene polymers with a reduced oligomers content and/or improved mechanical characteristics.
    Type: Grant
    Filed: March 11, 2002
    Date of Patent: March 28, 2006
    Assignee: Basell Poliolefine Italia S.p.A.
    Inventors: Mario Sacchetti, Diego Brita
  • Patent number: 6995219
    Abstract: The invention relates to a process for the preparation of a multimodal A-olefin polymer comprising polymerizing in a polymerization stage at least one A-olefin in the presence of a multisite catalyst and an adjuvant so as to produce a polymer having a relatively lower molecular weight component and a relatively higher molecular weight component, said adjuvant being selected from the group consisting of phosphines, phosphites, acetylenes, dienes, thiophenes and aluminium alkyls and said adjuvant being capable of altering the ratio of the fraction of higher molecular weight component to the fraction of the lower molecular weight component by at least 10%.
    Type: Grant
    Filed: May 10, 2002
    Date of Patent: February 7, 2006
    Assignee: Borealis Technology Oy
    Inventors: Arild Follestad, Richard Blom, Ivar Martin Dahl, Erling Rytter
  • Patent number: 6982305
    Abstract: A process for polymerizing olefins is disclosed. The process polymerizes an olefin in the presence of a dehydrogenation catalyst and an olefin polymerization catalyst. The dehydrogenation catalyst enables in-situ generation of alkenes from oligomers or solvent. The alkenes are then incorporated into the polyolefin. The polyolefin should have increased long-chain branching and lower density without the use of expensive comonomers.
    Type: Grant
    Filed: January 26, 2004
    Date of Patent: January 3, 2006
    Assignee: Equistar Chemicals, LP
    Inventor: Sandor Nagy
  • Patent number: 6982304
    Abstract: Polyethylene resins having improved environmental stress crack resistance, stiffness and impact resistance is made by a process comprising feeding both a chromium oxide catalyst and a silyl chromium catalyst into a polymerization reactor. The chromium oxide catalyst and the silyl chromium catalyst are on separate supports. The chromium oxide catalyst is 25–50 weight percent and the silyl chromium catalyst is 50–75 weight percent of the total weight of catalyst. The catalysts may be added separately or as a single mixture.
    Type: Grant
    Filed: December 22, 2003
    Date of Patent: January 3, 2006
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: Cliff Robert Mure, Guylaine St. Jean, Stephen Paul Jaker, Robert J. Jorgensen, Karen Breetz
  • Patent number: 6943134
    Abstract: A process of producing a bimodal polyolefin composition is described, which includes in one embodiment contacting monomers with a supported bimetallic catalyst composition for a time sufficient to form a bimodal polyolefin composition that includes a high molecular weight polyolefin component and a low molecular weight polyolefin component; wherein the supported bimetallic catalyst includes a first catalyst component that is preferably non-metallocene, and a second catalyst component that includes a metallocene catalyst compound having at least one fluoride or fluorine containing leaving group, wherein the bimetallic catalyst is supported by an enhanced silica, dehydrated at a temperature of 800° C. or more in one embodiment.
    Type: Grant
    Filed: September 20, 2004
    Date of Patent: September 13, 2005
    Assignee: Univation Technologies, LLC
    Inventors: Chi-I Kuo, G. McCullough Laughlin, Pradeep Pandurang Shirodkar, Fred David Ehrman, Porter Shannon, Robert Lynn Santana, Steven K. Ackerman, Daniel Gerard O'Neil
  • Patent number: 6921795
    Abstract: Blends of two or more polyethylenes are made by reacting ethylene with an oligomerization catalyst that forms ?-olefins, and two polymerization catalysts, one of which under the process conditions copolymerizes ethylene and ?-olefins, and the other of which under process conditions does not readily copolymerize ethylene and ?-olefins. The blends may have improved physical properties and/or processing characteristics.
    Type: Grant
    Filed: February 6, 2003
    Date of Patent: July 26, 2005
    Assignee: E.I. du Pont de Nemours and Company
    Inventors: Lin Wang, Maria Spinu, Joel David Citron
  • Patent number: 6906153
    Abstract: The invention provides a catalyst system (preferably a heterogeneous catalyst system) comprising: a transition metal bisphenolate catalyst (preferably a group 4 to 6 transition metal bisphenolate catalyst) and another olefin polymerization catalyst, and optionally a co-catalyst, e.g. an organoaluminium compound or a boron compound.
    Type: Grant
    Filed: January 31, 2002
    Date of Patent: June 14, 2005
    Assignee: Borealis Technology Oy
    Inventors: Richard Blom, Klaus J. Jens, Arlid Follestad, Olav B. Ryan
  • Patent number: 6894128
    Abstract: Catalyst compositions and methods useful in polymerization processes utilizing at least two metal compounds are disclosed. At least one of the metal compounds is a Group 15 containing metal compound and the other metal compound is preferably a bulky ligand metallocene-type catalyst. The invention also discloses a new polyolefin, generally polyethylene, particularly a multimodal polymer and more specifically, a bimodal polymer, and its use in various end-use applications such as film, molding and pipe. The Group 15 containing metal compound is represented in one embodiment by the formulae: wherein M is a Group 4, 5, or 6 metal; each X is independently a leaving group; y is 0 or 1; n is the oxidation state of M; m is the formal change of the ligand comprising the YZL or YZL? groups; L is a Group 15 or 16 element; L? is a Group 15 or 16 element or Group 14 containing group; Y is a Group 15 element; Z is a Group 15 element; and the other groups are as defined herein.
    Type: Grant
    Filed: August 5, 2003
    Date of Patent: May 17, 2005
    Assignee: Univation Technologies, LLC
    Inventors: Donald R. Loveday, David H. McConville, John F. Szul, Kersten Anne Erickson, Simon Mawson, Tae Hoon Kwack, Frederick J. Karol, David James Schreck
  • Patent number: 6884747
    Abstract: Linear low density polyethylenes (LLDPEs) that have relatively high melt index ratios (MIR) and relatively high melt strength (MS) are described. This combination of melt properties is achieved by a substantially non-blended LLDPE. Catalysts used to produce these polyethylenes are generally a blend of bridged bisindenyl zirconocene dichlorides, where one zirconocene contains saturated indenyls and the other unsaturated indenyls.
    Type: Grant
    Filed: September 27, 2001
    Date of Patent: April 26, 2005
    Assignee: Univation Technologies, LLC
    Inventors: Armenag Hagop Dekmezian, Natalie Ann Merrill
  • Patent number: 6875828
    Abstract: A process of producing a bimodal polyolefin composition is described, which includes in one embodiment contacting monomers with a supported bimetallic catalyst composition for a time sufficient to form a bimodal polyolefin composition that includes a high molecular weight polyolefin component and a low molecular weight polyolefin component; wherein the supported bimetallic catalyst includes a first catalyst component that is preferably non-metallocene, and a second catalyst component that includes a metallocene catalyst compound having at least one fluoride or fluorine containing leaving group, wherein the bimetallic catalyst is supported by an enhanced silica, dehydrated at a temperature of 800° C. or more in one embodiment.
    Type: Grant
    Filed: February 18, 2003
    Date of Patent: April 5, 2005
    Assignee: Univation Technologies, LLC
    Inventors: Chi-I Kuo, G. McCullough Laughlin, Pradeep Pandurang Shirodkar, Fred David Ehrman, Porter Shannon, Robert Lynn Santana, Steven K. Ackerman, Daniel Gerard O'Neil
  • Patent number: 6852810
    Abstract: The present invention provides a molecular blended polymer that includes two or more types of polymers blended at the molecular level. At least one monomer is polymerized in the presence of two or more kinds of catalysts supported on a mesoporous molecular sieve having a pore size of 20 ? to 500 ?. The polymerization occurs in the pore of the mesoporous molecular sieve and is controlled at the molecular level. Thus, the polymer material is controlled extremely well and the function and physical properties of the polymer material are greatly enhanced.
    Type: Grant
    Filed: March 28, 2002
    Date of Patent: February 8, 2005
    Assignee: Industrial Technology Research Institute
    Inventors: Ching Ting, Joung-Yei Chen, Shu-Hua Chan
  • Publication number: 20040249091
    Abstract: The present invention relates to a process for the polymerization of monomers utilizing a bulky ligand hafnium transition metal metallocene-type catalyst compound, to the catalyst compound itself and to the catalyst compound in combination with an activator. The invention is also directed to an ethylene copolymer composition produced by using the bulky ligand hafnium metallocene-type catalyst of the invention, in particular a single reactor polymerization process.
    Type: Application
    Filed: July 1, 2004
    Publication date: December 9, 2004
    Inventors: Donald R. Loveday, Moses Olukayode Jejelowo, Sun-Chueh Kao
  • Patent number: 6828394
    Abstract: The present invention provides polymerization catalyst compounds, catalyst systems including these catalyst compounds, and to their use in the polymerization of ethylene and at least one comonomer. In particular, the invention provides a catalyst system comprising a poor comonomer incorporating catalyst compound and a good comonomer incorporating catalyst compound. Preferably, the low comonomer incorporating catalyst compound is a metallocene containing at least one substituted or unsubstituted fused ring cyclopentadienyl based ligand which is substantially directed to the front of the molecule, contains a long bridging group, or which contains a methyl substitution pattern which correlates to poor comonomer incorporation. The invention also provides methods of selecting the poor comonomer incorporating metallocene to pair with the good comonomer incorporating metallocene to produce polymers that are easy to process into a variety of articles, especially polyethylene based film, having enhanced properties.
    Type: Grant
    Filed: July 19, 2002
    Date of Patent: December 7, 2004
    Assignee: Univation Technologies, LLC
    Inventors: George Alan Vaughan, John F. Szul, Matthew Gary McKee, James McLeod Farley, Ching-Tai Lue, Sun-Chueh Kao
  • Patent number: 6828395
    Abstract: Methods of controlling rheological properties of polymer compositions comprising at least one high molecular weight polymer and one low molecular weight polymer are disclosed. The polymer compositions are produced by polymerizing monomers in a single reactor using a bimetallic catalyst composition. A control agent such as, for example, an alcohol, ether, oxygen or amine is added to the reactor to control the rheological properties of the reactor. The polymerization takes place in the presence of rheological-altering compounds such as alkanes and aluminum alkyls. The control agents are added in an amount sufficient to counter the influences of the rheological-altering compounds.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: December 7, 2004
    Assignee: Univation Technologies, LLC
    Inventors: Fred D. Ehrman, Pradeep P. Shirodkar, Robert Lynn Santana, Porter C. Shannon
  • Publication number: 20040225088
    Abstract: The present invention provides polymerization catalyst compounds, catalyst systems including these catalyst compounds, and to their use in the polymerization of ethylene and at least one comonomer. In particular, the invention provides a catalyst system comprising a poor comonomer incorporating catalyst compound and a good comonomer incorporating catalyst compound. Preferably, the low comonomer incorporating catalyst compound is a metallocene containing at least one substituted or unsubstituted fused ring cyclopentadienyl based ligand which is substantially directed to the front of the molecule, contains a long bridging group, or which contains a methyl substitution pattern which correlates to poor comonomer incorporation. The invention also provides methods of selecting the poor comonomer incorporating metallocene to pair with the good comonomer incorporating metallocene to produce polymers that are easy to process into a variety of articles, especially polyethylene based film, having enhanced properties.
    Type: Application
    Filed: April 2, 2004
    Publication date: November 11, 2004
    Inventors: George Alan Vaughan, John F. Szul, Matthew Gary McKee, James McLeod Farley, Ching-Tai Lue, Sun-Chueh Kao
  • Publication number: 20040198930
    Abstract: The present invention relates to a method of producing multimodal polyolefins using at least one or more activated metallocene catalysts. The activated metallocene catalysts are used in combination in a single-process method. The method allows for the production of multimodal polyolefins of tunable composition, molecular weight and polydispersity.
    Type: Application
    Filed: January 20, 2004
    Publication date: October 7, 2004
    Inventors: Lawrence R. Sita, Richard J. Keaton, Kumudini C. Jayaratne
  • Patent number: 6800700
    Abstract: Disclosed herein are methods for producing polymeric materials which are normally tenacious in their character to such degree that their processing by conventional means is not possible, for example substantially-amorphous polyolefins. By introducing a second catalyst capable of producing a powdery polymer into the polymerization system during production of the sticky polymers, these normally sticky, tenacious polymers are rendered into a form which may be processed using conventional means and equipment.
    Type: Grant
    Filed: December 19, 2002
    Date of Patent: October 5, 2004
    Assignee: Huntsman Polymers Corporation
    Inventor: Lixin Sun
  • Patent number: 6790919
    Abstract: The present invention describes catalysts for atom transfer radical polymerization processes. Specifically, a hybrid catalyst system comprising transition metal complexes held in close conjunction with a solid support and of a soluble ligand, or soluble transition metal complex or desorbed catalyst. The hybrid catalyst system may be used in a controlled polymerization process of radically (co)polymerizable monomers in the presence of a system comprising an initiator comprising one or more radically transferable atom(s) or group(s). The catalyst may include a transition metal, one or more counterions, a ligand attached to a solid support, and a soluble ligand. The hybrid catalyst may also be comprised of an attached transition metal complex, and a soluble transition metal complex.
    Type: Grant
    Filed: October 5, 2001
    Date of Patent: September 14, 2004
    Assignee: Carnegie Mellon University
    Inventors: Krzysztof Matyjaszewski, Sung Chul Hong
  • Patent number: 6753390
    Abstract: A gas phase polymerization process for producing a polyolefin composition is described, which includes passing a gaseous stream containing hydrogen gas and one or more monomers, including ethylene monomers, through a reactor that includes a fluidized bed, under reactive conditions, in the presence of a catalyst that includes metallocene, to provide a polyolefin composition, wherein in one embodiment the fluidized bulk density is 60% or more of the settled bulk density (or, a voidage of 40% or less); and wherein the voidage is controlled by a number of factors including, in certain embodiments, (a) the reactor temperature being maintained at 100° C. or below; (b) the molar ratio of hydrogen gas to ethylene introduced into the reactor being 0.015 or below.
    Type: Grant
    Filed: February 18, 2003
    Date of Patent: June 22, 2004
    Assignee: Univation Technologies, LLC
    Inventors: Fred David Ehrman, Michael Elroy Muhle, Pradeep Pandurang Shirodkar, Keith Wesley Trapp
  • Publication number: 20040106738
    Abstract: A process for producing a polyolefin-based resin composition comprises, in the first polymerization stage, polymerizing an &agr;-olefin having 4 to 20 carbon atoms, a styrene or a cyclic olefin in the presence of a specific catalyst and, in the second polymerization stage, copolymerizing the obtained polymer with an &agr;-olefin having 2 to 20 carbon atoms, a styrene or a cyclic olefin in the presence of a polyene. A polypropylene composition has a branching parameter a and a branching index g in specific ranges. The curve showing the change in viscosity under elongation with time, the degradation parameter D or the content of a high molecular weight component is specified. The polyolefin-based resin composition exhibits excellent uniformity and improved workability in melting due to improved tension in melted condition. The polypropylene composition exhibits excellent melting elasticity and secondary workability and provides foamed molded articles, sheets and blow molded articles.
    Type: Application
    Filed: September 12, 2003
    Publication date: June 3, 2004
    Inventors: Shuji Machida, Masayuki Shinohara, Tatsuya Housaki
  • Publication number: 20040077490
    Abstract: Process for the polymerization of olefins CH=CHR, in which R is hydrogen or a hydrocarbon radical with 1-12 carbon atoms, carried out in the presence of a catalyst component (A) comprising Mg, Ti and halogen as essential elements and of a catalyst component (B) capable to produce, under the same polymerization conditions, a polymer with an average particle size lower than that obtainable with the said catalyst component A. The said process provides polymers with increased bulk density.
    Type: Application
    Filed: September 26, 2003
    Publication date: April 22, 2004
    Inventors: Gianni Collina, Ofelia Fusco, Eduardo Chicote Carrion, Alberto Gil, Volker Dolle, Horst Klassen, Karl-Heinz Kagerbauer
  • Publication number: 20040044153
    Abstract: A gas phase polymerization process for producing a polyolefin composition is described, which includes passing a gaseous stream containing hydrogen gas and one or more monomers, including ethylene monomers, through a reactor that includes a fluidized bed, under reactive conditions, in the presence of a catalyst that includes metallocene, to provide a polyolefin composition, wherein in one embodiment the fluidized bulk density is 60% or more of the settled bulk density (or, a voidage of 40% or less); and wherein the voidage is controlled by a number of factors including, in certain embodiments, (a) the reactor temperature being maintained at 100° C. or below; (b) the molar ratio of hydrogen gas to ethylene introduced into the reactor being 0.015 or below.
    Type: Application
    Filed: February 18, 2003
    Publication date: March 4, 2004
    Inventors: Fred David Ehrman, Michael Elroy Muhle, Pradeep Pandurang Shirodkar, Keith Wesley Trapp
  • Patent number: 6664347
    Abstract: Modified polybutadiene having a high-cis and low-trans structure with a moderate 1,2-structure content and exhibiting improved characteristics such as cold flow properties, which is obtained by modifying starting polybutadiene having a Tcp/ML1+4 ratio (Tcp: 5% toluene solution viscosity at 25° C.ML1+4: Mooney viscosity at 100° C.) of 2.5 or more in the presence of a transition metal catalyst.
    Type: Grant
    Filed: September 5, 2002
    Date of Patent: December 16, 2003
    Assignee: Ube Industries, Ltd.
    Inventors: Michinori Suzuki, Masato Murakami
  • Patent number: 6639029
    Abstract: The present invention relates to a process for synthesis of polymer compositions, wherein ethylenically unsaturated monomers are polymerized by means of initiators containing a transferable atom or group of atoms and of one or more catalysts comprising at least one transition metal in the presence of ligands which can form a coordination compound with the metal catalyst or catalysts, the process being characterized in that the polymerization takes place by means of continuous process operation.
    Type: Grant
    Filed: November 13, 2000
    Date of Patent: October 28, 2003
    Assignee: Rohmax Additives GmbH
    Inventors: Markus Scherer, Joseph Martin Bollinger, David J. Cooper, Jr., Larry Stephen Tillery, Robert Woodruff
  • Patent number: 6632896
    Abstract: Ths invention provides a process for the preparation of a polyethylene, in particular an HDPE suitable for blow moulding of HIC, which comprises polymerizing ethylene and, optionally an ethylenically unsaturated comonomer copolymerizable therewith, in the presence of a catalyst comprising a first silica-supported chromium catalyst having a pore volume of at least 2 mL/g, a surface area of at least 350 m2/g and a chromium content of 0.1 to 1.0% by weight and a second silica-supported chromium catalyst having a pore volume of at least 2 mL/g, a surface area of at least 450 m2/g and a chromium content of 0.1 to 1.0% by weight, wherein the silica support of said first catalyst also comprises alumina and the silica support of said second catalyst also comprises titanium, and preferably a co-catalyst.
    Type: Grant
    Filed: November 29, 1999
    Date of Patent: October 14, 2003
    Assignee: Borealis Technology Oy
    Inventors: Vidar Almquist, Paul Allemeersch, Roger Goris, Ann Kristin Lindahl
  • Publication number: 20030187159
    Abstract: The present invention provides a molecular blended polymer that includes two or more types of polymers blended at the molecular level. At least one monomer is polymerized in the presence of two or more kinds of catalysts supported on a mesoporous molecular sieve having a pore size of 20 Å to 500 Å. The polymerization occurs in the pore of the mesoporous molecular sieve and is controlled at the molecular level. Thus, the polymer material is controlled extremely well and the function and physical properties of the polymer material are greatly enhanced.
    Type: Application
    Filed: March 28, 2002
    Publication date: October 2, 2003
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Ching Ting, Joung-Yei Chen, Shu-Hua Chan
  • Patent number: 6620896
    Abstract: Mixed olefin polymerization catalysts, methods for preparing olefin polymers using the catalysts, and polymers obtained therefrom are disclosed. The mixed catalyst system comprises the combination of (a) a Group 8-10 transition metal complex of a bidentate or tridentate ligand comprising at least one nitrogen donor selected from Set 1, (b) either a Group 8-10 transition metal complex of a bidentate or tridentate ligand comprising at least one nitrogen donor selected from Set 1 or a bidentate ligand comprising a nitrogen-nitrogen donor selected from Set 2, or a Group 4 transition metal complex of a multidnentate ligand comprising at least 1 cyclopentadienyl or indenyl ring selected from Set 3 or a titanium or chromium Ziegler-Natta catalyst selected from Set 4, and optionally (c) a compound Y.
    Type: Grant
    Filed: February 23, 1999
    Date of Patent: September 16, 2003
    Assignee: Eastman Chemical Company
    Inventors: Christopher Moore Killian, Peter Borden Mackenzie, Gino Georges Lavoie, James Allen Ponasik, Jr., Leslie Shane Moody
  • Patent number: 6620895
    Abstract: Polyethylenes made from ethylene and a series of &agr;-olefins using a catalyst that copolymerizes ethylene and &agr;-olefins usually have excellent melt processing characteristics, especially in uses where high zero shear viscosity and low high shear viscosity are desirable. These polyethylenes are preferably made by forming the &agr;-olefins in situ from ethylene during the polymerization process. The polyethylenes are especially useful in blow molding, extrusion or extruded blown film processes.
    Type: Grant
    Filed: September 28, 2000
    Date of Patent: September 16, 2003
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Patricia Metzger Cotts, William Howard Tuminello, Lin Wang, Joel David Citron
  • Patent number: 6610799
    Abstract: A process for olefin polymerization in a reaction vessel, said process comprising polymerizing at least one &agr;-olefin in a polymerization stage employing a catalyst feed comprising 1) a first catalyst composition having at least two active catalytic sites capable of producing a first set of polymer components; 2) a second catalyst composition having at least two active catalytic sites capable of giving essentially the same set of polymer components as produced by the catalyst in feed (1) under the same polymerization conditions but these components in a different ratio to those produced by the catalyst composition of feed (1); wherein the amounts of catalyst compositions (1 and 2) fed into the reaction vessel are independently controlled.
    Type: Grant
    Filed: October 24, 2001
    Date of Patent: August 26, 2003
    Assignee: Borealis Technology Oy
    Inventors: Arild Follestad, Vidar Almqvist, Ketil Strand Andersen, Richard Blom, Ivar Martin Dahl, Arild Geir Andersen
  • Patent number: 6610800
    Abstract: Ethylene-based polymer blends having an MWD of at least about 2 are made in a single reactor using a mixed constrained geometry catalyst (CGC) system. The process comprises the steps of contacting under polymerization conditions and in a single reaction vessel (i) ethylene, (ii) at least one C3-C20 &agr;-olefin, (iii) optionally, at least one polyene, and (iv) a mixed CGC system.
    Type: Grant
    Filed: January 3, 2002
    Date of Patent: August 26, 2003
    Assignee: DuPont Dow Elastomers LLC
    Inventors: Michael K. Laughner, Debra J. Mangold, Deepak R. Parikh
  • Publication number: 20030149182
    Abstract: Blends of two or more polyethylenes are made by reacting ethylene with an oligomerization catalyst that forms &agr;-olefins, and two polymerization catalysts, one of which under the process conditions copolymerizes ethylene and &agr;-olefins, and the other of which under process conditions does not readily copolymerize ethylene and &agr;-olefins. The blends may have improved physical properties and/or processing characteristics.
    Type: Application
    Filed: February 6, 2003
    Publication date: August 7, 2003
    Inventors: Lin Wang, Maria Spinu, Joel David Citron
  • Publication number: 20030134990
    Abstract: Disclosed herein are methods for producing polymeric materials which are normally tenacious in their character to such degree that their processing by conventional means is not possible, for example substantially-amorphous polyolefins. By introducing a second catalyst capable of producing a powdery polymer into the polymerization system during production of the sticky polymers, these normally sticky, tenacious polymers are rendered into a form which may be processed using conventional means and equipment.
    Type: Application
    Filed: December 19, 2002
    Publication date: July 17, 2003
    Applicant: Huntsman Polymers Corporation
    Inventor: Lixin Sun
  • Patent number: 6593442
    Abstract: A semicrystalline propylene polymer composition with good suitability for producing biaxially oriented films and prepared by polymerizing propylene, ethylene and/or C4-C18-1-alkenes, where at least 50 mol % of the monomer units present arise from the polymerization of propylene. Also described is the use of the semicrystalline propylene polymer composition for producing films, fibers or moldings, the films, fibers and moldings made from these compositions, biaxially stretched films made from the semicrystalline propylene polymer compositions, and also a method for characterizing the semicrystalline propylene polymer compositions.
    Type: Grant
    Filed: December 18, 2000
    Date of Patent: July 15, 2003
    Assignee: Basell Polypropylen GmbH
    Inventors: Wolfgang Bidell, Roland Hingmann, Franz Langhauser, Dieter Lilge, Volker Rauschenberger, Günther Schweier, Florian Stricker, Jürgen Suhm
  • Patent number: 6586544
    Abstract: This invention relates to methods to introduce multiple catalysts, activators or catalyst systems into a gas phase reactor.
    Type: Grant
    Filed: April 15, 2002
    Date of Patent: July 1, 2003
    Assignee: Univation Technologies, LLC
    Inventors: John F. Szul, Kersten Anne Erickson, Simon Mawson, David James Schreck, Mark G. Goode, Paul T. Daniell, Matthew G. McKee, Clark C. Williams
  • Patent number: 6579962
    Abstract: A process for the production of biaxially-oriented polypropylene film involving the provision of a polypropylene polymer produced by the polymerization of propylene in the presence of a metallocene catalyst characterized by a bridged racemic bis(indenyl) ligand substituted at the proximal position. The polypropylene contains 0.5 to 2% 2,1 insertions and has an isotacticity of at least 96% meso pentads and at least 99% meso diads. The film is formed by stressing the polymer produced from a slot die in the machine direction at a stretch ratio of about 5 or 6 and in the transverse direction at a stretch ratio of about 8 or 9 to produce a biaxially-oriented film having a non-uniform melt temperature of a peak value of less than 160° C. The polypropylene polymer has meltflow index of less than 5 grams per 10 minutes and has an average molecular weight within the range of 100,000-400,000 grams per mole.
    Type: Grant
    Filed: May 22, 2000
    Date of Patent: June 17, 2003
    Assignee: Fina Technology, Inc.
    Inventors: William R. Wheat, Aiko Hanyu
  • Publication number: 20030105250
    Abstract: This invention relates to a method to oligomerize ethylene comprising combining ethylene with a catalyst system comprising an activator and one or more phenoxide group metal compounds represented by the formula: 1
    Type: Application
    Filed: November 19, 2002
    Publication date: June 5, 2003
    Inventor: Gregory T. Whiteker
  • Patent number: 6573343
    Abstract: Olefin polymers are prepared in a plurality of polymerization stages, optionally in a plurality of polymerization reactors, in the presence of hydrogen and an olefin polymerization multisite catalyst, preferably a dualsite catalyst, having at least catalytic sites A and B, site A capable of yielding polymers of different molecular weights and differing MFR2 or MFR21 depending on the concentration of hydrogen in the polymerization reactor and site B capable of yielding polymers of certain molecular weight and MFR2 or MFR21 depending on the concentration of hydrogen in the polymerization reactor where the ratio between MFR2 or MFR21 of polymers produced by site B at two different selected hydrogen concentrations is less than ten and the ratio between MFR2 or MFR21 of polymers produced by site A at the same hydrogen concentrations is more than 50.
    Type: Grant
    Filed: June 15, 2001
    Date of Patent: June 3, 2003
    Assignee: Borealis Technology Oy
    Inventor: Arild Follestad
  • Patent number: 6569963
    Abstract: A process for controlling the MWD of a broad or bimodal resin in a single fluid bed reactor using a mixed catalyst composition containing a bimetallic catalyst and a make-up catalyst of at least one metallic component of the bimetallic catalyst. The bimetallic catalyst, which is formed with at least one metallocene of a transition metal, produces broad or bimodal molecular weight distribution polyolefin resin whose composition depends on the ratio of the concentration of the two catalyst components producing the HMW/LMW components. The make-up catalyst consisting of a single metal component is added in proportion necessary to make-up the deficiencies in the amount of the HMW/LMW component. The type of make-up catalyst added depends on whether increase of the HMW or LMW component produced by the bimetallic catalyst is sought. The mixed catalyst compostion may be fed into the reactor as a mixture or through separate catalyst ports of the reactor.
    Type: Grant
    Filed: May 9, 2002
    Date of Patent: May 27, 2003
    Assignee: ExxonMobil Oil Corporation
    Inventors: Thomas E. Nowlin, Sandra D. Schregenberger, Pradeep P. Shirodkar, Grace O. Tsien
  • Patent number: 6566462
    Abstract: This invention relates to a process to polymerize olefins comprising reacting olefins with a catalyst system comprising an activator, a metallocene and a second metal compound based on bidentate ligands containing heterocycle moieties.
    Type: Grant
    Filed: October 10, 2001
    Date of Patent: May 20, 2003
    Assignee: Univation Technologies, LLC
    Inventors: Rex E. Murray, Simon Mawson, John F. Szul, Kersten Anne Erickson, Tae Hoon Kwack, Frederick J. Karol, David James Schreck
  • Patent number: 6555631
    Abstract: Blends of two or more polyethylenes are made by reacting ethylene with an oligomerization catalyst that forms &agr;-olefins, and two polymerization catalysts, one of which under the process conditions copolymerizes ethylene and &agr;-olefins, and the other of which under process conditions does not readily copolymerize ethylene and &agr;-olefins. The blends may have improved physical properties and/or processing characteristics.
    Type: Grant
    Filed: September 28, 2000
    Date of Patent: April 29, 2003
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Lin Wang, Maria Spinu, Joel David Citron
  • Patent number: 6552148
    Abstract: The present invention relates to a thermoplastic interpolymer product comprising an &agr;-olefin interpolymerized with at least one vinyl or vinylidene aromatic monomer and/or at least one hindered aliphatic or cycloaliphatic vinyl or vinylidene aromatic monomer and, in at least one aspect, is characterized as having substantially synergistic thermal properties. The invention also relates to a process for manufacturing the interpolymer product wherein the process employs two or more single site or metallocene catalyst systems in at least one reaction environment and wherein at least two of the catalyst systems have (a) different monomer incorporation capabilities or reactivities and (b) the same or, optionally, different monomer sequencing and/or tacticity characteristics.
    Type: Grant
    Filed: February 17, 2000
    Date of Patent: April 22, 2003
    Assignee: The Dow Chemical Company
    Inventors: Yunwa W. Cheung, Martin J. Guest, Robert K. Rosen, Brian W. Kolthammer
  • Patent number: 6545105
    Abstract: The invention relates to a process for the preparation of an olefin polymer wherein olefin polymerization is effected in a plurality of polymerization reaction stages in the presence of an olefin polymerization catalyst material, characterized in that said catalyst material comprises at least two different types of active polymerization sites.
    Type: Grant
    Filed: December 9, 1999
    Date of Patent: April 8, 2003
    Inventors: Arild Follestad, Klaus Joachim Jens, Kjell-Arne Solli, Svein Nenseth
  • Patent number: 6541580
    Abstract: A process for ATRP polymerization and coupling of molecules by radical processes is provided, wherein improvements are provided by selection of various ligands, counterions, transition metal compounds and/or zero oxidation state transition metals to give improved control over molecular weight, molecular weight distribution and compositions of the products formed.
    Type: Grant
    Filed: August 6, 1999
    Date of Patent: April 1, 2003
    Assignee: Carnegie Mellon University
    Inventors: Krzysztof Matyjaszewski, Scott G. Gaynor, Simion Coca
  • Patent number: 6528596
    Abstract: A modified particles obtained by contacting particles(a) with a metal compound(b) selected from the group consisting of compounds of the Group VI, VII, XIV metal elements and compounds of the lanthanide series, and contacting the particles with a compound(c) having a functional group containing active hydrogen or a non-proton donative Lewis basic functional group and an electron-withdrawing group; a carrier composed of the modified particles; a catalyst component for olefin polymerization composed of said modified particles; a catalyst for olefin polymerization obtained by contacting the modified particles(A) and a transition metal compound(B), or further an organometallic compound(C); and a process for producing an olefin polymer with the catalyst.
    Type: Grant
    Filed: December 22, 2000
    Date of Patent: March 4, 2003
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Kazuo Takaoki, Tatsuya Miyatake
  • Patent number: 6518215
    Abstract: The invention generally relates to a catalyst, particularly a metallocene catalyst and catalyst system useful in the polymerization of olefins into a polymer product. The polymer product has a broad molecular weight distribution, a high molecular weight and a narrow composition distribution and is easily processable.
    Type: Grant
    Filed: November 17, 2000
    Date of Patent: February 11, 2003
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Robert Lee Bamberger, Moses Olukayode Jejelowo
  • Patent number: 6518377
    Abstract: A polyolefin metallocene catalyst which includes two metallocene components, a stereorigid isospecific metallocene catalyst component and a stereorigid syndiospecific metallocene catalyst component, both of which are supported upon the same support. A method of forming a catalyst system includes contacting the above catalyst with a cocatalyst or Lewis acid. A method of polymerization includes contacting an olefin with the catalyst system.
    Type: Grant
    Filed: September 1, 2000
    Date of Patent: February 11, 2003
    Assignee: Fina Technology, Inc.
    Inventors: Edwar S. Shamshoum, Margarito Lopez, Ted G. Harris, III, Sehyun Kim
  • Publication number: 20020183473
    Abstract: A polymerization process is provided for the preparation of graft (co)polymers. An embodiment of the polymerization process of the present invention comprises copolymerizing macromonomers with (co)monomers utilizing a macroinitiator to form a graft (co)polymer. A further embodiment of a polymerization process of the present invention comprises (co)polymerizing macromonomers and monomers with a graft copolymer macroinitiator to form a block-graft (co)polymer. Another embodiment of the process of the present invention comprises (co)polymerizing macromonomers and monomers with a compatible macroinitiator. The chemical and structural properties of the product graft (co)polymer may be controlled by use of a compatible macroinitiator and the functional group on the macromonomer which effect the relative rates of incorporation of the macromonomer and the monomer. Graft (co)polymers may be prepared with homogeneous or heterogeneous distribution of grafts.
    Type: Application
    Filed: December 21, 2001
    Publication date: December 5, 2002
    Inventors: Krzysztof Matyjaszewski, Jean-Francois Lutz, Hosei Shinoda
  • Patent number: 6486273
    Abstract: A supported catalyst for the polymerization of olefins, especially ethylene, has at least two catalyst components having different propagation and/or termination constants. Each catalyst component must have at least one phosphinimine ligand. The polymer produced according to this invention has a broad molecular weight distribution. Catalysts according to this invention have a very surprising and desirable hydrogen response.
    Type: Grant
    Filed: April 16, 2001
    Date of Patent: November 26, 2002
    Assignee: Nova Chemicals (International) S.A
    Inventors: Ian McKay, Alison Ciupa, Barbara Christine Hall