Contains At Least Two Non-transition Elemental Metals, Hydrides Thereof, Or Compounds Containing Carbon To Non-transition Metal Atom Bond, Or Mixtures Thereof Patents (Class 526/124.7)
  • Patent number: 10611858
    Abstract: According to the present invention, there is provided a method for preparing low molecular weight amorphous polypropylene. In contrast to the prior art in which amorphous polypropylene is prepared by injecting an internal donor and an external donor upon preparing a primary catalyst, the present invention enables easier preparation of low molecular weight amorphous polypropylene and a copolymer thereof by simply mixing a primary catalyst with an alkylaluminum-based co-catalyst without injecting an internal donor, upon preparing a primary catalyst, and an external donor, upon polymerization. According to the present invention, the primary catalyst has superior reactivity with hydrogen, as chain transfer agent, allowing for preparation of low molecular weight amorphous polypropylene even under low hydrogen pressures and low-pressure driving conditions.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: April 7, 2020
    Inventors: Yeon Jae Jung, Jung Hwa Baek, Hyun Soo Ha, Gil Soon Kang, Young Tae Jeong
  • Patent number: 10344105
    Abstract: The present invention relates to a process for the (co)polymerization of olefins to make polyethylene (co)polymers having sporadic long chain branches in high molecular weight fractions and a high molecular weight tail along with reversed comonomer composition distribution for improving processability, melt strength and optical properties. Such polyethylene (co)polymers have been prepared with a process comprising the reaction of at least the following components: (a) an advanced Ziegler-Natta catalyst precursor comprising titanium; (b) an activator comprising organohalogenous aluminum compounds; (c) ethylene; and (d) one or more alpha-olefins.
    Type: Grant
    Filed: August 4, 2017
    Date of Patent: July 9, 2019
    Assignee: Formosa Plastics Corporation, USA
    Inventors: Zhiming Wang, Guangxue Xu, Chih-Jian Chen
  • Patent number: 8546499
    Abstract: Ziegler-Natta catalyzed linear low density polyethylene which satisfies the following conditions: a) a density, according to ISO 1183, of from 900 to 925 kg/m3, b) a C4-C10-comonomer content, determined by Fourier transform infrared spectroscopy, of 1 to 16 wt % c) a weight average molecular weight Mw, determined by gel permeation chromatography, of at least 200 000, d) wherein the linear low density polyethylene comprises, by Crystallisation Analysis Fractionation (CRYSTAF) an amorphous fraction soluble at a temperature below 30° C. of at most 10 wt % and a fraction crystallising between 60 to 75° C. of at least 35 wt % and e) by temperature rising elution fractionation (TREF) analysis, at least 70 wt % of a crystallising polymer component having an elution temperature range from 60° C. to 94° C. and less than 10 wt % of a crystallising polymer component having an elution temperature range from 30° C. to 60° C.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: October 1, 2013
    Assignee: Borealis AG
    Inventors: Thomas Garroff, Paivi Waldvogel, Kallio Kalle, Virginie Eriksson, Aki Aittola, Esa Kokko
  • Publication number: 20120208969
    Abstract: Ziegler-Natta catalysts, processes of forming the same and using the same are described herein. The process generally includes contacting a metal component with a magnesium dihalide support material to form a Ziegler-Natta catalyst precursor; contacting the support material with a dopant including a non-Group IV metal halide to form a doped catalyst precursor; and activating the doped catalyst precursor by contact with an organoaluminum compound to form a Ziegler-Natta catalyst.
    Type: Application
    Filed: February 16, 2011
    Publication date: August 16, 2012
    Applicant: Fina Technology, Inc.
    Inventors: LEI ZHANG, David Knoeppel
  • Publication number: 20120053308
    Abstract: Ziegler-Natta catalyzed linear low density polyethylene which satisfies the following conditions: a) a density, according to ISO 1183, of from 900 to 925 kg/m3, b) a C4-C10-comonomer content, determined by Fourier transform infrared spectroscopy, of 1 to 16 wt % c) a weight average molecular weight Mw, determined by gel permeation chromatography, of at least 200 000, d) wherein the linear low density polyethylene comprises, by Crystallisation Analysis Fractionation (CRYSTAF) an amorphous fraction soluble at a temperature below 30° C. of at most 10 wt % and a fraction crystallising between 60 to 75° C. of at least 35 wt % and e) by temperature rising elution fractionation (TREF) analysis, at least 70 wt % of a crystallising polymer component having an elution temperature range from 60° C. to 94° C. and less than 10 wt % of a crystallising polymer component having an elution temperature range from 30° C.
    Type: Application
    Filed: April 26, 2010
    Publication date: March 1, 2012
    Applicant: BOREALIS AG
    Inventors: Thomas Garroff, Paivi Waldvogel, Kallio Kalle, Virginie Eriksson, Aki Aittola, Esa Kokko
  • Patent number: 7998894
    Abstract: The present invention relates to a Ziegler-Natta catalyst comprising a solid, ligand-modified catalyst component formed at least from (a) a compound of Group 1 to 3 of the Periodic Table (IUPAC), (b) a transition metal compound of Group 4 to 10 of the Periodic Table (IUPAC), or a compound of an actinide or lanthanide, (c) one or more organic ligand compound(s) which is/are selected from organic compounds comprising a cyclopentadienyl anion backbone, and (d) a compound of Group 13 of the Periodic Table, wherein the catalyst component of said Ziegler-Natta catalyst is formed in an emulsion/solidification method, to a process for the production of such a catalyst, and to a process for the production of an olefin (co-)polymer in the presence of such a catalyst.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: August 16, 2011
    Assignee: Borealis Technology Oy
    Inventors: Marjo Väänänen, Minna Stalhammar, Young-Soo Ko, Siw Fredriksen, Marita Savilahti
  • Publication number: 20100324202
    Abstract: An interpolymer of ethylene and at least one alpha-olefin is claimed, wherein the ethylene interpolymer is characterized as having an average Mv and a valley temperature between the interpolymer and high crystalline fraction, Thc, such that the average Mv for a fraction above Thc from ATREF divided by average Mv of the whole polymer from ATREF (Mhc/Mp) is less then about 1.95 and wherein the interpolymer has a CDBI of less than 60%. The interpolymer of ethylene and at least one alpha-olefin can also be characterized as having a high density (HD) fraction and an overall density such that % HD fraction<?2733.3+2988.7x+144111.5 (x?0.92325)2 where x is the density in grams/cubic centimeter. Fabricated articles comprising the novel interpolymers are also disclosed.
    Type: Application
    Filed: March 30, 2010
    Publication date: December 23, 2010
    Applicant: Dow Global Technologies Inc.
    Inventors: Ayush A. Bafna, Mehmet Demirors, Sylvie Desjardins, Douglas S. Ginger, Colleen M. Tice, Terry A. Pearce
  • Patent number: 7683003
    Abstract: A method for identifying a catalyst composition for use in the heterogeneous Ziegler-Natta addition polymerization of an olefin monomer, said catalyst composition comprising a procatalyst comprising a magnesium and titanium containing procatalyst and a cocatalyst said method comprising: a) providing a library comprising at least one procatalyst compound, b) forming a catalyst composition library by contacting the member of said procatalyst library with one or more cocatalysts and contacting the resulting mixture with an olefin monomer under olefin polymerization conditions thereby causing the polymerization reaction to take place, c) measuring at least one variable of interest during the polymerization, and d) selecting the catalyst composition of interest by reference to said measured variable.
    Type: Grant
    Filed: May 13, 2005
    Date of Patent: March 23, 2010
    Assignee: Dow Global Technologies, Inc.
    Inventors: Richard E. Campbell, Jr., Sylvie Desjardins, Phillip D. Hustad, Duane R. Romer
  • Publication number: 20100056736
    Abstract: This invention relates to an improved method for improving the tacticity of Ziegler-Natta catalyst systems and for controlling the behaviour of the active stereospecific sites.
    Type: Application
    Filed: April 4, 2007
    Publication date: March 4, 2010
    Applicants: TOTAL PETROCHEMICALS RESEARCH FELUY, Centre National de la Recherche Scientifique (CNR
    Inventors: David Ribour, Roger Spitz, Jerome Gromada
  • Publication number: 20090182103
    Abstract: Disclosed is a method for polymerization and copolymerization of olefin characterized by polymerizing or copolymerizing olefins in the presence of: (A) a prepolymerized catalyst obtained by prepolymerizing olefins in the presence of (a) a solid complex titanium catalyst prepared by the following steps, (b) an aluminum alkyl and halogenated aluminum, and (c) an electron donor, wherein the steps comprises: (i) preparing a magnesium compound solution by dissolving a magnesium halide compound into an oxygen-containing solvent mixture of a cyclic ether and one or more alcohols; (ii) preparing a carrier by firstly reacting the resulted magnesium compound solution with a titanium halide compound at ?10-30° C.
    Type: Application
    Filed: March 26, 2007
    Publication date: July 16, 2009
    Applicant: SAMSUNG TOTAL PETROCHEMICALS, LTD.
    Inventors: Ho-Sik Chang, Chung-Byun Yang
  • Publication number: 20090163680
    Abstract: Catalyst components, methods of forming catalyst compositions, polymerization processes utilizing the catalyst compositions and polymers formed thereby are described herein. The methods generally include providing a magnesium dialkoxide compound, contacting the magnesium dialkoxide compound with a first agent to form a solution of a reaction product “A1”, contacting the solution of reaction product “A1” with a reducing agent to form a reduced reaction product “A2”, contacting reduced reaction product “A2” with a second agent to form a solid reaction product “A3”, contacting solid reaction product “A3” with a metal halide to form reaction product “B” and contacting reaction product “B” with an organoaluminum compound to form a catalyst component.
    Type: Application
    Filed: December 20, 2007
    Publication date: June 25, 2009
    Applicant: Fina Technology, Inc.
    Inventors: Henry Enriquez, Kayo Vizzini, Steven Gray
  • Publication number: 20080312391
    Abstract: The present invention provides a process for preparing a catalyst useful in gas phase polymerization of olefins wherein the hydrogen response of the catalyst can be improved by using a ketone as the electron donor in the catalyst. The catalyst consists of compounds of Ti, Mg, Al and a ketone preferably supported on an amorphous support.
    Type: Application
    Filed: June 10, 2008
    Publication date: December 18, 2008
    Inventors: Mark Kelly, Brian Stephen Kimberley
  • Patent number: 7365138
    Abstract: A method of modifying a Ziegler-Natta type polyolefin catalyst comprises contacting the Ziegler-Natta catalyst with olefin monomer to form a prepolymerized catalyst. The prepolymerized catalyst can comprise a reduced number of catalyst particles having a size of 40 microns or less. The prepolymerized catalyst can be used in a polymerization process to produce polymer fluff particles with a reduced number of polymer fluff fines than the Ziegler-Natta type catalyst.
    Type: Grant
    Filed: January 7, 2005
    Date of Patent: April 29, 2008
    Assignee: Fina Technology, Inc.
    Inventors: Steven D. Gray, Tim J Coffy, Edwar S. Shamshoum, Hong Chen
  • Patent number: 7256150
    Abstract: A process for producing a Gp 2/transition metal olefin polymerisation catalyst component, in which a Gp 2 complex is reacted with a transition metal compound so as to produce an oil-in-oil emulsion, the disperse phase containing the preponderance of the Gp 2 metal being selectively sorbed on a carrier to provide a catalyst component of excellent morphology. Polymerisation of olefins using a catalyst containing such a component is also disclosed.
    Type: Grant
    Filed: June 18, 2002
    Date of Patent: August 14, 2007
    Assignee: Borealis Polymers Oy
    Inventors: Peter Denifl, Timo Leinonen
  • Patent number: 7211535
    Abstract: The present invention provides a novel process for preparing a catalyst useful in gas phase polymerization of olefins wherein the physical properties of the polymer and the productivity of the catalyst can be altered depending on the sequence of addition of the catalyst components. The catalyst consists of compounds of Ti, Mg, Al and optionally an electron donor supported on an amorphous support.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: May 1, 2007
    Assignees: Nova Chemicals Corporation, Ineos Europe Limited
    Inventors: Mark Kelly, Shivendra Kumar Goyal, Victoria Ker, Perry Montyn de Wit, Brian Stephen Kimberley, Peter Phung Ming Hoang
  • Patent number: 7008898
    Abstract: The invention relates to a method for producing a poly-1-olefin by polymerisation of a 1-olefin of the formula R4CH?CH2, in which R4 is hydrogen or an alkyl radical having from 1 to 10 carbon atoms, in suspension, in solution or in the gas phase, at a temperature of from 20 to 200° C. and a pressure of from 0.5 to 50 bar, in the presence of a catalyst which consists of the product of the reaction of a magnesium alkoxide with a transition-metal compound (component a) and an organometallic compound (component b), whose component a has been produced by reacting a transition-metal compound of titanium, zirconium, vanadium or chromium with a gelatinous dispersion of the magnesium alkoxide in an inert hydrocarbon.
    Type: Grant
    Filed: November 17, 2000
    Date of Patent: March 7, 2006
    Assignee: Basell Polyolefine GmbH
    Inventors: Frank Alt, Paul Schöneborn, Ludwig Böhm
  • Patent number: 6992034
    Abstract: A solid catalyst component useful for the (co)-polymerization of olefins is disclosed. The catalyst component is prepared by reacting an activated magnesium halide composite support with a halogenized transition metal compound and a chelating diamide compound in the presence of organo-magnesium as a promoting agent and halogenized silicon or boron compounds as an activator. The catalyst component can be used with an organo-aluminum compound to provide a solid catalyst system that is compatible with slurry and gas phase polymerization processes. Linear low density polyethylene (LLDPE) produced using the catalyst component of the present invention displays a low molecular weight distribution, improved co-monomer incorporation, low content of the low molecular weight component, and excellent morphological properties such as spherical shape and high bulk density.
    Type: Grant
    Filed: July 10, 2003
    Date of Patent: January 31, 2006
    Assignee: Formosa Plastics Corporation, U.S.A.
    Inventors: Guangxue Xu, Honglan Lu, Chih-Jian Chen
  • Patent number: 6982307
    Abstract: Olefin-based materials react with a range of catalysts and catalytic systems to form catalytic matrices, which are employed in the production of a variety of polyolefin products.
    Type: Grant
    Filed: August 17, 2001
    Date of Patent: January 3, 2006
    Assignee: Rohm and Haas Company
    Inventors: Eric G. Lundquist, Jennifer A. Reichl, James C. Bohling
  • Patent number: 6956002
    Abstract: A catalyst for olefin polymerization, comprising: a solid catalyst component comprising [A] a solid component having substantially no hydroxyl group, [B] a compound of a transition metal selected from Groups 3-11 of the Periodic Table, and [C] a mixture of an activator compound (C-1) capable of reacting with the transition metal compound [B] to form a metal complex having catalytic activity and an organoaluminum compound (C-2); and [D] an organomagnesium compound soluble in a hydrocarbon solvent which is obtained by reacting (i) an organomagnesium compound represented by the general formula: (Mt)?(Mg)?(R1)a(R2)b wherein Mt is a metal atom belonging to Groups 1-3 of the Periodic Table, R1 and R2 are hydrocarbon groups of 2-20 carbon atoms, and ?, ?, a and b are numerals satisfying the following relationship: 0??, 0<?, 0?a, 0<b, a+b>0, and r?+2?=a+b (where r is a valence of Mt) with (ii) a compound selected from an amine, an alcohol and a siloxane.
    Type: Grant
    Filed: October 15, 2002
    Date of Patent: October 18, 2005
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Takashi Nozaki, Akio Fujiwara
  • Patent number: 6924343
    Abstract: A process for polymerizing olefins using a high activity catalyst. The catalyst utilize in the present process has a good balance in activity and can be used to carry out ethylene polymerization at high and low melt flow rates to produce low gel or gel free product.
    Type: Grant
    Filed: June 14, 2004
    Date of Patent: August 2, 2005
    Assignee: Borealis Technology Oy
    Inventors: Jarmo Lindroos, Solveig Johansson, Päivi Waldvogel
  • Patent number: 6846887
    Abstract: A method of modifying a Ziegler-Natta type polyolefin catalyst comprises contacting the Ziegler-Natta catalyst with olefin monomer to form a prepolymerized catalyst. The prepolymerized catalyst can comprise a reduced number of catalyst particles having a size of 40 microns or less. The prepolymerized catalyst can be used in a polymerization process to produce polymer fluff particles with a reduced number of polymer fluff fines than the Ziegler-Natta type catalyst.
    Type: Grant
    Filed: February 18, 2003
    Date of Patent: January 25, 2005
    Assignee: Fina Technology, Inc.
    Inventors: Steven D. Gray, Tim J. Coffy, Edwar S. Shamshoum, Hong Chen
  • Patent number: 6586543
    Abstract: The present invention provides a process for preparing a substantially amorphous poly-&agr;-olefin, which includes: a) preforming a solid catalyst and, optionally, a first amount of a trialkylaluminum cocatalyst, by contacting the catalyst and optionally the cocatalyst with at least one selected from the group including oxygen and a compound which includes active oxygen, to form a preformed catalyst, wherein the solid catalyst includes magnesium, aluminum and titanium, and wherein said trialkylaluminum cocatalyst includes 1 to 9 carbon atoms in each alkyl group; b) contacting the preformed catalyst with a second amount of the cocatalyst, wherein a molar ratio of trialkylaluminum to the titanium ranges from 40:1 to 700:1, to form a catalyst mixture; c) polymerizing, in the liquid phase, with the catalyst mixture, an olefin or an olefin mixture at a temperature between 30 and 160° C., to produce the poly-&agr;-olefin.
    Type: Grant
    Filed: September 1, 2000
    Date of Patent: July 1, 2003
    Assignee: Degussa AG
    Inventors: Hans Guenther Wey, Norbert Schlueter
  • Patent number: 6531551
    Abstract: A polypropylene composition comprising 0.001 to 10 parts by weight of a polyethylene having an intrinsic viscosity [&eegr;E] of 0.01 to less than 15 dl/g s measured in tetralin at 135° C. and 100 parts by weight of a polyolefin comprising at least polypropylene, wherein the polyethylene is finely dispersed as particles with a number average particle diameter of, e.g., 1 to 5000 nm in the polyolefin comprising at least polypropylene. By virtue of the above constitution, the polypropylene composition has excellent transparency and rigidity, is free from the creation of a sweeper roll flow mark in the preparation of a film and substantially free from a neck-in phenomenon of a film, and has high productivity.
    Type: Grant
    Filed: January 11, 1999
    Date of Patent: March 11, 2003
    Assignee: Chisso Corporation
    Inventors: Katsuhiko Ohno, Masami Kimura, Taketo Hirose, Yoshitaka Morimoto, Jun Saito
  • Publication number: 20030045659
    Abstract: A catalytic polymerization process for preparing polymer products is provided. The polymerization process is either homopolymerization of olefins or copolymerization of olefins with alpha-olefins. The polymerization process is conducted in the presence of a solid catalyst precursor and a cocatalyst. The catalyst precursor includes a transition metal, a magnesium compound, an aluminum compound and polymeric particles.
    Type: Application
    Filed: August 23, 2002
    Publication date: March 6, 2003
    Applicant: Saudi Basic Industries Corporation
    Inventors: Akhlaq Moman, Atieh Abu-Raqabah, Orass Hamed, Raju Raghavan
  • Patent number: 6511935
    Abstract: A method of halogenating a precursor to form a polymerization procatalyst is disclosed whereby a magnesium/transition metal-containing alkoxide complex precursor is contacted with a halogenating agent selected from alkylaluminum halide, TiX4, SiX4, BX3, and Br2, where halide and X are reach respectively a halogen, and when an alkylaluminum halide, TiX4, SiX4, BX3, and Br2 are used as the halogenating agent, they are used together or in combination in a multi-step halogenation. The procatalyst then can be converted to an olefin polymerization catalyst by contacting it with a cocatalyst and optionally a selectivity control agent, and used to polymerize olefins in high yield with desired properties.
    Type: Grant
    Filed: June 8, 2001
    Date of Patent: January 28, 2003
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventor: Robert Charles Job
  • Patent number: 6448348
    Abstract: A catalytic polymerization process for preparing polymer products is provided. The polymerization process is either homopolymerization of olefins or copolymerization of olefins with alpha-olefins. The polymerization process is conducted in the presence of a solid catalyst precursor and a cocatalyst. The catalyst precursor includes a transition metal, a magnesium compound, an aluminum compound and a polyvinylchloride (PVC) support.
    Type: Grant
    Filed: June 9, 2000
    Date of Patent: September 10, 2002
    Assignee: Saudi Basic Industries Corporation
    Inventors: Akhlaq Moman, Atieh Abu-Raqabah, Orass Hamed, Raju Raghavan
  • Patent number: 6433108
    Abstract: The invention relates to a process for the manufacture of a solid catalytic component for the polymerization or copolymerization of olefins, resulting in a polymer or copolymer with broadened molecular mass distribution. The process includes a first stage including bringing into contact a) a solid support including at its surface at least 5 hydroxyl groups per square nanometre (OH/nm2) and b) an organic magnesium derivative, and optionally, preferably, c) an aluminoxane, to obtain a first solid, and then a second stage including bringing the first solid and a chlorinating agent into contact to obtain a second solid and then, in a later stage, impregnation of the second solid with a transition metal derivative.
    Type: Grant
    Filed: February 17, 2000
    Date of Patent: August 13, 2002
    Assignee: Elf Atochem S.A.
    Inventors: Jean Malinge, Claude Brun, Jean-Loup Lacombe
  • Patent number: 6339036
    Abstract: The present invention provides a Ziegler-Natta catalyst useful in solution processes for the polymerization of olefins having a low amount of aluminum and magnesium. The catalysts of the present invention have a molar ratio of magnesium to the first aluminum component from 4.0:1 to 5.5:1 and molar ratio of magnesium to transition metal from 4.0:1 to 5.5:1.
    Type: Grant
    Filed: June 27, 2000
    Date of Patent: January 15, 2002
    Assignee: Nova Chemicals (International) S.A.
    Inventor: Isam Jaber
  • Patent number: 6271321
    Abstract: A novel process for producing homopolymers and copolymers of ethylene which involves contacting ethylene and/or ethylene and at least one or more other olefin(s) under polymerization conditions with a Ziegler-Natta type catalyst containing at least one or more internal electron donors, trimethylaluminum and at least one or more external electron donors containing at least one carbon-oxygen-carbon linkage (C—O—C) selected from the group consisting of Formula 1, R1—CH2—O—CH2—R2, Formula 2, Formula 3, R5—O—R6, and Formula 4, R7—O(—R8—O)n—R9. Also provided are films and articles produced therefrom.
    Type: Grant
    Filed: February 17, 1999
    Date of Patent: August 7, 2001
    Assignee: Eastman Chemical Company
    Inventors: Randal Ray Ford, William Albert Ames, Kenneth Alan Dooley, Jeffrey James Vanderbilt, Alan George Wonders
  • Patent number: 6214950
    Abstract: A process for preparation of polyolefins using an olefin polymerization catalyst comprising (A) a solid catalyst component and (B) an organometallic compound component. The solid catalyst component (A) is prepared by a process comprising the steps of: (I) obtaining a solid (A-1) by reacting: (i) an organomagnesium component soluble in a hydrocarbon solvent and represented by the formula (M1)&agr;(Mg)&bgr;(R1)p(R2)q(OR3)r; and (ii) an Si—H bond-containing chlorosilane compound represented by the formula: HaSiClbR44−(a+b), in a ratio of from 0.01 to 100 mol (ii) per mol (i); (II) reacting the solid (A-1) with an alcohol (A-2) in a ratio of from 0.05 to 20 mol of the alcohol per mol of C—Mg bonds contained in the solid (A-1), to form a reaction product; and (III) reacting the reaction product with a titanium compound (A-4). The solid catalyst component (A) is adjusted to have an alkoxy group/titanium molar ratio of 2.4 or lower and an alkoxy group/magnesium molar ratio of 0.
    Type: Grant
    Filed: September 1, 1999
    Date of Patent: April 10, 2001
    Inventor: Nozaki Takashi
  • Patent number: 6191239
    Abstract: A novel process for producing homopolymers and copolymers of ethylene which involves contacting ethylene and/or ethylene and at least one or more olefin comonomer(s) under polymerization conditions with a Ziegler-Natta type catalyst, trimethylaluminum and tetrahydrofuran. Also provided are films and articles produced therefrom.
    Type: Grant
    Filed: February 17, 1999
    Date of Patent: February 20, 2001
    Assignee: Eastman Chemical Company
    Inventors: Randal Ray Ford, William Albert Ames, Kenneth Alan Dooley, Jeffrey James Vanderbilt, Alan George Wonders