Contains Organic Non-metal Containing B, Si, N, P, Or Chalcogen Material Patents (Class 526/124.8)
  • Patent number: 11945896
    Abstract: A Ziegler-Natta catalyst composition is disclosed. The catalyst composition includes an internal electron donor with improved polymerization kinetics, a long lifetime, improved stereoselectivity and/or improved hydrogen response.
    Type: Grant
    Filed: September 10, 2020
    Date of Patent: April 2, 2024
    Assignee: W.R. Grace & Co.-CONN.
    Inventors: Joseph Coalter, III, Rose Kent, Adam Marwitz, Ronald Epstein, Michael Elder
  • Patent number: 11939417
    Abstract: A heterogeneous procatalyst includes a preformed heterogeneous procatalyst and a metal-ligand complex. The preformed heterogeneous procatalyst includes a titanium species and a magnesium chloride (MgCl2) support. The metal-ligand complex has a structural formula (L)aM(Y)m(XR2)b, where M is a metal cation; each L is a neutral ligand or (?O); each Y is a halide or (C1-C20)alkyl; each XR2 is an anionic ligand in which X is a heteroatom or a heteroatom-containing functional group and R2 is (C1-C20)hydrocarbyl or (C1-C20) heterohydrocarbyl; n is 0, 1, or 2; m is 0-4; and b is 1-6. The metal-ligand complex is overall charge neutral. The heterogeneous procatalyst exhibits improved average molecular weight capability. A catalyst system includes the heterogeneous procatalyst and a cocatalyst. Processes for producing the heterogeneous procatalyst and processes for producing ethylene-based polymers utilizing the heterogeneous procatalyst are also disclosed.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: March 26, 2024
    Assignee: Dow Global Technologies LLC
    Inventors: Linfeng Chen, Mingzhe Yu, Mehmet Demirors, Andrew T. Heitsch, Jeffrey A. Sims, David Gordon Barton, Kurt F. Hirsekorn, Peter N. Nickias
  • Patent number: 11897975
    Abstract: The present invention relates to a multi-stage process for producing a C2 to C8 olefin polymer composition in a process comprising at least two reactors, wherein a pre-polymerized solid Ziegler-Natta catalyst is prepared by carrying out an off-line pre-polymerization of a solid Ziegler-Natta catalyst component with a C2 to C4 olefin monomer before feeding to the polymerization process.
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: February 13, 2024
    Assignee: BOREALIS AG
    Inventors: Klaus Nyfors, Vasileios Kanellopoulos, Erno Elovainio, Ravindra Tupe, Victor Sumerin
  • Patent number: 11857935
    Abstract: A heterogeneous procatalyst includes a titanium species, a magnesium chloride component, and a chlorinating agent having a structure A(Cl)x(R1)3-x, where A is aluminum or boron, R1 is a (C1-C30) hydrocarbyl, and x is 1, 2, or 3. The magnesium chloride component may be thermally treated at a temperature greater than 100 C for at least 30 minutes before or after introduction of the chlorinating agent and titanium species to the heterogeneous procatalyst. The heterogeneous procatalyst having the thermally treated magnesium chloride exhibits improved average molecular weight capability. Processes for producing the heterogeneous procatalyst and processes for producing ethylene-based polymers utilizing the heterogeneous procatalyst are also disclosed.
    Type: Grant
    Filed: May 23, 2019
    Date of Patent: January 2, 2024
    Assignee: Dow Global Technologies LLC
    Inventors: Mingzhe Yu, David Gordon Barton, Kurt F. Hirsekorn, Sadeka Onam, Peter N. Nickias, Andrew T. Heitsch, Thomas H. Peterson
  • Patent number: 11764358
    Abstract: The present disclosure relates to an all solid-state battery cell and a method for manufacturing the same. The gaps between the electrode active material particles forming the electrode active material layer are filled with a mixture of a polymeric solid electrolyte with a conductive material, and an organic solid electrolyte membrane is interposed between the positive electrode and the negative electrode. The method comprises a solvent annealing process to improve the contact between the electrode active material particles and the conductive material and to improve the contact between the electrode active material layer and the organic solid electrolyte membrane, thereby providing an all solid-state battery cell with improved ion conductivity and capacity realization.
    Type: Grant
    Filed: May 3, 2019
    Date of Patent: September 19, 2023
    Inventors: Jung-Pil Lee, Ji-Young Kim, Ji-Hoon Ryu, Sung-Joong Kang, Jae-Hyun Lee
  • Patent number: 11267940
    Abstract: A method for producing aluminum oxide is provided. The method uses an aluminum-oxide-forming agent containing a partially hydrolyzed aluminum alkyl compound containing an aluminum trialkyl or a mixture thereof, and a solvent. It is thus possible to produce an aluminum oxide thin film or aluminum oxide particles on or in a substrate that is not resistant to polar solvents. A method of producing a polyolefin-based polymer nanocomposite containing zinc oxide particles or aluminum oxide particles using a solution containing a partially hydrolyzed zinc alkyl or a solution containing a partially hydrolyzed aluminum alkyl is also provided. The polyolefin-based polymer nanocomposite contains a polyolefin substrate and zinc oxide particles or aluminum oxide particles, and does not contain a dispersant. The zinc oxide particles or aluminum oxide particles have an average particle size of less than 100 nm.
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: March 8, 2022
    Assignee: TOSOH FINECHEM CORPORATION
    Inventors: Koichiro Inaba, Kouji Toyota, Kenichi Haga, Toshio Naka, Toshiaki Taniike
  • Patent number: 8268945
    Abstract: A catalyst component for ethylene polymerization, comprising an organic silicon compound of the formula (I), below wherein R1 is chosen from C3-C20 aliphatic hydrocarbyl groups, and is substituted with at least one substituent chosen from halogens, C1-C6 acyloxy groups, epoxy, amino, C1-C6 alkylamino groups, di(C1-C6 alkyl)amino groups, C1-C6 alkoxy groups, and oxo group; R2, R3 and R4, which may be the same or different, are each chosen from C1-C10 aliphatic hydrocarbyl, C3-C10 alicyclic hydrocarbyl, C6-C10 aryl, C7-C10 aralkyl, and C7-C10 alkaryl groups. A process for preparing the catalyst component and an active catalyst comprising the catalyst component and useful in polymerization, such as ethylene polymerization.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: September 18, 2012
    Assignees: China Petroleum & Chemical Corporation, Beijing Research Institute of Chemical Industry, China Petroleum & Chemical Corporation
    Inventors: Taoyi Zhang, Junling Zhou, Hongtao Wang, Zifang Guo, Qingqiang Gou, Hongxu Yang, Ruixia Li, Shiyuan Xu
  • Patent number: 7939460
    Abstract: A production process is provided for an olefin polymerization catalyst component precursor, including the steps of (I) adding an organomagnesium compound to a solution containing a solvent, a Si—O bond-containing silicon compound, and a defined titanium compound, under agitation, and continuing the agitation until a magnesium concentration in a liquid phase of a reaction mixture decreases to 9 ppm by weight or lower, and (II) solid-liquid separating the reaction mixture. A production process is also provided for an olefin polymerization catalyst component using the above precursor. Further, producing process is provided for an olefin polymerization catalyst using the above catalyst component. Still further, a production process is provided for an olefin polymer using the above catalyst.
    Type: Grant
    Filed: October 9, 2009
    Date of Patent: May 10, 2011
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Wataru Hirahata, Shinya Nakahara
  • Patent number: 7935651
    Abstract: A method for preparing a titanium-containing Ziegler-Natta catalyst is disclosed. A dialkyl magnesium compound, a trialkyl aluminum compound, and a polymethylhydrosiloxane are first combined in a hydrocarbon solvent. That product is then combined with dry, alcohol-free magnesium chloride. A solid product from the reaction with the magnesium chloride component is isolated and washed with a hydrocarbon solvent. The washed solid product is then combined with an alkyl aluminum dichloride or a dialkyl aluminum chloride to give the catalyst. The catalyst is suitable for both slurry and gas-phase olefin polymerizations. Polyolefins produced with the catalyst have broad molecular weight distributions and narrow distributions of relatively large particles.
    Type: Grant
    Filed: February 4, 2010
    Date of Patent: May 3, 2011
    Assignee: Equistar Chemicals, L.P.
    Inventors: Mark K. Reinking, Joachim T. M. Pater, Giampiero Morini
  • Publication number: 20110046326
    Abstract: The invention relates to a catalyst system for polymerization of olefins, the catalyst system comprising a titanium-containing procatalyst carrying internal electron donor(s), an organoaluminium cocatalyst and a mixture of external electron donors, the mixture comprising a carboxylic acid ester or derivatives thereof, an alkoxy silane and a nitrogen based compound. The invention also relates to a process for polymerization of olefin(s) and to the polyolefin synthesized by the process.
    Type: Application
    Filed: August 25, 2008
    Publication date: February 24, 2011
    Inventors: Virendrakumar Gupta, Harshad Ramdas Patil, Dhananjay Ghelabhai Naik, Sukhdeep Kaur, Gurmeet Singh, Priyanshu Bharatkumar Vyas
  • Patent number: 7723449
    Abstract: The present invention relates to a catalyst for synthesizing a polypropylene with a wide molecular weight distribution and use of the same. The catalyst comprises magnesium halide, titanium-containing compound, and an organic phosphate type electron donor compound. By the catalyst according to the present invention, a propylene polymer with a wide molecular weight distribution, easily controllable isotacticity and good processing properties can be synthesized.
    Type: Grant
    Filed: July 3, 2008
    Date of Patent: May 25, 2010
    Assignee: Changchun Institute of Applied Chemistry Chinese Academy of Sciences
    Inventors: Chunyu Zhang, Hongguang Cai, Bin Chen, Yuping Yuan, Qiaofeng Zhang, Weimin Dong, Xuequan Zhang
  • Patent number: 7683003
    Abstract: A method for identifying a catalyst composition for use in the heterogeneous Ziegler-Natta addition polymerization of an olefin monomer, said catalyst composition comprising a procatalyst comprising a magnesium and titanium containing procatalyst and a cocatalyst said method comprising: a) providing a library comprising at least one procatalyst compound, b) forming a catalyst composition library by contacting the member of said procatalyst library with one or more cocatalysts and contacting the resulting mixture with an olefin monomer under olefin polymerization conditions thereby causing the polymerization reaction to take place, c) measuring at least one variable of interest during the polymerization, and d) selecting the catalyst composition of interest by reference to said measured variable.
    Type: Grant
    Filed: May 13, 2005
    Date of Patent: March 23, 2010
    Assignee: Dow Global Technologies, Inc.
    Inventors: Richard E. Campbell, Jr., Sylvie Desjardins, Phillip D. Hustad, Duane R. Romer
  • Publication number: 20090189127
    Abstract: An optical resin lens characterized in comprising a polymer prepared employing a production method including a process which polymerizes olefin employing titanium halide and a catalyst comprised of the organic aluminum represented by Formula RnAlX3-n (wherein 1<n?2, R represents a hydrocarbon group, and X represents a halogen atom).
    Type: Application
    Filed: February 14, 2005
    Publication date: July 30, 2009
    Inventors: Kazuaki Nakamura, Yasuo Kurachi
  • Publication number: 20090186994
    Abstract: The present invention relates to particulate olefin polymerisation catalyst components comprising an alkaline earth metal, a compound of a transition metal and an electron donor, characterized in that the catalyst particle size distribution of the catalyst component is essentially monomodal and has a SPAN value below 1.2, where SPAN is defined as: (Particle diameter at 90% cumulative size)?(Particle diameter at 10% cumulative size)/(Particle diameter at 50% cumulative size).
    Type: Application
    Filed: May 31, 2007
    Publication date: July 23, 2009
    Applicant: BOREALIS TECHNOLOGY OY
    Inventors: Petri Rekonen, Peter Denifl, Timo Leinonen
  • Patent number: 7504464
    Abstract: A gas phase polymerization process comprising: (1) preparing a solution of a catalyst precursor comprising a mixture of magnesium and titanium compounds, an electron donor and a solvent; (2) adding a filler to the solution from step (1) to form a slurry; (3) spray drying the slurry from step (2) at a temperature of 100 to 140° C. to form a spray dried precursor, (4) slurring the spray dried precursor from step (3) in mineral oil, (5) partially or fully pre-activating the catalyst precursor by contacting the slurry of (4) with one or more Lewis Acids, and (6) transferring the partially or fully activated precursor from step (5) into a gas phase reactor in which an olefin polymerization reaction is in progress.
    Type: Grant
    Filed: April 7, 2004
    Date of Patent: March 17, 2009
    Assignee: Univation Technologies, LLC
    Inventors: Stephanie M. Whited, Michael D. Turner, Michael A. Kinnan, Robert J. Jorgensen
  • Publication number: 20080103274
    Abstract: The invention is a two part polymerizable composition comprising in one part i) an organoboron compound capable of forming free radical generating species; and in the second part ii) one or more compounds capable of free radical polymerization; iii) one or more cure accelerators comprising a) at least one compound containing a quinone structure or b) at least one compound containing at least one aromatic ring and one or more substituents on the aromatic ring selected from hydroxyl, ether and both and a compound with a peroxide moiety; and iv) one or more vinyl functional modifiers having a glass transition temperature of ?50° C. or less.
    Type: Application
    Filed: October 12, 2006
    Publication date: May 1, 2008
    Inventors: Gary L. Jialanella, Eric E. Cole
  • Patent number: 7211535
    Abstract: The present invention provides a novel process for preparing a catalyst useful in gas phase polymerization of olefins wherein the physical properties of the polymer and the productivity of the catalyst can be altered depending on the sequence of addition of the catalyst components. The catalyst consists of compounds of Ti, Mg, Al and optionally an electron donor supported on an amorphous support.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: May 1, 2007
    Assignees: Nova Chemicals Corporation, Ineos Europe Limited
    Inventors: Mark Kelly, Shivendra Kumar Goyal, Victoria Ker, Perry Montyn de Wit, Brian Stephen Kimberley, Peter Phung Ming Hoang
  • Patent number: 7183234
    Abstract: The present invention provides catalyst systems including a Ziegler-Natta or Ziegler-Natta-type catalyst in combination with a mixture of certain electron donors.
    Type: Grant
    Filed: April 29, 2004
    Date of Patent: February 27, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Robert Tan Li, Kevin Wayne Lawson, Aspy Keki Mehta, Prasadarao Meka
  • Patent number: 7153803
    Abstract: Disclosed are catalyst systems and methods of making the catalyst systems/supports for the polymerization of polyethylene containing a solid titanium catalyst component containing a titanium compound and a support made from a magnesium compound, an alkyl silicate, and a monoester. The catalyst system may further contain an organoaluminum compound. Also disclosed are methods of making various types of polyethylene involving polymerizing ethylene in the presence of hydrogen and a catalyst system containing a support made from a magnesium compound, an alkyl silicate and a monoester.
    Type: Grant
    Filed: June 28, 2004
    Date of Patent: December 26, 2006
    Assignee: Engelhard Corporation
    Inventors: Zhidong Zhu, Main Chang, Christopher J. Aarons
  • Patent number: 7084217
    Abstract: An improved supported Ziegler-Natta catalyst especially useful for olefin polymerisation, the catalyst including a carrier, an organomagnesium compound, a borate compound, and one transition metal compound.
    Type: Grant
    Filed: January 30, 2002
    Date of Patent: August 1, 2006
    Assignee: B.P. Chemicals Ltd.
    Inventor: Stephen John Dossett
  • Patent number: 7060764
    Abstract: A method for polymerization and copolymerization of ethylene is disclosed. The polymerization is carried out in the presence of a preactivated titanium solid complex catalyst supported on a carrier containing magnesium. The resulting polymers have the advantage of high bulk density and broad molecular weight distribution.
    Type: Grant
    Filed: December 19, 2002
    Date of Patent: June 13, 2006
    Assignee: Samsung General Chemicals, Co., Ltd.
    Inventors: Chun-Byung Yang, Yong-Bok Lee, Sang-Yull Kim, Won-Young Kim
  • Patent number: 6992034
    Abstract: A solid catalyst component useful for the (co)-polymerization of olefins is disclosed. The catalyst component is prepared by reacting an activated magnesium halide composite support with a halogenized transition metal compound and a chelating diamide compound in the presence of organo-magnesium as a promoting agent and halogenized silicon or boron compounds as an activator. The catalyst component can be used with an organo-aluminum compound to provide a solid catalyst system that is compatible with slurry and gas phase polymerization processes. Linear low density polyethylene (LLDPE) produced using the catalyst component of the present invention displays a low molecular weight distribution, improved co-monomer incorporation, low content of the low molecular weight component, and excellent morphological properties such as spherical shape and high bulk density.
    Type: Grant
    Filed: July 10, 2003
    Date of Patent: January 31, 2006
    Assignee: Formosa Plastics Corporation, U.S.A.
    Inventors: Guangxue Xu, Honglan Lu, Chih-Jian Chen
  • Patent number: 6956002
    Abstract: A catalyst for olefin polymerization, comprising: a solid catalyst component comprising [A] a solid component having substantially no hydroxyl group, [B] a compound of a transition metal selected from Groups 3-11 of the Periodic Table, and [C] a mixture of an activator compound (C-1) capable of reacting with the transition metal compound [B] to form a metal complex having catalytic activity and an organoaluminum compound (C-2); and [D] an organomagnesium compound soluble in a hydrocarbon solvent which is obtained by reacting (i) an organomagnesium compound represented by the general formula: (Mt)?(Mg)?(R1)a(R2)b wherein Mt is a metal atom belonging to Groups 1-3 of the Periodic Table, R1 and R2 are hydrocarbon groups of 2-20 carbon atoms, and ?, ?, a and b are numerals satisfying the following relationship: 0??, 0<?, 0?a, 0<b, a+b>0, and r?+2?=a+b (where r is a valence of Mt) with (ii) a compound selected from an amine, an alcohol and a siloxane.
    Type: Grant
    Filed: October 15, 2002
    Date of Patent: October 18, 2005
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Takashi Nozaki, Akio Fujiwara
  • Patent number: 6784133
    Abstract: Disclosed is a preparation method of titanium catalyst for olefin polymerization, the method comprising (1) preparing magnesium compound solution by resolving non-deoxidative magnesium halide and IIIA group atom compound in a solvent mixture of cyclic ether, at least one alcohol, phosphorus compound and organosilane with or without hydrocarbon solvent; (2) reacting said magnesium compound solution with titanium compound, silicon compound, tin compound or mixture thereof to produce a support; and (3) reacting said support with titanium compound and electron donor to produce solid complex titanium catalyst, wherein the particle size and particle size distribution f said catalyst are regulated by controlling solubility of the reactants in said steps (2) and/or (3).
    Type: Grant
    Filed: June 30, 2003
    Date of Patent: August 31, 2004
    Assignee: Samsung Atofina Co. Ltd.
    Inventors: Il Seop Kim, Moon Young Shin, Ki Su Ro
  • Patent number: 6770586
    Abstract: Solid catalyst components and catalysts which contain (a) magnesium compound, (b) titanium tetrachloride, and (c) a phthalic acid diester or its derivative are useful in the synthesis of olefin polymers in high yields. Particularly, propylene polymers can be obtain in very high yields while retaining high stereoregularity.
    Type: Grant
    Filed: April 3, 2002
    Date of Patent: August 3, 2004
    Assignee: Toho Titanium Co., Ltd.
    Inventors: Kunihiko Tashino, Yukihiro Suzuki, Isa Nishiyama, Hayashi Ogawa, Takuma Yoshida, Motoki Hosaka, Maki Sato
  • Patent number: 6610802
    Abstract: The present invention relates to a process for synthesis of polymer compositions with reduced catalyst content, wherein ethylenically unsaturated monomers containing less than 0.5 wt % of ethylenically unsaturated monomers with at least one carboxylic group, sulfonic acid group and/or at least one phosphonic acid group relative to the total weight of the ethylenically unsaturated monomers are polymerized by means of initiators containing a transferable group of atoms and of one or more catalysts comprising at least one transition metal in the presence of ligands which can form a coordination compound with the metal catalyst or catalysts and, after the polymerization, the catalyst contained in the polymer is at least partly separated. For this purpose, the polymer composition is filtered, after the polymerization, in the presence of at least one filter aid which contains at least 0.
    Type: Grant
    Filed: May 29, 2001
    Date of Patent: August 26, 2003
    Assignee: RohMax Additives GmbH
    Inventors: Sebastian Roos, Boris Eisenberg, Carolin Harpe
  • Patent number: 6545106
    Abstract: Process for the polymerization of olefins, according to which at least one olefin is placed in contact with a catalytic system comprising: a) a solid catalytic complex based on magnesium, transition metal and halogen, the said catalytic complex being prepared by reacting, in a first step, at least one magnesium compound with at least one compound of a transition metal from group IVB or VB of the Periodic Table, until a liquid complex is obtained, and, in a subsequent step, by precipitating the said liquid complex using a halogen-containing organoaluminium compound of general formula AlRnX3-n in which R is a hydrocarbon radical, X is a halogen and n is less than 3, in order to collect a solid catalytic complex, and b) an organometallic compound of a metal from groups IA, IIA, IIB, IIIA and IVA of the Periodic Table, c) at least one electron donor used after the first step in the preparation of the solid catalytic complex leading to the production of a liquid complex.
    Type: Grant
    Filed: May 6, 1997
    Date of Patent: April 8, 2003
    Assignee: Solvay (Societe Anonyme)
    Inventor: Jiang Bian
  • Patent number: 6537942
    Abstract: Olefin polymerization catalyests are formed from: (I-2) a contact product obtained by contacting (A) a solid titanium catalyst component, (B) an organometallic compound catalyst component, and (D) a specific polyether compounds, (II-2)(C) a specific organosilicon compound, and, optionally, (III-2) an organometallic compound catalyst component; or the contact product (I-2) may be replaced by one which is obtained by prepolymerizing an olefin of 2 or more carbon atoms in the presence of the catalyst components for the contact product (I-2).
    Type: Grant
    Filed: June 12, 2001
    Date of Patent: March 25, 2003
    Assignee: Mitsui Chemicals INC
    Inventors: Tetsunori Shinozaki, Mamoru Kioka
  • Patent number: 6531553
    Abstract: This invention relates to a conventional supported heterogeneous Ziegler-Natta catalyst for the polymerization of olefins. It has been found that adding a lithium compound to a transition metal catalyst component and then adding an organoaluminum co-catalyst and an organosilicon electron donor produces a catalyst which yields polymer with increased molecular weight. The lithium compound is of the general formula LiCp wherein Cp is a cyclopentadienyl or substituted cyclopentadienyl and is preferably lithium cyclopentadienide or lithium indene. Preferably, the molar ratio of lithium compound/transition metal is at least 0.2.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: March 11, 2003
    Assignee: Fina Technology, Inc.
    Inventors: Edwar Shoukri Shamshoum, Christopher Bauch
  • Patent number: 6348554
    Abstract: The invention concerns a method for preparation of a liquid polymer composition, where ethylenically unsaturated monomers are polymerized by means of initiators that have a transferable atomic group, and one or more catalysts that contain at least one transition metal, in the presence of ligands that can form a coordination compound with the metallic catalysts, the catalyst is oxidized after the polymerization and then the catalyst is separated by filtration, where the composition contains a solvent with a dielectric constant less than or equal to 4.
    Type: Grant
    Filed: November 30, 1999
    Date of Patent: February 19, 2002
    Assignee: RohMax Additives GmbH
    Inventors: Sebastian Roos, Boris Eisenberg, Michael Mueller
  • Patent number: 6294624
    Abstract: A modified diene elastomer prepared by a process comprising the steps of polymerizing a diolefin compound containing a conjugated double bond in a liquid phase in the presence of a cobalt compound, an organic aluminum compound containing a halogen atom, and water, to give a solution containing a diene elastomer, and reacting the diene elastomer with an elastomer-modifying compound is favorably employed for the manufacture of tire tread, particularly when it is employed in combination with silica as a filler.
    Type: Grant
    Filed: January 24, 2000
    Date of Patent: September 25, 2001
    Assignees: Ube Industries, Ltd., Sumitomo Rubber Industries, Ltd.
    Inventors: Tokuji Inoue, Tetsuji Nakajima, Kiyoshige Muraoka, Noriko Yagi
  • Patent number: 6271166
    Abstract: Olefin polymerization catalysts are formed from: (I-1) a contact product obtained by contacting (A) a solid titanium catalyst component, (B) an organometallic compound catalyst component, and (C) a specific organosilicon compound, (II-1) (D) a specific polyether compound and, optionally, (III) an organometallic compound catalyst component; or (I-2) a contact product obtained by contacting (A) a solid titanium catalyst component, (B) an organometallic compound catalyst component, and (D) a specific polyether compounds, (II-2) (C) a specific organosilicon compound, and, optionally, (III) an organometallic compound catalyst component; or the contact product (I-1) or (I-2) may be replaced by one which is obtained by prepolymerizing an olefin of 2 or more carbon atoms in the presence of the catalyst components for the contact product (I-1) or (I-2).
    Type: Grant
    Filed: October 16, 1996
    Date of Patent: August 7, 2001
    Assignee: Mitsui Chemicals Inc
    Inventors: Tetsunori Shinozaki, Mamoru Kioka
  • Patent number: 6214939
    Abstract: The present invention provides olefin polymerization catalysts and processes for preparing a polypropylene and a propylene block copolymer using the olefin polymerization catalysts. The olefin polymerization catalyst (1) of the invention is formed from: (I-1) a contact product obtained by contacting: (A) a solid titanium catalyst component, (B) an organometallic compound catalyst component, and (C) a specific organosilicon compound; (II-1) (D) a specific polyether compound; and optionally, (III) an organometallic compound catalyst component. The olefin polymerization catalyst (2) of the invention is formed from: (I-2) a contact product obtained by contacting: (A) a solid titanium catalyst component, (B) an organometallic compound catalyst component, and (D) a specific polyether compound; (II-2) (C) a specific organosilicon compound; and optionally, (III) an organometallic compound catalyst component.
    Type: Grant
    Filed: June 3, 1998
    Date of Patent: April 10, 2001
    Assignee: Mitsui Chemicals
    Inventors: Tetsunori Shinozaki, Mamoru Kioka
  • Patent number: 6201079
    Abstract: A propylene polymer made using a magnesium halide-supported, titanium-containing solid catalyst component having a broad processing window is produced by incorporating into the polymerization catalyst system a selected alkyl methyldimethoxysilane, preferably isobutylmethyl-dimethoxysilane. Useful articles made from such resin include OPP film.
    Type: Grant
    Filed: September 23, 1996
    Date of Patent: March 13, 2001
    Assignee: BP Amoco Corporation
    Inventors: Jerome Anthony Streeky, Bruce Howard Bersted, John William Blake, Daan Feng, Charles Richard Hoppin, Benjamin Samuel Tovrog