Contains Organic Non-metal Containing B, Si, N, P, Or Chalcogen Material Patents (Class 526/124.9)
  • Patent number: 11008408
    Abstract: There is provided a novel alkoxymagnesium which, when used as a constituent of a solid catalyst component for olefin polymerization to polymerize an olefin, may reduce the formation rate of a fine powder and may form a polymer having an excellent particle size distribution under high polymerization activity. The alkoxymagnesium is characterized by comprising secondary particles each of which is an aggregate of primary particles having an average particle diameter of less than 1 ?m and by having a ratio represented by the average particle diameter of the primary particles/the average particle diameter of the secondary particles of 0.1 or less, a total pore volume of 0.5 to 1 cm3/g, a specific surface area of less than 50 m2/g, and a particle size distribution index (SPAN) 1 or less.
    Type: Grant
    Filed: March 23, 2017
    Date of Patent: May 18, 2021
    Assignee: TOHO TITANIUM CO., LTD.
    Inventors: Hiroyuki Kono, Shingo Yamada, Toshiya Uozumi
  • Patent number: 10184016
    Abstract: Process for the preparation of a particulate Group 2 metal/transition metal polymerization catalyst component for ethylene polymerization comprising a special bi-(oxygen containing ring) compound as internal donor, and to the use of such a catalyst component for preparing a catalyst used in the polymerization of ethylene.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: January 22, 2019
    Assignee: Borealis AG
    Inventors: Kumudini Jayaratne, Timo Leinonen, Peter Denifl
  • Patent number: 9593175
    Abstract: Provided are a solid titanium catalyst component for ethylene polymerization which can polymerize ethylene at a high activity and which can provide an ethylene polymer having an excellent particle property, an ethylene polymerization catalyst and an ethylene polymerization method in which the catalyst is used. The solid titanium catalyst component (I) for ethylene polymerization according to the present invention is obtained by bringing a liquid magnesium compound (A) including a magnesium compound, an electron donor (a) having 1 to 5 carbon atoms and an electron donor (b) having 6 to 30 carbon atoms into contact with a liquid titanium compound (C) under the presence of an electron donor (B) and includes titanium, magnesium and a halogen. The ethylene polymerization catalyst of the present invention includes the component (I) and an organic metal compound catalyst component (II).
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: March 14, 2017
    Assignee: MITSUI CHEMICALS, INC.
    Inventors: Kazuhisa Matsunaga, Hideki Yamamoto, Kunio Yamamoto, Tetsunori Shinozaki, Kiyoshi Takahashi
  • Publication number: 20150141594
    Abstract: A catalyst component for the polymerization of olefins comprising Mg, Ti and an electron donor compound of the following formula (I) in which the R groups equal to or different from each other, are C1-C15 hydrocarbon groups, the R1-R2 groups, equal to or different from each other, are hydrogen, halogen or C1-C15 hydrocarbon groups, optionally containing an heteroatom selected from halogen, P, S, N and Si, which can be fused together to form one or more cycles; n and m are integer from 0 to 3 with the proviso that at least one of them is different from 0 and that diisobutyl o-phenylenediacetate is excluded.
    Type: Application
    Filed: June 5, 2013
    Publication date: May 21, 2015
    Applicant: Basell Poliolefine Italia S.r.I.
    Inventors: Alessandro Mignogna, Simona Guidotti, Igor Kashulin, Giampiero Morini, Ilya Nifant'ev, Joachim T.M. Pater
  • Publication number: 20150126694
    Abstract: The present invention relates to regular shaped magnesium particles containing attrition resistant precursors and procatalysts thereof and processes for their synthesis and their use in the manufacture of polyolefins. More particularly, the present invention relates to a process for the synthesis of a said precursor particles which give highly active and improved surface area procatalysts for producing high bulk density polyolefin resins containing low fines and capable of incorporating high rubber content. In particular, the present invention relates to process for the synthesis of an attrition resistant precursors to prepare an attrition resistant Zeigler Natta procatalysts synthesized by using the precursors and to the polyolefin resin synthesized using the said procatalysts.
    Type: Application
    Filed: January 14, 2015
    Publication date: May 7, 2015
    Applicant: RELIANCE INDUSTRIES LIMITED
    Inventors: Virendrakumar GUPTA, Saurabh SINGH, Jomichan JOSEPH, Kamlesh J. SINGALA, Bhavesh K. DESAI
  • Publication number: 20140275452
    Abstract: Solid catalyst components are disclosed, which include titanium, magnesium, halogen and a combination of internal electron donor compounds containing at least one 1,8 naphthyl diester compound of Formula (II-1) and at least one 3,3-bis(methoxymethyl) alkane of Formula (II-2): wherein R1, R2, R3, R4, R5, R6, R7, R8, A, and B are described herein. Catalyst systems containing the catalyst solid components, organoaluminum compounds, and organosilicon compounds are also discussed. This disclosure relates to methods of making the solid catalyst components and the catalyst systems, and methods of polymerizing or copolymerizing alpha olefins using the catalyst systems.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: BASF CATALYSTS LLC
    Inventor: Main CHANG
  • Patent number: 8642494
    Abstract: A catalyst system can include a Ziegler-Natta catalyst, an internal donor, a magnesium halide in active form, and an organoaluminium compound. The Ziegler-Natta catalyst can have a titanium compound and at least one titanium-halogen bond. The internal donor can include at least 80 wt % of an enamino-imine with respect to a total weight of the internal donor. The Ziegler-Natta catalyst and the internal donor can both be supported on the magnesium halide in active form.
    Type: Grant
    Filed: April 29, 2013
    Date of Patent: February 4, 2014
    Assignee: Total Petrochemicals Research Feluy
    Inventors: Hugues Haubruge, Guillaume Pavy, Alain Standaert
  • Publication number: 20130324682
    Abstract: Disclosed is a solid catalyst component for olefin polymerization. The catalyst component comprises a dialkoxy magnesium carrier, a titanium compound, and a product from an internal electron donor reacting in an inert solvent. Said internal electron donor compound comprises a 2,3-di-non-linear-alkyl-2-cyano succinic acid diester compound as presented in formula I: as in formula I, R1 and R2 radicals are independently chosen from linear or branched C1-C4 alkyl groups; R is chosen from C3-C6 iso-alkyl, sec-alkyl, or cycloalkyl groups. Also disclosed is another solid catalyst component. The catalyst component comprises a dialkoxy magnesium carrier, a titanium compound, and a product from an internal electron donor reacting in an inert solvent. In addition to a 2,3-di-non-linear-alkyl-2-cyano succinic acid diester compound as presented in formula I, the internal electron donor compound can also comprise 2-isopropyl-2-(3-methylbutyl)-1,3-dimethoxy propane and/or a carboxylic ester compound.
    Type: Application
    Filed: January 19, 2012
    Publication date: December 5, 2013
    Inventors: Zhong TAN, Lunjia Xie, Xiudong Xu, Yu Tian, Qilong Zhou, Zaixing Feng, Li'an Yan, Siyuan Zhao, Jinhua Yu, Zhufang Sun, Fengkui Li, Shanshan Yin, Weiwei Song
  • Publication number: 20130289228
    Abstract: Disclosed herein are catalyst compositions and polymers, i.e., propylene-based polymers, produced therefrom. The present catalyst compositions include an internal electron donor with an alkoxypropyl ester. The present catalyst compositions improve catalyst selectivity. Propylene-based polymer produced from the present catalyst composition has a melt flow rate greater than 4 g/10 min.
    Type: Application
    Filed: December 1, 2011
    Publication date: October 31, 2013
    Inventors: Linfeng Chen, Tak W. Leung, Tao Tao
  • Patent number: 8536287
    Abstract: The present invention relates to a process for the production of fibres and filaments with polypropylene having a broad polydispersity index. The present invention also relates to high elongation nonwoven prepared from such fibres and filaments. It further relates to films and laminates prepared from high elongation nonwoven.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: September 17, 2013
    Assignee: Total Research & Technology Feluy
    Inventors: Hugues Haubruge, Guillaume Pavy, Alain Standaert
  • Publication number: 20130225773
    Abstract: A catalyst component for olefin polymerization which contains magnesium, titanium, halogen and electron donors is provided in the present invention. The electron donors are selected from at least one succinate compounds of following general formula (I), and the content of said succinate compounds with the structure as shown in Formula (II) in said succinate compounds (I) is less than 100%, but not less than 51.0 wt %. Compared with the mesomer whose content with the structure as shown in Formula (II) is 100%, the catalyst component provided by the present invention not only greatly decreases the manufacturing cost, but also improves certain properties of the catalyst, for example the molecular weight distribution of polymer obtained by catalytic reaction using said catalyst is wider, which is beneficial for improving processing properties of polymers. The corresponding catalyst is also provided.
    Type: Application
    Filed: August 12, 2011
    Publication date: August 29, 2013
    Applicants: Beijing Research Institute of Chemical Industry, China Petroleum & Chemical Corporation, China Petroleum & Chemical Corporation
    Inventors: Mingzhi Gao, Changxiu Li, Haitao Liu, Xianzhong Li, Xiaofan Zhang, Xiaoxia Cai, Jianhua Chen, Jing Ma, Jixing Ma
  • Patent number: 8426537
    Abstract: A solid catalyst component for olefin polymerization is produced by causing (a) a solid component that includes magnesium, titanium, a halogen, and an electron donor, (b) an aminosilane compound shown by the following general formula (1), and (c) at least one organosilicon compound selected from an organosilicon compound shown by the following general formula (2-A) and an organosilicon compound shown by the following general formula (2-B) to come in contact with each other. A polymer having high stereoregularity is produced in high yield while achieving a high melt flow rate due to hydrogen by polymerizing an olefin in the presence of a catalyst that includes the solid catalyst component.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: April 23, 2013
    Assignee: Toho Titanium Co., Ltd.
    Inventor: Motoki Hosaka
  • Patent number: 8314180
    Abstract: The present invention concerns heterophasic propylene copolymers, comprising a propylene homopolymer (PPH) and an ethylene-propylene rubber (EPR), having a broad molecular weight distribution and a well-defined total ethylene content and a specific ratio of the intrinsic viscosities of the ethylene-propylene rubber (EPR) and the propylene homopolymer (PPH), ?EPR/?PPH. The invention further concerns the process to produce such heterophasic propylene copolymers. The heterophasic propylene copolymers of the present invention are particularly suited for corrugated sheet and cast film applications.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: November 20, 2012
    Assignee: Total Petrochemicals Research Feluy
    Inventors: Isabelle Ydens, Alain Standaert, Olivier Lhost, Jérôme Gromada, Katty Den Dauw
  • Patent number: 8288606
    Abstract: A solid, hydrocarbon-insoluble, catalyst component useful in polymerizing olefins containing magnesium, titanium, and halogen further contains an internal electron donor comprising a compound containing electron donating substituents with a structure: wherein D1 and D2 are selected individually from and R, R1, R2, R3, R4, R5, R6, and R7 individually are hydrocarbon or substituted hydrocarbon groups containing 1 to 20 carbon atoms and R1, R2, R3, R4, R6, and R7 may be hydrogen; R4 may be —NR2; and wherein groups R1 and R2, R2 and R3, R3 and R4, R3 and R5, and groups R6 and R7 may be joined to form a cyclic structure.
    Type: Grant
    Filed: March 1, 2006
    Date of Patent: October 16, 2012
    Assignee: Ineos USA LLC
    Inventors: Roger Uhrhammer, John P. Lalka
  • Patent number: 8288488
    Abstract: The present invention aims at providing a process for producing a solid catalyst for olefin polymerization, the solid catalyst component being capable of providing a polymer having high stereoregularity when an ?-olefin is polymerized; a process for producing a solid catalyst component, which is used for producing the solid catalyst; and a process for producing an olefin polymer using the solid catalyst. This object can be achieved by a process for producing a solid catalyst component (A), the process including a step of bringing a titanium compound (a), a magnesium compound (b) and an internal electron donor represented by Formula (I) into contact with each other: where R1 is a hydrocarbyl group having 1 to 20 carbon atoms; R2, R3, R4, and R5 are each independently selected from a hydrogen atom, a halogen atom and a hydrocarbyl group having 1 to 20 carbon atoms, and at least one selected from R2, R3, R4, and R5 is a hydrocarbyl group having 1 to 20 carbon atoms; and R6 is a halogen atom.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: October 16, 2012
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Yasuki Fujiwara, Wataru Hirahata, Hirofumi Hamaki
  • Patent number: 8283426
    Abstract: The present invention relates to a process for the production of fibers and filaments with polypropylene having a broad polydispersity index. The present invention also relates to high elongation nonwoven prepared from such fibers and filaments. It further relates to films and laminates prepared from high elongation nonwoven.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: October 9, 2012
    Assignee: Total Petrochemicals Research Feluy
    Inventors: Hugues Haubruge, Guillaume Pavy, Alain Standaert
  • Patent number: 8202936
    Abstract: The present invention relates to a process of producing an ethylene polymer composition in multiple stages of which the first stage is a slurry polymerization stage, in the presence of a catalyst system comprising a) a solid catalyst precursor comprising a transition metal selected from titanium and vanadium; magnesium, a halide, optionally an electron donor, and a solid particulate material comprising an inorganic oxide, wherein the median particle diameter of the solid catalyst precursor based upon the total volume of solid catalyst precursor, D50, is from 1 to 13 micrometers; and b) an organoaluminium compound.
    Type: Grant
    Filed: July 6, 2005
    Date of Patent: June 19, 2012
    Assignee: Dow Global Technologies LLC
    Inventors: Patrick J. C. Schouterden, Ruddy Nicasy, Sarat Munjal, Burkhard E. Wagner, Robert J. Jorgensen
  • Patent number: 8138264
    Abstract: A bimodal polyethylene having a high density ranging from about 0.955 to about 0.959 g/cc, an improved environmental stress cracking resistance (ESCR) of from about 400 to about 2500 hours, and an improved 0.4% flexural modulus of from about 180,000 to about 260,000 psi (1,200 MPa to about 1,800 MPa) may be formed using a Ziegler-Natta polymerization catalyst using two reactors in series. The bimodal polyethylene may have a high load melt index (HLMI) of from about 2 and about 30 dg/min and may be optionally made with a small amount of alpha-olefinic comonomer in the second reactor. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Grant
    Filed: May 4, 2007
    Date of Patent: March 20, 2012
    Assignee: Fina Technology, Inc.
    Inventors: Tim J. Coffy, Gerhard Guenther, Steven D. Gray
  • Patent number: 8067328
    Abstract: A polymerization catalyst composition comprising (1) a transition metal compound of Formula (A), Z being 5-membered heterocyclic containing at least one carbon, at least one nitrogen and at least one of nitrogen, sulphur and oxygen, the others being nitrogen or carbon; M is a Group 3 to 11 metal or a lanthamide metal; E1 and E2 are divalent groups of aliphatic, alicyclic, aromatic or alkyl substituted aromatic hydrocarbon, or heterocyclic; D1 and D2 are donor atoms or groups; X is an anionic group, L is a neutral donor group; n=m=zero or 1; y and z are zero or integer such that X and L satisfy valency/oxidation state of M, (2) a catalyst-activating support which is a solid particulate substance, insoluble in hydrocarbons, comprising at least magnesium and aluminum atoms and hydrocarbyloxy groups containing 1 to 20 carbon atoms, the molar ration of Mg/Al being in the range 1.0 to 300 and the molar ratio of hydrocarbyloxy groups to aluminum atoms being in the range 0.5 to 2.
    Type: Grant
    Filed: July 25, 2005
    Date of Patent: November 29, 2011
    Assignee: Ineos Europe Limited
    Inventors: Vernon Charles Gibson, Atanas Kostadinov Tomov, Grant Berent Jacobsen
  • Patent number: 8058379
    Abstract: The present invention provides a 4-methyl-1-pentene polymer having excellent balance between heat resistance and rigidity, a process for producing the polymer, and a film and a LED mold formed from the polymer. The 4-methyl-1-pentene polymer comprises 50 to 100% by mass of a constituting unit derived from 4-methyl-1-pentene and 0 to 50% by mass of a constituting unit derived from at least one of olefins having 2 to 20 carbon atoms excluding 4-methyl-1-pentene, wherein the 4-methyl-1-pentene polymer is obtainable by continuously feeding a monomer forming the 4-methyl-1-pentene polymer and an organic solvent to a polymerization reactor and continuously extracting a polymerization reaction mixture containing the resulting 4-methyl-1-pentene polymer from the polymerization reactor.
    Type: Grant
    Filed: July 7, 2008
    Date of Patent: November 15, 2011
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Kazuaki Yasuda, Tooru Tanaka
  • Publication number: 20110269928
    Abstract: The present invention aims at providing a solid catalyst component for olefin polymerization, the solid catalyst composed being capable of showing a sufficiently high polymerization activity and providing a polymer having a low content of a low molecular weight component or an amorphous component; a process for producing the solid catalyst component; and a process for producing a solid catalyst for olefin polymerization, and a process for producing an olefin polymer.
    Type: Application
    Filed: April 26, 2011
    Publication date: November 3, 2011
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Yasuki FUJIWARA, Wataru HIRAHATA
  • Publication number: 20110269927
    Abstract: A solid catalyst component for olefin polymerization comprising a titanium atom, a magnesium atom, a halogen atom, and a cycloheptapolyenedicarboxylic diester; a production method of the solid catalyst component, by contacting with one another a titanium compound, a magnesium compound, and the cycloheptapolyenedicarboxylic diester; a production method of a solid catalyst, by contacting the solid catalyst component with an organoaluminum compound; and a production method of an olefin polymer by polymerizing an olefin in the presence of the solid catalyst.
    Type: Application
    Filed: April 5, 2011
    Publication date: November 3, 2011
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Wataru HIRAHATA, Hidenori HANAOKA, Masaya TANIMOTO
  • Publication number: 20110269929
    Abstract: The present invention aims at providing a process for producing a solid catalyst for olefin polymerization, the solid catalyst component being capable of providing a polymer having high stereoregularity when an ?-olefin is polymerized; a process for producing a solid catalyst component, which is used for producing the solid catalyst; and a process for producing an olefin polymer using the solid catalyst. This object can be achieved by a process for producing a solid catalyst component (A), the process including a step of bringing a titanium compound (a), a magnesium compound (b) and an internal electron donor represented by Formula (I) into contact with each other: where R1 is a hydrocarbyl group having 1 to 20 carbon atoms; R2, R3, R4, and R5 are each independently selected from a hydrogen atom, a halogen atom and a hydrocarbyl group having 1 to 20 carbon atoms, and at least one selected from R2, R3, R4, and R5 is a hydrocarbyl group having 1 to 20 carbon atoms; and R6 is a halogen atom.
    Type: Application
    Filed: April 26, 2011
    Publication date: November 3, 2011
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Yasuki FUJIWARA, Wataru HIRAHATA, Hirofumi HAMAKI
  • Patent number: 8044155
    Abstract: A catalyst system obtainable by the process comprising the steps of contacting an adduct of formula (I) MgT2.yAlQj(OR?)3-j??(I) wherein T is chlorine, bromine, or iodine; R? is a linear or branched C1-C10 alkyl radical; y ranges from 1.00 to 0.05; and j ranges from 0.01 to 3.00; with at least one metallocene compound having titanium as central metal and at least one ligand having a cyclopentadienyl skeleton.
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: October 25, 2011
    Assignee: Stichting Dutch Polymer Institute
    Inventors: John Richard Severn, John Clement Chadwick
  • Patent number: 7989383
    Abstract: A catalyst composition for the polymerization of propylene comprising one or more Ziegler-Natta procatalyst compositions comprising one or more transition metal compounds and one or more esters of aromatic dicarboxylic acid internal electron donors; one or more aluminum containing cocatalysts; a selectivity control agent (SCA) comprising at least one silicon containing compound containing at least one C1-10 alkoxy group bonded to a silicon atom, and one or more activity limiting agent (ALA) compounds comprising one or more aliphatic or cycloaliphatic carboxylic acids; alkyl-, cycloalkyl- or alkyl(poly)(oxyalkyl)-(poly)ester derivatives thereof; or inertly substituted derivatives of the foregoing.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: August 2, 2011
    Assignee: Dow Global Technologies LLC
    Inventors: Linfeng Chen, Richard E. Campbell, Jr.
  • Patent number: 7989382
    Abstract: An olefin polymerization catalyst whose molar ratio of residual alkoxy groups to titanium is 0.60 or less, obtained by reacting (a1) an oxide of an element from Groups II to IV elements and which supports an alcohol-free halogen-containing magnesium compound, with (b1) an alcohol, at a hydroxyl group/magnesium molar ratio of 1.0 or more, then reacting that reaction mixture with (c1) a halogen-containing silicon compound, at a halogen/magnesium molar ratio of 0.20 or more, then reacting the resultant reaction mixture with (d1) an electron-donating compound, and (e) a halogen-containing titanium compound at a temperature of 120° C. to 150° C., washing the reaction mixture with an inert solvent, reacting the reaction mixture with (e) again at that temperature and washing the reaction mixture with an inert solvent, thereby providing a solid catalyst component for olefin polymerization.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: August 2, 2011
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Shojiro Tanase, Takanori Sadashima
  • Patent number: 7977435
    Abstract: Provided are a propylene polymer compositions comprising a propylene copolymer and a propylene homopolymer polymerized in the presence of the propylene copolymer. The propylene polymer compositions exhibit properties such as broad molecular weight distribution, low crystallinity, high solubles and superior crystallization kinetics and are useful in fast cycle-time processing methods such as injection molding, sheet extrusion, thermoforming, and oriented film fabrication. Also provided is a process for preparing the propylene polymer compositions in the presence of a catalyst and at least two electron donors using sequential or parallel polymerization reaction zones. Finally, articles made from the propylene polymer composition are provided, particularly articles requiring high stiffness, high heat deflection temperature, good fatigue resistance and low temperature impact resistance such as appliance parts.
    Type: Grant
    Filed: July 12, 2006
    Date of Patent: July 12, 2011
    Inventors: Chon-Yie Lin, Stephen Francis Broadbent
  • Patent number: 7935651
    Abstract: A method for preparing a titanium-containing Ziegler-Natta catalyst is disclosed. A dialkyl magnesium compound, a trialkyl aluminum compound, and a polymethylhydrosiloxane are first combined in a hydrocarbon solvent. That product is then combined with dry, alcohol-free magnesium chloride. A solid product from the reaction with the magnesium chloride component is isolated and washed with a hydrocarbon solvent. The washed solid product is then combined with an alkyl aluminum dichloride or a dialkyl aluminum chloride to give the catalyst. The catalyst is suitable for both slurry and gas-phase olefin polymerizations. Polyolefins produced with the catalyst have broad molecular weight distributions and narrow distributions of relatively large particles.
    Type: Grant
    Filed: February 4, 2010
    Date of Patent: May 3, 2011
    Assignee: Equistar Chemicals, L.P.
    Inventors: Mark K. Reinking, Joachim T. M. Pater, Giampiero Morini
  • Patent number: 7935766
    Abstract: Disclosed are propylene impact copolymer compositions, articles thereof, and processes for producing same. Polymerization with an improved catalyst composition provides a propylene impact copolymer with high melt flow and low volatiles content.
    Type: Grant
    Filed: December 31, 2009
    Date of Patent: May 3, 2011
    Assignee: Dow Global Technologies LLC
    Inventors: William G. Sheard, Linfeng Chen
  • Patent number: 7893003
    Abstract: The present disclosure provides a Ziegler-Natta catalyst composition comprising a procatalyst, a cocatalyst and a mixed external electron donor comprising a first selectivity control agent, a second selectivity control agent, and an activity limiting agent. A polymerization process incorporating the present catalyst composition produces a high-stiffness propylene-based polymer with a melt flow rate greater than about 50 g/10 min. The polymerization process occurs in a single reactor, utilizing standard hydrogen concentration with no visbreaking.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: February 22, 2011
    Assignee: Dow Global Technologies Inc.
    Inventor: Linfeng Chen
  • Patent number: 7781363
    Abstract: A catalyst composition for the polymerization of propylene comprising one or more Ziegler-Natta procatalyst compositions comprising one or more transition metal compounds and one or more esters of aromatic dicarboxylic acid internal electron donors; one or more aluminum containing cocatalysts; a selectivity control agent (SCA) comprising at least one silicon containing compound containing at least one C1-10 alkoxy group bonded to a silicon atom, and one or more activity limiting agent (ALA) compounds comprising one or more aliphatic or cycloaliphatic carboxylic acids; alkyl-, cycloalkyl- or alkyl(poly)(oxyalkyl)-(poly)ester derivatives thereof; or inertly substituted derivatives of the foregoing.
    Type: Grant
    Filed: January 12, 2009
    Date of Patent: August 24, 2010
    Assignee: Dow Global Technologies Inc.
    Inventors: Linfeng Chen, Richard E. Campbell, Jr.
  • Patent number: 7718565
    Abstract: The present invention relates to a method for preparing a solid catalyst for ethylene polymerization and/or copolymerization. More specifically, the present invention relates to a solid titanium catalyst supported in a magnesium support which has an extremely high catalytic activity, advantageous catalyst shape and a simple preparation process, capable of producing a polymer with a high bulk density, a narrow and uniform particle size distribution and a broad molecular weight distribution, and a method for preparation of the same. A silicon-containing magnesium compound is prepared by reacting an electron donor such as a silicon compound containing an alkoxy group of Formula 1, a silicon compound containing an alkoxy group of Formula 2, or a mixture thereof in a magnesium compound solution, and reacted with a titanium compound to obtain the solid catalyst of the present invention.
    Type: Grant
    Filed: October 14, 2005
    Date of Patent: May 18, 2010
    Assignee: Korea Petrochemical Ind. Co., Ltd.
    Inventors: Kap-Ku Kang, Byung-Ju Park, Jae-Kwon Jang, Young-Tae Jeong
  • Publication number: 20100120998
    Abstract: A catalyst component for the polymerization of olefins comprises Mg, Ti, halogen, and an alpha-omega-diether represented by the general formula: (RO)—(CR1R2)n—(OR), wherein the number of n is from 5 to 10, R is an alkyl, cycloalkyl or aryl radical containing 1 to 12 carbons, and R1 and R2 are independently from each other hydrogen, an alkyl, cycloalkyl or aryl radical containing 1 to 12 carbons. The catalysts prepared with such component provide a high mileage for the production of polyolefins with a high bulk density of the polymer produced in gas-phase polymerization process or in slurry polymerization process. Such catalyst produces narrower MWD PE, if compared with other catalyst systems.
    Type: Application
    Filed: November 14, 2007
    Publication date: May 13, 2010
    Applicant: Basell Poliolefine Italia s.r.l.
    Inventors: Masaki Fushimi, Giampiero Morini, Maria Schmitt, Mfartin Schneider
  • Patent number: 7687426
    Abstract: A catalyst composition for the polymerization of propylene comprising one or more Ziegler-Natta procatalyst compositions comprising one or more transition metal compounds and one or more monoesters of aromatic carboxylic acid internal electron donors; one or more aluminum containing cocatalyst; and a mixture of two or more different selectivity control agents, said SCA mixture comprising from 70 to 98 mol percent of one or more esters of one or more aromatic monocarboxylic acids or substituted derivatives thereof, and from 30 to 2 mol percent of one or more alkoxysilane compounds containing one or more 5- or 6-membered cyclic groups optionally containing one or more Group 14, 15 or 16 heteroatoms.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: March 30, 2010
    Assignee: Dow Global Technologies Inc.
    Inventors: Jeffery S. Bradley, Linfeng Chen, William G. Sheard, Michael P. Zummallen
  • Patent number: 7678868
    Abstract: A catalyst composition for the polymerization of propylene comprising one or more Ziegler-Natta procatalyst compositions comprising one or more transition metal compounds and one or more esters of aromatic dicarboxylic acid internal electron donors; one or more aluminum containing cocatalysts; a selectivity control agent (SCA) comprising at least one silicon containing compound containing at least one C1-10 alkoxy group bonded to a silicon atom, and one or more activity limiting agent (ALA) compounds comprising one or more aliphatic or cycloaliphatic carboxylic acids; alkyl-, cycloalkyl- or alkyl(poly)(oxyalkyl)-(poly)ester derivatives thereof; or inertly substituted derivatives of the foregoing.
    Type: Grant
    Filed: January 12, 2009
    Date of Patent: March 16, 2010
    Assignee: Dow Global Technologies Inc.
    Inventors: Linfeng Chen, Richard E. Campbell, Jr.
  • Patent number: 7678867
    Abstract: A process for preparing a broad molecular weight polyethylene carried out in the presence of a catalyst system comprising (i) a solid catalyst component comprising Mg, Ti, halogen, and optionally an internal electron donor compound, and (ii) an Al-alkyl cocatalyst said process comprising at least two step of polymerization (a) and (b), in which: in a first step (a) ethylene is polymerized in the presence of a molecular weight regulator in order to produce a ethylene (co)polymer, and in a further step (b), which is carried out in the presence of an external electron donor compound added to this polymerization step as a fresh reactant, ethylene is copolymerized with an alpha olefin of formula CH2?CHR, in which R is a C1-C20 hydrocarbon group, to produce an ethylene copolymer having a molecular weight higher than that of the copolymer produced in step (b).
    Type: Grant
    Filed: November 24, 2004
    Date of Patent: March 16, 2010
    Assignee: Basell Polyolefine GmbH
    Inventors: Pietro Baita, Massimo Covezzi, Gabriele Mei, Giampiero Morini, Joachim T. M. Pater
  • Patent number: 7645834
    Abstract: Disclosed is a method of polymerizing olefin using a compatible combination of a multi-site catalyst and a single-site catalyst. The catalysts may be a Ziegler-Natta catalyst and a metallocene catalyst. The resulting polymer, which may be a homopolymer or a random copolymer, may exhibit a molecular weight distribution which is intermediate than that resulting for polymers prepared using either catalyst alone.
    Type: Grant
    Filed: April 29, 2005
    Date of Patent: January 12, 2010
    Assignee: Fina Technologies, Inc.
    Inventors: Kenneth P. Blackmon, Joseph L. Thorman, David John Rauscher, Edwar S. Shamshoum, Christopher Bauch
  • Patent number: 7618913
    Abstract: A high activity magnesium-based supported catalyst component useful in a catalyst system for the compolymerization of ethylene and alpha-olefin and a process for preparing the catalyst component is described. In the process, alkoxysilane ester is contacted with a halogen-substituted silane to form an organic silicon complex. Optionally, the organic silicon complex is contacted with an aminosilane compound to form an organic silicon complex containing nitrogen. The organic silicon complex containing nitrogen or the organic silicon complex is contacted with a transition metal compound to form an organic silicon complex containing transition metal. The organic silicon complex containing transition metal is then contacted with a substituted aromatic ring nitrogen compound to form a fourth reaction complex, which is then contacted with a magnesium-based composite support that has been prepared in situ by reacting metallic magnesium with an alkyl or aromatic halide to form the catalyst component.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: November 17, 2009
    Assignee: Formosa Plastics Corporation, U.S.A.
    Inventors: Guangxue Xu, Honglan Lu, Chih-Jian Chen
  • Patent number: 7592286
    Abstract: A process for preparing a catalyst component, comprising a Mg compound a Ti compound and an electron donor compound (ED) selected from alcohol, glycols, esters, ketones, amines, amides, nitrites, alkoxysilanes and aliphatic ethers as essential compounds, comprising two or more steps of reaction involving the use of at least one of said essential compounds as fresh reactant alone or in a mixture in which it constitutes the main component, said process being characterized by the fact that in the last of said one or more reaction steps the essential compound used as a fresh reactant is the ED compound.
    Type: Grant
    Filed: May 7, 2004
    Date of Patent: September 22, 2009
    Assignee: Basell Poliolefine Italia s.r.l.
    Inventors: Giampiero Morini, Tiziano Dall'Occo, Fabrizio Piemontesi, Rosa Spoto, Paolo Vincenzi, Gianni Vitale
  • Patent number: 7544748
    Abstract: The present invention relates to a solid catalyst component for the polymerization of olefins CH2?CHR in which R is hydrogen or a hydrocarbon radical with 1-12 carbon atoms, comprising Mg, Ti, halogen and an electron donor selected from ?-keto-ester derivatives of a particular formula. Said catalyst components when used in the polymerization of olefins, and in particular of propylene, are capable to give polymers in high yields and with high isotactic index expressed in terms of high xylene insolubility.
    Type: Grant
    Filed: March 8, 2005
    Date of Patent: June 9, 2009
    Assignee: Basell Poliolefine Italia S.r.l.
    Inventors: Yuri Gulevich, Giulio Balbontin, Giampiero Morini, Ilya Nifant'ev
  • Publication number: 20090143549
    Abstract: The present invention relates to catalysts component for the polymerization of ethylene and its mixtures with olefins CH2?CHR, wherein R is an alkyl, cycloalkyl or aryl radical having 1-12 carbon atoms, comprising Ti, Mg, halogen, and 1,2-dimethoxyethane as internal electron donor compound. The catalyst of the invention is suitably used in (co)polymerization processes of ethylene to prepare (co)polymers having narrow Molecular Weight Distribution (MWD) and high bulk density.
    Type: Application
    Filed: February 21, 2006
    Publication date: June 4, 2009
    Applicant: Basell Poliolefine Italia s.r.l.
    Inventor: Diego Brita
  • Patent number: 7528091
    Abstract: Solid fine particles which contain a magnesium atom, an aluminum atom and a C1-20 alkoxy group simultaneously, are insoluble in a hydrocarbon solvent, and have an average particle diameter of 3 to 80 ?m, and an olefin polymerization catalyst containing the solid fine particles and a transition metal compound in the groups 3 to 11 in the periodic table, exhibit a very high olefin polymerization activity without combination with an expensive organoaluminum oxy compound or organoboron compound and maintains a high activity in polymerization for a long time, and an olefin polymer excellent in powdery properties can be produced by using the olefin polymerization catalyst. The transition metal compound in the groups 3 to 11 in the periodic table includes a transition metal compound having a ligand containing two or more atoms selected from a boron atom, a nitrogen atom, an oxygen atom, a phosphorus atom and a sulfur atom.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: May 5, 2009
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Yasushi Nakayama, Hideki Bando, Yoshiho Sonobe, Makoto Mitani, Terunori Fujita
  • Patent number: 7521512
    Abstract: A catalyst composition for the polymerization of olefins comprising the combination of one or more Ziegler-Natta procatalysts comprising one or more transition metal compounds; one or more aluminum containing cocatalysts; and a mixture comprising two or more selectivity control agents (SCA's), corresponding to the formula: (CH3O)nSi(OR)4-n, wherein R, independently each occurrence, is C2-12 alkyl, C3-12 cycloalkyl, C6-18 aryl or (poly)alkyl-substituted aryl, or C7-18 poly(aryl)-substituted alkyl, and n is an integer from zero to 4.
    Type: Grant
    Filed: May 27, 2004
    Date of Patent: April 21, 2009
    Assignee: Union Carbide Chemicals & Plastics Technology LLC
    Inventor: Stanley E. Wilson
  • Patent number: 7504352
    Abstract: A catalyst for use in the formation of polypropylene is disclosed that comprises a titanium compound having at least one titanium-halogen bond, supported on an activated, amorphous magnesium dihalide support that is essentially free of alkoxy functionality, with a titanium metal content of no more than about 2 wt %, based on the weight of the support, and an internal donor component.
    Type: Grant
    Filed: May 3, 2002
    Date of Patent: March 17, 2009
    Assignee: Basell Polidefine Italia s.r.l.
    Inventors: Ronald Alan Epstein, William Thomas Wallack
  • Publication number: 20090069515
    Abstract: A solid titanium catalyst component (I) of the present invention is characterized in that it contains titanium, magnesium, halogen, and a cyclic ester compound (a) represented by the following formula (1): wherein n is an integer of 5 to 10; R2 and R3 are each independently COOR1 or R, and at least one of R2 and R3 is COOR1; a single bond (excluding Ca—Ca bonds, and a Ca—Cb bond in the case where R3 is R) in the cyclic backbone may be replaced with a double bond; a plurality of R1's are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms; and a plurality of R's are each independently a hydrogen atom or a substituent, but at least one of R's is not a hydrogen atom. When using this solid titanium catalyst component (I), an olefin polymer having a broad molecular weight distribution can be produced.
    Type: Application
    Filed: January 19, 2006
    Publication date: March 12, 2009
    Applicant: MITSUI CHEMICALS,INC.
    Inventors: Kazuhisa Matsunaga, Hisao Hashida, Toshiyuki Tsutsui, Kunio Yamamoto, Atsushi Shibahara, Tetsunori Shinozaki
  • Patent number: 7491670
    Abstract: A catalyst composition for the polymerization of propylene comprising one or more Ziegler-Natta procatalyst compositions comprising one or more transition metal compounds and one or more esters of aromatic dicarboxylic acid internal electron donors; one or more aluminum containing cocatalysts; a selectivity control agent (SCA) comprising at least one silicon containing compound containing at least one C1-10 alkoxy group bonded to a silicon atom, and one or more activity limiting agent (ALA) compounds comprising one or more aliphatic or cycloaliphatic carboxylic acids; alkyl-, cycloalkyl- or alkyl(poly)(oxyalkyl)-(poly)ester derivatives thereof; or inertly substituted derivatives of the foregoing.
    Type: Grant
    Filed: September 17, 2004
    Date of Patent: February 17, 2009
    Assignee: Dow Global Technologies Inc.
    Inventors: Linfeng Chen, Richard E. Campbell, Jr.
  • Publication number: 20080312389
    Abstract: The invention is directed to a process for the preparation of a catalyst component wherein a compound with formula Mg(OAlk)xCly wherein x is larger than 0 and smaller than 2, y equals 2-x and each Alk, independently represents an alkyl group, is contacted with a titanium tetraalkoxide and/or an alcohol in the presence of an inert dispersant to give an intermediate reaction product and wherein the intermediate reaction product is contacted with titanium tetrachloride in the presence of an internal donor. The invention also relates to a polymerization catalyst comprising the catalyst component and furthermore the invention relates to the polymerization of an olefin in the presence of the polymerization catalyst comprising the catalyst component.
    Type: Application
    Filed: November 11, 2005
    Publication date: December 18, 2008
    Inventors: Yves Johann Elizabeth Ramjoie, Sergei Andreevich Sergeev, Mark Vlaar, Vladimir Aleksandrovich Zakharov, Gennadii Dimitrievich Bukatov
  • Publication number: 20080227937
    Abstract: A process for producing an olefin copolymerization catalyst, comprising the step of contacting, with one another, (A) a solid catalyst component containing a titanium atom, a magnesium atom and a halogen atom, (B) an organoaluminum compound and/or organoaluminumoxy compound, and (C) a nitrogen-containing aromatic heterocyclic compound, whose one or more carbon atoms adjacent to its nitrogen atom are linked to an electron-donating group, or a group containing an electron-donating group; and a process for producing an olefin copolymer using the an olefin copolymerization catalyst.
    Type: Application
    Filed: November 26, 2007
    Publication date: September 18, 2008
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Shinya NAKAHARA, Shin-ichi KUMAMOTO
  • Patent number: 7420022
    Abstract: External donor systems, catalyst systems and olefin polymerization processes are described herein. The external donor systems generally include a first external donor represented by the general formula SiR2m(OR3)4-m, wherein each R2 is independently selected from alkyls, cycloalkyls, aryls and vinyls, each R3 is independently selected from alkyls and m is from 0 to 4. The external donor systems further include a second external donor represented by the general formula SiR4m(OR5)4-m, wherein each R4 is independently selected from alkyls, cycloalkyls, aryls and vinyls, each R5 is independently selected from alkyls, m is from 0 to 4 and at least one R4 is a C3 or greater alkyl.
    Type: Grant
    Filed: June 19, 2007
    Date of Patent: September 2, 2008
    Assignee: Fina Technology, Inc.
    Inventors: Kenneth P. Blackmon, Shabbir A. Malbari
  • Patent number: 7393806
    Abstract: A catalyst composition for the polymerization of propylene comprising one or more Ziegler-Natta procatalyst compositions comprising one or more transition metal compounds and one or more monoesters of aromatic carboxylic acid internal electron donors; one or more aluminum containing cocatalyst; and a mixture of two or more different selectivity control agents, said SCA mixture comprising from 70 to 98 mol percent of one or more esters of one or more aromatic monocarboxylic acids or substituted derivatives thereof, and from 30 to 2 mol percent of one or more alkoxysilane compounds containing one or more 5- or 6-membered cyclic groups optionally containing one or more Group 14, 15 or 16 heteroatoms.
    Type: Grant
    Filed: August 18, 2004
    Date of Patent: July 1, 2008
    Assignee: Dow Global Technologies Inc.
    Inventors: Jeffery S. Bradley, Linfeng Chen, William G. Sheard, Michael P. Zummallen