Non-metal Material Is Organic Nitrogen-containing Compound Patents (Class 526/141)
  • Patent number: 4668838
    Abstract: A process for the trimerization of an olefin selected from the group consisting of ethylene, propylene, 1-butene, and mixtures thereof comprising passing the olefin in contact with a catalyst comprising the reaction product of (i) a chromium compound, which will provide active catalytic species under trimerization conditions; (ii) a hydrocarbyl aluminum hydrolyzed with about 0.8 to about 1.1 moles of water per mole of aluminum compound; and (iii) a donor ligand selected from the group consisting of hydrocarbyl isonitriles, amines, and ethers wherein the aluminum to chromium mole ratio is in the range of up to about 200 to one and the ligand to chromium mole ratio is in the range of up to about 100 to one.
    Type: Grant
    Filed: March 14, 1986
    Date of Patent: May 26, 1987
    Assignee: Union Carbide Corporation
    Inventor: John R. Briggs
  • Patent number: 4663403
    Abstract: A first reactant selected from arylsilanol, hydrocarbyl amine, hydrocarbylphosphine oxide, and hydrocarbyloxyphosphite is combined with a second reactant selected from halogenated transition metal compound and an organometal compound to form a product which is catalytically active for olefin polymerization after optionally first having been deposited on a particulate diluent.
    Type: Grant
    Filed: September 19, 1984
    Date of Patent: May 5, 1987
    Assignee: Phillips Petroleum Company
    Inventor: Max P. McDaniel
  • Patent number: 4634687
    Abstract: A cocatalyst employed with a titanium-containing catalyst, said titanium-containing catalyst comprising titanium atoms, halogen atoms, and an electron donor compound, said cocatalyst comprising(a) an organoaluminum compound represented by the formula R.sup.1 R.sup.2 R.sup.3 (wherein R.sup.1, R.sup.2, and R.sup.3 which may be the same or different, each denote a C.sub.1-20 alkyl, alkenyl, cycloalkyl, aryl, aralkyl, or alkoxy group, or a hydrogen atom;(b) an organoaluminum compound represented by the formula R.sub.3-n.sup.4 AlX.sub.n (wherein R.sup.4 denotes a C.sub.1-20 alkyl, alkenyl, cycloalkyl, aryl, aralkyl, or alkoxy group; X denotes a halogen atom; and n.gtoreq.1),(c) an electron donor compound containing a nitrogen atom, sulfur atom, oxygen atom, or phosphorus atom, and(d) an aromatic carboxylic acid ester.The catalyst is useful for the polymerization of olefins.
    Type: Grant
    Filed: December 19, 1985
    Date of Patent: January 6, 1987
    Assignee: Toa Nenryo Kogyo Kabushiki Kaisha
    Inventors: Masahito Fujita, Masami Kizaki, Makoto Miyazaki, Naomi Inaba
  • Patent number: 4632912
    Abstract: Ziegler-Natta catalysts which are polymer supported compounds or complexes of elements of the d-block transition metals, lanthanide or actinide series are disclosed. An example of the polymer support is chloromethylated polystyrene-divinyl benzene copolymer covalently bonded to catechol. An example of the compound or complex of an element of the transition metal, lanthanide or actinide series is that which results when catechol which is covalently bonded to the polymer is contacted with titanium tetraisopropoxide. These catalysts are useful in preparing polymers with reduced halide content which reduces corrosion in polymer processing equipment.
    Type: Grant
    Filed: December 10, 1985
    Date of Patent: December 30, 1986
    Assignee: The Dow Chemical Company
    Inventors: Stephen A. Bedell, William R. Howell, Jr., William M. Coleman, III
  • Patent number: 4626519
    Abstract: A highly active catalyst suitable for the polymerization of olefins and its use are disclosed, said catalyst being prepared by(1) co-comminuting an aluminum halide; at least one electron donor; a Group IVB-VIB transition metal compound; and a support base selected from the group consisting of the Group IIA and IIIA salts and the salts of the multivalent metals of the first transition series with the exception of copper to produce a coground solid;(2) extracting said coground solid with an organic liquid; and(3) separating the solid from the liquid under such conditions that at least 5 weight percent of the aluminum in the coground solid is removed.
    Type: Grant
    Filed: September 6, 1985
    Date of Patent: December 2, 1986
    Assignee: Phillips Petroleum Company
    Inventors: Nemesio D. Miro, Floyd E. Farha, Charles E. Capshew
  • Patent number: 4623707
    Abstract: .alpha.-Olefins are polymerized in the presence of Ziegler-Natta catalysts which are polymer supported compounds or complexes of elements of the d-block transition metals, lanthanide or actinide series. An example of the polymer support is chloromethylated polystyrene-divinyl benzene copolymer covalently bonded to catechol. An example of the compound or complex of an element of the transition metal, lanthanide or actinide series is that which results when catechol which is covalently bonded to the polymer is contacted with titanium tetraisopropoxide.
    Type: Grant
    Filed: December 10, 1985
    Date of Patent: November 18, 1986
    Assignee: The Dow Chemical Company
    Inventors: Stephen A. Bedell, William M. Coleman, III, William R. Howell, Jr.
  • Patent number: 4613579
    Abstract: A catalyst component for the polymerization of olefins which is prepared by contacting a reaction product of dihydrocarbyl magnesium and a halogen-containing alcohol held in contact with a titanium compound.
    Type: Grant
    Filed: July 31, 1985
    Date of Patent: September 23, 1986
    Assignee: Toa Nenryo Kogyo Kabushiki Kaisha
    Inventors: Hiroyuki Furuhashi, Tadashi Yamamoto, Masafumi Imai, Hiroshi Ueno
  • Patent number: 4610974
    Abstract: Lewis base-bridged intermetallic compounds comprising the reaction product of a transition metal alkoxide with a reducing metal having a higher oxidation potential than the transition metal in the presence of a Lewis base and said reaction product being associated by coordinate covalent bridges formed from the Lewis base and composed of donor atoms selected from the group consisting of oxygen, nitrogen, sulfur and phosphorous; and catalyst components and systems for the polymerization of alpha olefins.
    Type: Grant
    Filed: April 22, 1985
    Date of Patent: September 9, 1986
    Assignee: National Distillers and Chemical Corporation
    Inventor: Anthony N. Speca
  • Patent number: 4604455
    Abstract: Mixtures of azoalkanes of varying thermal stabilities at least one of which is an unsymmetrical azoalkane (R--N.dbd.N--R'), are prepared by reacting 4 equivalents of a mixture of two or more primary alkyl, cycloalkyl or aralkylamines with 1 equivalent of sulfuryl chloride in an inert solvent and oxidizing the resulting mixture of sulfamide products with basic bleach. The unsymmetrical azoalkanes can be separated from the symmetrical azoalkanes by a variety of conventional techniques. The azoalkane mixtures are excellent polymerization initiators for vinyl monomers and curing agents for unsaturated polyester resins.
    Type: Grant
    Filed: December 14, 1984
    Date of Patent: August 5, 1986
    Assignee: Pennwalt Corporation
    Inventor: Ronald E. MacLeay
  • Patent number: 4603184
    Abstract: A process for producing .alpha.-olefin polymers is proposed wherein the catalyst prepared and used therein is superior in the shelf stability and heat stability. The process comprises reacting TiCl.sub.4 with a reaction product (I) of an organoaluminum compound with an electron donor to obtain a solid product (II), which is then subjected to polymerization treatment with an .alpha.-olefin, and further reacted with an electron donor and an electron acceptor to obtain a solid product (III), which is then combined with an organoaluminum compound, to obtain a catalyst, in the presence of which .alpha.-olefin(s) are polymerized. The catalyst can be further preactivated with an .alpha.-olefin in advance of its use for the polymerization.
    Type: Grant
    Filed: April 29, 1983
    Date of Patent: July 29, 1986
    Assignee: Chisso Corporation
    Inventors: Akihiro Sato, Toshihiro Uwai, Masami Tachibana, Kenji Matsuda, Yoshiharu Higuchi
  • Patent number: 4603185
    Abstract: Acetylene and other 1-alkynes are polymerized by a catalyst system comprised of a transition metal complex consisting of at least one binucleating ligand attached to at least one transition metal containing nucleus; and at least one organometallic cocatalyst containing at least one element of Group 1a, 2a or Group 3a.
    Type: Grant
    Filed: December 27, 1983
    Date of Patent: July 29, 1986
    Assignee: The Standard Oil Company
    Inventors: Kenneth C. Benton, R. J. Weinert, Jr., Michael J. Desmond
  • Patent number: 4600757
    Abstract: A process for the preparation of polyisoprene by polymerizing isoprene in the presence of a beta-TiCl.sub.3 containing catalyst is disclosed thereby an activator is prepared by reacting a hydrocarbylaluminum compound and a hydroxy-aromatic compound, having at both ortho-places with respect to the hydroxy-group a secondary or tertiary alkyl-group.
    Type: Grant
    Filed: April 18, 1985
    Date of Patent: July 15, 1986
    Assignee: Shell Oil Company
    Inventors: John C. Chadwick, Brian L. Goodall
  • Patent number: 4579920
    Abstract: A process for producing polybutadiene of a high degree of polymerization having high 1,2 and cis-1,4 microstructure contents and a low trans-1,4 microstructure content, which comprises polymerizing 1,3-butadiene in the presence of a catalyst system composed of(1) a halogen-containing organoaluminum compound,(2) (a) a cobalt dithiocarbamate compound or (b) the reaction product of carbon disulfide, a secondary amine and a cobalt compound, and(3) water.The polybutadiene has for example(A) a 1,2 microstructure content of 7 to 50%,(B) a cis-1,4 microstructure content of at least 50%,(C) a trans-1,4-microstructure content of at most 5%,(D) an inherent viscosity, measured in toluene at 30.degree. C., of at least 1, and(E) a gel content of at most 0.3%.
    Type: Grant
    Filed: December 10, 1984
    Date of Patent: April 1, 1986
    Assignee: UBE Industries, Ltd.
    Inventors: Nobuhiro Tsujimoto, Michinori Suzuki, Norishige Kawaguchi, Tetuzi Nakazima
  • Patent number: 4575538
    Abstract: A process for producing a novel-highly active lanthanide containing catalysts comprising products formed by reacting a lanthanide halide, and an electron doner ligand with an organometal cocatalyst component and its use in the polymerization of olefins, especially olefins such as ethylene, 1,3-butadiene, isoprene and the like. In one embodiment, an organic base is used to increase catalyst activity in those instances where rare earth metal halide-ligand complex is formed with a ligand containing an acidic proton. In another embodiment, diolefins and vinyl aromatics are polymerized in a two-stage process employing a lanthanide complex-organometal cocatalyst in the first stage and a free radical initiator in the second stage.
    Type: Grant
    Filed: December 20, 1984
    Date of Patent: March 11, 1986
    Assignee: Phillips Petroleum Company
    Inventors: Henry L. Hsieh, Gene H. C. Yeh
  • Patent number: 4567155
    Abstract: A catalyst system especially suited for polymerizing alpha-olefins in the gas-phase to polymers containing essentially no active chloride comprises (A) a titanium-containing component supported on a hydrocarbon-insoluble magnesium-containing compound in combination with an electron donor compound and (B) a co-catalyst comprising (a) at least one trialkylaluminum compound (b) an aromatic acid ester and (c) an unhindered secondary amine, optionally reacted with a dialkylaluminum hydride, in substantial absence of compounds containing an Al-Cl bond.
    Type: Grant
    Filed: September 24, 1984
    Date of Patent: January 28, 1986
    Assignee: Standard Oil Company (Indiana)
    Inventors: Benjamin S. Tovrog, Charles R. Hoppin, Bryce V. Johnson
  • Patent number: 4563512
    Abstract: In a polymerization of alpha mono-olefins by means of certain supported coordination catalysts systems which comprise (a) a procatalyst, (b) a cocatalyst, and (c) a selectivity control agent, wherein (a) is a highly active solid composition which comprises magnesium chloride, titanium tetrachloride and an electron donor; and (b) is an aluminum trialkyl; the selectivity control agent comprises a strong selectivity control agent and a weak selectivity control agent.
    Type: Grant
    Filed: February 28, 1984
    Date of Patent: January 7, 1986
    Assignee: Shell Oil Company
    Inventor: Brian L. Goodall
  • Patent number: 4555496
    Abstract: A method of producing a polymerization catalyst component suitable for use in the polymerization of alpha-olefins, which method comprises forming an active component by co-comminuting an inorganic Lewis acid, a first organic electron donor, a support base selected from the group consisting of the Group IIA and IIIA salts and the salts of the multivalent metals of the first transition series with the exception of copper, and a polymerization active tri-, tetra-, or penta- valent transition metal compound of a Group IVB-VIB metal, and heating the active component in an inert hydrocarbon solvent to produce the polymerization catalyst component. The active component can be heated in the inert hydrocarbon solvent in the presence of an additional polymerization active tri-, tetra-, or penta- valent transition metal compound of a group IVB-VIB metal. In addition, a second organic electron donor may be incorporated in the active component.
    Type: Grant
    Filed: May 31, 1984
    Date of Patent: November 26, 1985
    Assignee: Phillips Petroleum Company
    Inventors: Agapios Agapiou, John L. H. Allan, Felix I. Jacobson
  • Patent number: 4555497
    Abstract: Novel titanium compounds or complexes are prepared by reacting a titanium compound such as titanium tetraisopropoxide with a mixture comprising (a) at least one compound containing at least one aromatic hydroxyl group and (b) at least one compound having at least one aliphatic hydroxyl group. These compounds and/or complexes are useful as the transition metal component in Ziegler-Natta catalysts.
    Type: Grant
    Filed: October 26, 1984
    Date of Patent: November 26, 1985
    Assignee: The Dow Chemical Company
    Inventors: William M. Coleman, III, Morris S. Edmondson
  • Patent number: 4544718
    Abstract: A process for producing a novel-highly active lanthanide containing catalyst comprising the product formed by admixing a lanthanide hydroxyhalide and an electron donor bidentate organic ligand chosen from among diamines, dihydric alcohols, and diketones with an organoaluminum cocatalyst component and its use in the polymerization of olefins, especially olefins such as ethylene and 1,3-butadiene.
    Type: Grant
    Filed: September 13, 1984
    Date of Patent: October 1, 1985
    Assignee: Phillips Petroleum Company
    Inventors: Gene H. C. Yeh, Joel L. Martin, Henry L. Hsieh
  • Patent number: 4543400
    Abstract: A titanium trichloride catalyst component containing a minor amount of prepolymerized alpha-olefin and useful in the polymerization of alpha-olefins is produced by reducing titanium tetrachloride with an organoaluminum compound at low temperatures and then treating the resulting reduced solids product with about 1 to 1,000 wt. % alpha-olefin so as to obtain a prepolymerized titanium trichloride reduced solid. The prepolymerized reduced solid can thereafter be activate to a highly active prepolymerized titanium trichloride by treating the prepolymerized reduced solid with a halogenated hydrocarbon and a Lewis base complexing agent or titanium tetrachloride and a Lewis base complexing agent. The prepolymerized reduced solid and the prepolymerized activated titanium trichloride manifests substantially no evidence of friability upon being subjected to mechanical shearing forces.
    Type: Grant
    Filed: May 12, 1982
    Date of Patent: September 24, 1985
    Assignee: Exxon Research & Engineering Co.
    Inventor: Harry J. Wristers
  • Patent number: 4533705
    Abstract: A process for producing .alpha.-olefin polymers having high crystallinity and good particle form, with a high yield is provided. The polymerization therefor is carried out in the presence of a preactivated catalyst suitable particularly to gas phase polymerization or gas phase polymerization following slurry or bulk polymerization.The catalyst is prepared by reacting a reduction solid prepared by reducing TiCl.sub.4 with an organoaluminum compound, with an electron donor and an electron acceptor to obtain a solid product, andcombining this solid product with an organoaluminum compound, an .alpha.-olefin and a reaction product of an organoaluminum compound with an electron donor.
    Type: Grant
    Filed: July 21, 1983
    Date of Patent: August 6, 1985
    Assignee: Chisso Corporation
    Inventors: Akihiro Sato, Kazutsune Kikuta, Toshihiro Uwai, Kenji Matsuda, Nobutaka Hattori
  • Patent number: 4525556
    Abstract: Olefins are polymerized in the presence of a catalyst containing novel titanium compounds or complexes which are prepared by reacting a titanium compound such as titanium tetraisopropoxide with a compound containing at least one aromatic hydroxyl group.
    Type: Grant
    Filed: January 31, 1984
    Date of Patent: June 25, 1985
    Assignee: The Dow Chemical Company
    Inventors: William M. Coleman, III, Morris S. Edmondson
  • Patent number: 4525467
    Abstract: A aliphatic hydrocarbon soluble mixed aluminum hydrocarbyl-Lewis base co-catalyst composition comprising (i) at least two different classes of aluminum hydrocarbyls the first being an aluminum hydrocarbyl halide, the second being an aluminum hydrocarbyl hydride and/or aluminum trialkyl and (ii) at least one Lewis base represented by the formula: ##STR1## wherein each Y can be -OR', -NR.sub.2 ' and R' with the proviso that at least two be -OR' or -NR.sub.2 ', Z is an alkylene radical forming a 5 or 6 membered ring with the carbonyldioxy group or Z is alkyl substituted alkylene group wherein the alkyl radical can have from 1 to 8 carbon atoms, R is an aryl, allyl or alkyl group having 1 to 20 carbon atoms and R' is an alkyl, cycloalkyl, aryl or aralkyl radical having from 1 to 20 carbon atoms.The co-catalyst is employed with a titanium halide catalyst for the polymerization of olefins to obtain a advantageous balance of catalytic activity and polymer product stereoregularity.
    Type: Grant
    Filed: January 16, 1984
    Date of Patent: June 25, 1985
    Assignee: Exxon Research & Engineering Co.
    Inventors: Terrence Huff, Eugene E. Poirot
  • Patent number: 4525555
    Abstract: Provided is a process for preparing a polyolefin, characterized by polymerizing at least one .alpha.-olefin in the presence of a catalyst which comprises the combination of:[I] a solid catalyst component comprising a solid substance obtained by contacting the following components (1) through (3) with one another and (4) a titanium compound supported on said solid substance:(1) a magnesium halide,(2) a compound represented by the general formula ##STR1## wherein R.sup.1, R.sup.2 and R.sup.3 are each a hydrocarbon radical having 1 to 24 carbon atoms, an alkoxy group, hydrogen, or a halogen atom, R.sup.4 is a hydrocarbon radical having 1 to 24 carbon atoms and n is 1.ltoreq.n.ltoreq.30, and(3) at least one compound selected from the group consisting of:(a) compounds represented by the general formula ##STR2## wherein R is hydrogen, a halogen atom, or a hydrocarbon radical having 1 to 24 carbon atoms, and r, p and q are integers satisfying the following conditions:1.ltoreq.r.ltoreq.3, 0.ltoreq.p<6, 0.ltoreq.
    Type: Grant
    Filed: December 15, 1983
    Date of Patent: June 25, 1985
    Assignee: Nippon Oil Company, Limited
    Inventors: Yoshio Tajima, Mituji Miyoshi, Shoji Sugita, Kiyoshi Kawabe, Kazuo Matsuura
  • Patent number: 4508842
    Abstract: An ethylene polymerization catalyst comprising a supported precursor of vanadium trihalide/electron donor complex and alkylaluminum or boron halides, when combined with alkylaluminum cocatalyst and alkyl halide promoter provides enhanced polymerization and productivity plus superior polyethylene.
    Type: Grant
    Filed: March 29, 1983
    Date of Patent: April 2, 1985
    Assignee: Union Carbide Corporation
    Inventors: Debra L. Beran, Kevin J. Cann, Robert J. Jorgensen, Frederick J. Karol, Norma J. Maraschin, Arthur E. Marcinkowsky
  • Patent number: 4507451
    Abstract: A process of preparing a bimodal or multimodal homopolymer of a conjugated diene or a bimodal or multimodal copolymer of a conjugated diene with another conjugated diene or with a vinyl aromatic compound consists in polymerizing the monomer(s) in a reaction medium at a temperature of between 20.degree. C. and 200.degree. C. in the presence of a catalyst system formed of the reaction product of:(a) an organic compound of a metal of group 3A of the periodic classification of elements of the Mendeleev Table having one of the following formulas;M.sup.1 M.sup.3 R.sup.1 R.sup.2 R.sup.3 R.sup.4M.sup.2 (M.sup.3 R.sup.1 R.sup.2 R.sup.3 R.sup.4).sub.2M.sup.3 R.sup.1 R.sup.2 R.sup.3M.sup.1 OM.sup.3 R.sup.1 R.sup.2with (b) at least one electron-donor compound containing at least one heteroatom,and adding to the reaction medium during the course of the polymerization reaction a compound of a transition metal of groups 1b to 7B and 8 or a magnesium compound of the general formula Mg(A).sub.2.
    Type: Grant
    Filed: December 8, 1983
    Date of Patent: March 26, 1985
    Assignee: Compagnie Generale des Etablissements Michelin
    Inventor: Christian Freppel
  • Patent number: 4496700
    Abstract: Haloalkynes are polymerized to polyunsaturated compounds with a catalyst mixture consisting of a nickel compound, and a ligand in the presence of a reducing metal.
    Type: Grant
    Filed: August 8, 1983
    Date of Patent: January 29, 1985
    Assignee: Union Carbide Corporation
    Inventor: Ismael Colon
  • Patent number: 4483971
    Abstract: A process for producing terpolymers of propylene (as a main monomer), ethylene and another .alpha.-olefin having superior and well-balanced physical properties, almost without forming soluble polymer is provided.This process is characterized by preliminarily activating a catalyst consisting of a titanium trichloride composition and a specified organoaluminum halide, with a small amount of an .alpha.-olefin of 2 to 12 carbon atoms, a trialkylaluminum and an aromatic ester, and copolymerizing specified amounts of propylene, ethylene and an .alpha.-olefin of 4 to 12 carbon atoms in the presence of the preliminarily activated catalyst obtained above.
    Type: Grant
    Filed: February 25, 1983
    Date of Patent: November 20, 1984
    Assignee: Chisso Corporation
    Inventors: Akihiro Sato, Takeshi Suzuki, Kazutsune Kikuta, Hiromasa Chiba, Toshihiro Uwai, Kenji Matsuda, Tohru Hanari
  • Patent number: 4482639
    Abstract: Ethylene is polymerized by a catalyst system comprised of a transition metal complex consisting of at least one binucleating ligand attached to at least one transition metal containing nucleus; and an organometallic cocatalyst containing at least one element of Group IA, IIA or Group IIIA.
    Type: Grant
    Filed: September 15, 1982
    Date of Patent: November 13, 1984
    Assignee: The Standard Oil Company
    Inventors: Michael J. Desmond, Kenneth C. Benton, Raymond J. Weinert
  • Patent number: 4477586
    Abstract: A first reactant selected from arylsilanol, hydrocarbyl amine, hydrocarbylphosphine oxide, and hydrocarbyloxyphosphite is combined with a second reactant selected from halogenated transition metal compound and an organometal compound to form a product which is catalytically active for olefin polymerization after optionally first having been deposited on a particulate diluent.
    Type: Grant
    Filed: February 4, 1983
    Date of Patent: October 16, 1984
    Assignee: Phillips Petroleum Company
    Inventor: Max P. McDaniel
  • Patent number: 4471066
    Abstract: A catalyst useful for polymerizing olefins which comprises a solid catalyst component [A] and an organometallic component [B], the solid catalyst component [A] being obtained by reacting (1) an organometallic compound with (2) a transition metal compound selected from the group consisting of a titanium compound, a vanadium compound, a mixture of a titanium compound and a vanadium compound and a mixture of a titanium compound and a zirconium compound, in the presence of (3) a solid reaction product of (a) an organomagnesium compound of the formulaM.sub..alpha. MgR.sub.p X.sub.q.D.sub.rwherein.alpha., p, q and r each independently is 0 or a number greater than 0,p+q=m.alpha.+20.ltoreq.q/(.alpha.
    Type: Grant
    Filed: February 3, 1983
    Date of Patent: September 11, 1984
    Assignee: Asahi Kasei Kogyo Kabushiki Kaisha
    Inventors: Hisaya Sakurai, Yoshihiko Katayama, Tadashi Ikegami, Masayasu Furusato
  • Patent number: 4463102
    Abstract: A catalyst and a process for the preparation of homopolymers and copolymers of alpha monoolefins by means of a catalyst system comprising (1) a titanium halide of the formulaTiCl.sub.3 m AlCl.sub.3where m is a number from 0 to 0.5, (2) a coordination complexing agent, the use of which is optional, and (3) an appropriate conventional aluminum-alkyl, the titanium halide (1) and the complexing agent (2), if used, having been milled together before use, wherein the catalyst system employed contains, as a further component (4), a sterically unhindered phenolic compound.
    Type: Grant
    Filed: January 28, 1983
    Date of Patent: July 31, 1984
    Assignee: Northern Petrochemical Company
    Inventor: Rolf F. Foerster
  • Patent number: 4461883
    Abstract: A process for producing a conjugated diene polymer, characterized by polymerizing at least one conjugated diene with a catalyst consisting of (A) a reaction product of a Lewis base and a carboxylate of a rare earth element of the lanthanum series represented by Ln(R.sup.1 CO.sub.2).sub.3 wherein Ln is a rare earth element of the lanthanum series having an atomic number of 57 to 71 and R.sup.1 is a hydrocarbon substituent having 1 to 20 carbon atoms, (B) an organic aluminum compound represented by AlR.sup.2 R.sup.3 R.sup.4 wherein R.sup.2, R.sup.3 and R.sup.4, which may be identical or different, represent hydrogen atoms or hydrocarbon substituents having 1 to 8 carbon atoms, excluding the case where all of R.sup.2, R.sup.3 and R.sup.4 are hydrogen atoms at the same time, and (C) an (alkyl)aluminum halide represented by AlX.sub.n R.sup.5.sub.3-n wherein X is Cl, Br, F or I; R.sup.5 is a hydrocarbon substituent having 1 to 8 carbon atoms; and n has a value of 1, 1.
    Type: Grant
    Filed: June 14, 1982
    Date of Patent: July 24, 1984
    Assignee: Japan Synthetic Rubber Co., Ltd.
    Inventors: Yasumasa Takeuchi, Mitsuhiko Sakakibara, Tooru Shibata
  • Patent number: 4460757
    Abstract: A process for producing highly crystalline .alpha.-olefin polymers of good particle form with high yield is provided, which comprises polymerizing .alpha.-olefin in the presence of a preactivated catalyst obtained by reacting a reaction product (I) of organoaluminum compound (A.sub.1) with electron donor (B.sub.1), with TiCl.sub.4 to obtain a solid product (II); further reacting (II) with electron donor (B.sub.2) and electron acceptor to obtain a solid product (III); during or/and after the reaction step for obtaining (II) or/and during or/and after the reaction step for obtaining (III), subjecting (II) or (III), to polymerization treatment with .alpha.-olefin; and combining the resulting final solid product with organo-aluminum compound (A.sub.2) and a reaction product (G) of organo-aluminum compound (A.sub.3) with electron donor (B.sub.3) to obtain a preactivated catalyst; and preferably, in this combination, further subjecting a part or the total of the catalyst to polymerization treatment with .alpha.
    Type: Grant
    Filed: July 29, 1982
    Date of Patent: July 17, 1984
    Assignee: Chisso Corporation
    Inventors: Akihiro Sato, Masami Tachibana, Toshihiro Uwai, Kenji Matsuda, Yoshiharu Higuchi
  • Patent number: 4452914
    Abstract: Novel titanium compounds or complexes are prepared by reacting a titanium compound such as titanium tetraisopropoxide with a compound containing at least one aromatic hydroxyl group. These compounds and/or complexes are useful as the transition metal component in Ziegler-Natta catalysts.
    Type: Grant
    Filed: August 13, 1982
    Date of Patent: June 5, 1984
    Assignee: The Dow Chemical Company
    Inventors: William M. Coleman, III, Morris S. Edmondson
  • Patent number: 4451573
    Abstract: A catalyst suitable for use in the polymerization of olefins is disclosed. This catalyst contains:[A] a solid catalyst component obtained by calcining a reaction product of (a) at least one compound selected from an amine compound, a phosphoric acid amide, a hydrocarbyloxy compound of titanium, vanadium, hafnium or zirconium, and a germanium compound having the general formula:R.sup.1 R.sup.2 R.sup.3 R.sup.4 Gewherein (i) R.sup.1, R.sup.2 and R.sup.3 are each independently a hydrocarbon group having 1 through 10 carbon atoms, and R.sup.4 is a hydrogen atom, a halogen atom, a --OH group, or a --OGeR.sup.1 R.sup.2 R.sup.3 group, or (ii) R.sup.1, R.sup.2, R.sup.3 and R.sup.4 are each independently --OR.sup.5 wherein R.sup.5 is a hydrocarbon group having 1 through 10 carbon atoms, or a halogen atom, and a tin compound having the general formula:R.sup.1 R.sup.2 R.sup.3 R.sup.6 Snwherein R.sup.1, R.sup.2 and R.sup.3 are the same as defined above and R.sup.
    Type: Grant
    Filed: June 4, 1982
    Date of Patent: May 29, 1984
    Assignee: Asahi Kasei Kogyo Kabushiki Kaisha
    Inventors: Tadashi Ikegami, Katsuhiko Takaya, Haruyuki Yoneda
  • Patent number: 4444967
    Abstract: A substantially agglomeration-free, finely divided catalyst component which is suitable for use as a cocatalyst with organoaluminum compounds in the polymerization of alpha olefins, which is formed by grinding a titanium trichloride material, an effective amount of an electron pair donor compound to enhance the performance of said catalyst component, and an effective amount for agglomeration control of an agglomeration control agent. The agglomeration control agent is effective in either reducing the attractive forces between the finely divided particles in the catalyst component or by preventing the close approach of these particles which would result in agglomeration.
    Type: Grant
    Filed: March 21, 1983
    Date of Patent: April 24, 1984
    Assignee: Stauffer Chemical Company
    Inventors: Gregory G. Arzoumanidis, Richard F. Gold, Christian G. Michel
  • Patent number: 4435552
    Abstract: Process for the preparation of copolymers consisting of 25-85% by wt. of ethylene, 15-75% by wt. of at least one other 1-alkene and optionally up to 20% by wt.
    Type: Grant
    Filed: July 10, 1981
    Date of Patent: March 6, 1984
    Assignee: Stamicarbon B.V.
    Inventor: Georges G. Evens
  • Patent number: 4420593
    Abstract: A process for producing .alpha.-olefin polymers with a controlled stereoregularity and with a higher yield is provided, which process comprises: combining a TiCl.sub.3 -containing composition obtained by reducing TiCl.sub.4, with an organoaluminum compound; thereafter subjecting the composition to a polymerization treatment with an .alpha.-olefin; before, during or after the polymerization treatment, adding an electron donor or/and an electron acceptor or a reaction product of these two; as well as adding a reaction product of a trialkylaluminum with an electron donor having a specified molar ratio of the electron donor to the trialkylaluminum selected in the range of 0.01 to 5; and polymerizing an .alpha.-olefin in the presence of the resulting preactivated catalyst.
    Type: Grant
    Filed: September 28, 1981
    Date of Patent: December 13, 1983
    Assignee: Chisso Corporation
    Inventors: Akihiro Sato, Kazutsune Kikuta, Kenji Matsuda, Toshihiro Uwai, Tohru Hanari
  • Patent number: 4420595
    Abstract: Process for the preparation of copolymers consisting of 25-85% by wt. of ethylene, 15-75% by wt. of at least one other 1-alkene and optionally up to 20% by wt. of a polyunsaturated compound with application of a catalyst system containing a compound of a metal from sub-groups IV-VI of the periodic system and a compound of a metal from groups I-III of the periodic system, in which at least one hydrocarbon group is bound directly to the metal atom via a carbon atom, the polymerization being carried out in the presence of certain halogen containing activators.
    Type: Grant
    Filed: July 10, 1981
    Date of Patent: December 13, 1983
    Assignee: Stamicarbon B.V.
    Inventor: Georges G. Evens
  • Patent number: 4415718
    Abstract: Using a catalyst comprising (1) a solid substance which contains magnesium and titanium, (2) an organometallic compound and (3) an electron donor, there are polymerized ethylene, propylene and 1-butene to obtain a soft or semi-hard terpolymer of low crystallinity containing 75.2 to 91.5 mol % propylene, 7.5 to 14.9 mol % ethylene and 1.0 to 9.9 mol % 1-butene.
    Type: Grant
    Filed: February 16, 1982
    Date of Patent: November 15, 1983
    Assignee: Nippon Oil Company, Ltd.
    Inventors: Mituji Miyoshi, Kazuo Matsuura, Yoshio Tajima
  • Patent number: 4414371
    Abstract: Polyolefin granules having an average particle size diameter greater than 600 microns, preferably about 1000 microns or greater are obtained by polymerizing monoolefins in the presence of a titanium catalyst having an average particle size diameter of greater than about 35 microns and preferably 40 to 65 microns. The titanium catalysts are obtained by reducing titanium tetrahalide in the presence of a suitable organometallic reducing compound such as diethylaluminum chloride under controlled conditions of temperature, reduction rate and concentrations to obtain a titanium halide reduced solids product seeds having an average particle size diameter of about 20 microns or greater and thereafter simultaneously and without interruption adding to the seeds containing system titanium tetrahalide and organometallic reducing compound such as diethylaluminum halide at a rate such that the reduction of titanium tetrahalide to titanium trihalide is about 6.times.10.sup.-4 to about 0.
    Type: Grant
    Filed: February 8, 1982
    Date of Patent: November 8, 1983
    Assignee: Exxon Research & Engineering Co.
    Inventor: Harry J. Wristers, deceased
  • Patent number: 4412044
    Abstract: Polymers consisting essentially of the units (A) and (B) with an intrinsic viscosity in the range of 0.3 to 4.0, a content of the unit (A) of 10 to 90 mol % of the total structural units and a content of double bonds of trans-configuration of 40% or more are disclosed. The units (A) and (B) are represented by the structural formulas: ##STR1## wherein R' is hydrogen atom, an alkyl or phenyl, R.sup.2 is hydrogen or an alkyl, R.sup.3 is an alkyl. The polymers are preferably prepared by partial hydrolysis of the polymers consisting essentially of the unit (B).
    Type: Grant
    Filed: March 23, 1982
    Date of Patent: October 25, 1983
    Assignee: Mitsubishi Petrochemical Company Limited
    Inventors: Hiroshi Takahashi, Katsuhiro Abe
  • Patent number: 4410672
    Abstract: A process for the production of ethylenic polymers, characterized in that ethylene is homopolymerized or ethylene with .alpha.-olefin is copolymerized by the use of a catalyst system comprising:(A) a solid catalyst component prepared by treating (1) a solid ingredient containing at least a magnesium atom, a halogen atom and a transition metal element with (2) at least a cyclic organic compound; and(B) an organoaluminum compound; or(A) the solid catalyst component;(B) the organoaluminum compound; and(C) an electron donor compound; and the catalyst systewm as obtained in the above-described manner.Ethylenic polymers having a narrow distribution of molecular weight, having suitability for use in injection molding and having excellent powder characteristics can be produced, and by using this polymer, film having excellent optical characteristics can be produced.
    Type: Grant
    Filed: April 21, 1981
    Date of Patent: October 18, 1983
    Assignee: Showa Denko Kabushiki Kaisha
    Inventor: Shintaro Inazawa
  • Patent number: 4404342
    Abstract: According to this invention, there is provided a process for preparing a low-crystalline soft or semi-hard copolymer, characterized in that 90 to 98 mole % of propylene, 0.2 to 9 mole % of ethylene and 0.2 to 9 mole % of a straight-chained (.alpha.-olefin having not less than four carbon atoms are copolymerized using a catalyst, said catalyst comprising (1) a solid substance containing magnesium and titanium, (2) an organometallic compound and (3) an electron donor.
    Type: Grant
    Filed: August 31, 1981
    Date of Patent: September 13, 1983
    Assignee: Nippon Oil Company, Ltd.
    Inventors: Mituji Miyoshi, Kazuo Matsuura, Yoshio Tajima
  • Patent number: 4401799
    Abstract: A titanium trichloride catalytic complex is produced by reducing titanium tetrachloride with an organo-metal compound and then treating the resulting reduced solids product with a chlorinated saturated aliphatic hydrocarbon having three to eight carbon atoms in the presence of a complexing agent. The resulting titanium trichloride complex composition, when employed as a co-catalyst with an organo-metal compound for Ziegler-type catalysts in polymerization of .alpha.-olefins, results in uniform polymer grains with unexpectedly high polymerization activity and high stereoregular polymer yielding ratios.
    Type: Grant
    Filed: July 20, 1979
    Date of Patent: August 30, 1983
    Assignee: Toa Nenryo Kogyo Kabushiki Kaisha
    Inventors: Hiroshi Ueno, Eiji Sezaki, Naomi Inaba, Tokuo Makishima, Koh Watanabe, Shozo Wada
  • Patent number: 4395358
    Abstract: A titanium trichloride catalyst complex is produced by reducing titanium tetrachloride with an organo-metal compound and then activating the resulting reduced solids by treatment with a chlorinated hydrocarbon and titanium tetrachloride in the presence of a Lewis base complexing agent. The employment of the chlorinated hydrocarbon and titanium tetrachloride in the presence of the Lewis base complexing agent unexpectedly produces a synergistic effect whereby activating conditions, e.g., temperature, time and TiCl.sub.4 concentration can be employed resulting in a titanium trichloride complex having superior alpha-olefin polymerization properties as compared to titanium trichloride catalyst complexes obtained by treatment under the same conditions in the absence of either titanium tetrachloride or chlorinated hydrocarbon. Moreover, unexpectedly high yields of activated catalyst can be recovered without loss of activity.
    Type: Grant
    Filed: November 19, 1980
    Date of Patent: July 26, 1983
    Assignee: Exxon Research & Engineering Co.
    Inventor: Harry J. Wristers
  • Patent number: 4391738
    Abstract: A new improved catalyst system for alpha-olefin type polymerizations includes a metal alkyl compound selected from the group consisting of R.sub.2 WY or R.sub.3 W and an organomagnesium compound R'MgX in combination with a Group IVB-VIII transition metal compound. The improved catalyst system provides both increased polymerization activity and polymers having a high degree of isotactic stereoregularity.
    Type: Grant
    Filed: January 28, 1982
    Date of Patent: July 5, 1983
    Assignee: Exxon Research and Engineering Co.
    Inventor: Arthur W. Langer, Jr.
  • Patent number: 4385161
    Abstract: A catalyst component is a transition metal composition which is obtained by reacting together an inert particulate material, an organic magnesium compound, a halogen-containing compound such as carbon tetrachloride silicon tetrachloride or boron trichloride and a specified transition metal compound such as VOCl.sub.3, bis(n-butoxy) titanium dichloride or zirconium tetrabenzyl. The catalyst component obtained can be used, together with an organic metal compound, to give an olefin polymerization catalyst. The catalyst can be used to effect the polymerization of olefin monomers, for example, the copolymerization of ethylene with an alpha-olefin monomer such as butene-1 in a fluidized bed reactor.
    Type: Grant
    Filed: January 6, 1981
    Date of Patent: May 24, 1983
    Assignee: Imperial Chemical Industries Limited
    Inventors: Anthony D. Caunt, Paul D. Gavens, John McMeeking
  • Patent number: 4384983
    Abstract: Catalyst for production of polyolefins of improved morphology comprises (A) organometallic promoter and (B) reaction product of (1) at least one hydrocarbon-soluble aromatic nitro compound with (2) catalytic complex comprising an intimate association of at least one reduced Group IVB-VB metal halide, at least one divalent metal halide and at least one aluminum compound. Aromatic nitro compound is used in an amount effective to improve polymer morphology without substantial adverse effects on other catalytic properties.
    Type: Grant
    Filed: May 26, 1981
    Date of Patent: May 24, 1983
    Assignee: Standard Oil Company (Indiana)
    Inventor: Glen R. Hoff