Abstract: The present disclosure relates to fluid bed processes that utilize silica particles as a fluidization aid. The process comprises reacting one or more reactants in a reactor comprising a fluid bed to form a product. The fluid bed comprises a catalyst composition comprising a catalyst and an inert additive composition comprising silica particles from 0.5 wt % to 30 wt %, based on the total weight of the catalyst composition. The silica particles are discrete, inert particles that are mixed with the catalyst in the fluid bed.
Abstract: The invention provides a molecular transition metal complex selected from Formula 1, as described herein; an ethylene-based polymer; and a process to form the ethylene-based polymer, said process comprising polymerizing ethylene in the presence of at least one molecular transition metal complex selected from Formula 1, as described herein, and wherein either Z1 or Z2 is dative covalent (coordinate) to the metal (M).
Type:
Grant
Filed:
December 2, 2015
Date of Patent:
May 28, 2019
Assignee:
Dow Global Technologies LLC
Inventors:
Jerzy Klosin, Endre Szuromi, Liam P. Spencer
Abstract: The invention provides a rubber composition for tires, enabling a balanced improvement of processability, rubber strength, fuel economy, and crack growth resistance; and a pneumatic tire formed from the rubber composition. The invention relates to a rubber composition for tires, including: a butadiene rubber (a) having a cis content of 96% by mass or more, a Mooney viscosity of 35 to 75, and a ratio of (Weight average molecular weight (Mw))/(Number average molecular weight (Mn)) of 2.7 or less; and a butadiene rubber (b) containing 1,2-syndiotactic polybutadiene crystals with a melting point of 90 to 140° C., and having a weight average molecular weight of 50,000 to 500,000.
Abstract: A polymerization catalyst composition for preparing cis 1,4-polydienes is provided. The catalyst composition comprises (a) a metal-containing compound, said metal being a transition metal or a lanthanide metal; (b) a carbene, (c) an alkylating agent, and optionally (d) a halogen-containing compound with the proviso that the halogen-containing compound must be present when none of the metal-containing compound and the alkylating agent contain a labile halogen atom. Also provided is a process for producing a polydiene comprising reacting a conjugated diene in the presence of the polymerization catalyst composition.
Abstract: Methods for gas phase olefin polymerization are provided. The method can include combining a spray dried catalyst system with a diluent to produce a catalyst slurry. The catalyst system can include a metallocene compound. Ethylene, a continuity additive, and the catalyst slurry can be introduced to a gas phase fluidized bed reactor. The reactor can be operated at conditions sufficient to produce a polyethylene. The spray dried catalyst system can have a catalyst productivity of at least 12,000 grams polyethylene per gram of the catalyst system.
Type:
Grant
Filed:
December 22, 2010
Date of Patent:
July 30, 2013
Assignee:
Univation Technologies, LLC
Inventors:
F. David Hussein, Kevin J. Cann, Ann M. Schoeb-Wolters, Phuong A. Cao, Bruce J. Savatsky, Eric J. Markel, Daniel P. Zilker, Jr., Garth R. Giesbrecht
Abstract: The present invention generally relates to a process that copolymerizes two or more polymerizable olefins, and to cataclyst comprising a metal-ligand complex (precatalyst). The present invention also generally relates to ligands useful for preparing the metal-ligand complex.
Type:
Application
Filed:
August 24, 2011
Publication date:
June 6, 2013
Applicant:
DOW GLOBAL TECHNOLOGIES LLC
Inventors:
Jerzy Klosin, Pulikkottil J. Thomas, Carl N. Iverson, Nermeen W. Aboelella, Kevin A. Frazier
Abstract: In general the present invention provides a process for forming conjugated diene polymer, the process comprising the step of polymerizing conjugated diene monomer in the presence of a catalytically effective amount of a catalyst composition formed by combining (a) a nickel-containing compound, (b) an alkylating agent, (c) a fluorine-containing compound, (d) a carboxylic acid, and (e) an alcohol.
Type:
Grant
Filed:
April 7, 2008
Date of Patent:
February 12, 2013
Assignee:
Bridgestone Corporation
Inventors:
Zengquan Qin, Jason T. Poulton, David M. Roggeman, Shigeaki Matsuo
Abstract: The present invention discloses a catalyst system based on a metallocene catalyst component and a new single site catalyst component for the production in a single reactor of improved polyolefins having a bimodal molecular weight distribution.
Abstract: A catalyst component for the polymerization of olefins comprising Mg, Ti and Cl obtained by a process comprising the following steps: a) reacting a precursor of formula MgCl2.mEtOH, wherein m?1.5 having a porosity due to pores with radius up to 1? of higher than 0.4 cm3/g with an alcohol of formula RIOH where RI is an alkyl different from ethyl, a cycloalkyl or aryl radical having 3-20 carbon atoms said RIOH being reacted with the said precursor using molar ratio RIOH/Mg ranging from 0.01 to 10; and b) reacting the product obtained in (a) with TiCl4 using Ti/Mg molar ratio ranging from 0.01 to 15.
Abstract: The present invention provides polymerization catalyst compositions employing novel dinuclear metallocene compounds. Methods for making these new dinuclear metallocene compounds and for using such compounds in catalyst compositions for the polymerization and copolymerization of olefins are also provided.
Type:
Grant
Filed:
December 28, 2007
Date of Patent:
September 6, 2011
Assignee:
Chevron Phillips Chemical Company, L.P.
Inventors:
Rex E. Murray, Kumudini C. Jayaratne, Qing Yang, Joel L. Martin
Abstract: A process for producing a modified particle, which comprises the step of contacting a compound (a) defined by the formula, M1L13, a compound (b) defined by the formula, R1t-1TH, a compound (c) or (e) defined by the formula, R2m-uM2(OH)u or R24-nJ(OH)n, respectively, and a particle (d) with one another; a carrier comprising a modified particle produced by said process; a catalyst component (A) comprising a modified particle produced by said process; a process for producing a catalyst for addition polymerization, which comprises the step of contacting said catalyst component (A), a transition metal compound (B) and an optional organoaluminum compound (C) with one another; and a process for producing an addition polymer, which comprises the step of addition polymerizing an addition-polymerizable monomer in the presence of a catalyst for addition polymerization produced by said process.
Abstract: The present invention relates to a process for the polymerization of olefins, comprising the steps of introducing at least one olefin, at least one polymerization catalyst, at least one cocatalyst and at least one cocatalyst aid, and optionally a scavenger, into a polymerization reactor, and polymerizing the olefin, wherein the cocatalyst aid is a reaction product prepared separately prior to the introduction into the reactor by reacting at least one metal alkyl compound of group IIA or IIIA of the periodic system of elements and at least one compound (A) of the formula RmXR?n, wherein R is a branched, straight, or cyclic, substituted or unsubstituted, hydrocarbon group having 1 to 30 carbon atoms, R? is hydrogen or any functional group with at least one active hydrogen, X is at least one heteroatom selected from the group of O, N, P or S or a combination thereof, and wherein n and m are each at least 1 and are such that the formula has no net charge.
Type:
Grant
Filed:
May 12, 2006
Date of Patent:
April 5, 2011
Assignee:
Saudi Basic Industries Corporation
Inventors:
Wei Xu, Vugar O. Aliyev, Sirajudeen Mohamed, Atieh Abu-Raqabah
Abstract: A method for producing a polybutadiene, which comprises subjecting 1,3-butadiene to cis-1,4 polymerization, and subsequently subjecting a resultant in the resulting polymerization system to syndiotactic-1,2 polymerization, the method being characterized in that there is added, after the polymerization, a halogen acid or halogen acid salt.
Type:
Grant
Filed:
May 17, 2007
Date of Patent:
January 11, 2011
Assignee:
Ube Industries, Ltd.
Inventors:
Koji Shiba, Michinori Suzuki, Masato Murakami, Yuji Matsudaira
Abstract: A process for producing an olefin copolymerization catalyst, comprising the step of contacting, with one another, (A) a solid catalyst component containing a titanium atom, a magnesium atom and a halogen atom, (B) an organoaluminum compound and/or organoaluminumoxy compound, and (C) a nitrogen-containing aromatic heterocyclic compound, whose one or more carbon atoms adjacent to its nitrogen atom are linked to an electron-withdrawing group, or a group containing an electron-withdrawing group; and a process for producing an olefin copolymer using the an olefin copolymerization catalyst.
Abstract: In general the present invention provides a process for forming conjugated diene polymer, the process comprising the step of polymerizing conjugated diene monomer in the presence of a catalytically effective amount of a catalyst composition formed by combining (a) a nickel-containing compound, (b) an alkylating agent, (c) a fluorine-containing compound, (d) a carboxylic acid, and (e) an alcohol.
Type:
Application
Filed:
April 7, 2008
Publication date:
October 16, 2008
Inventors:
Zenquan Qin, Jason T. Poulton, David M. Roggeman, Shigeaki Matsuo
Abstract: The present invention relates to a prepolymerized catalyst for olefin polymerization, a process for polymerizing an olefin by using the catalyst and a polyolefin produced by the process, in which a Ziegler-Natta catalyst is prepolymerized sequentially using ?-olefin and vinyl saturated cyclic hydrocarbon, and then an olefin is polymerized using the prepolymerized Ziegler-Natta catalyst, thereby producing a polyolefin with high yield. Therefore, the polymerized polyolefin has high Isotactic index, bulk density, and crystallinity.
Type:
Application
Filed:
January 18, 2008
Publication date:
July 31, 2008
Applicant:
LG Chem, Ltd.
Inventors:
Ro-Mi Lee, Churl-Young Park, Cheon-II Park, Dong-Ryul Im, Jin-Woo Lee, Nan-Young Lee
Abstract: The invention related to a process for the polymerization of at least one aliphatic or aromatic hydrocarbyl C2-20 mono- or multiolefin in the presence of a catalyst and a boron comprising co-catalyst, wherein the catalyst comprises a composition of a metal-organic reagent, a spectator ligand and optionally at least one equivalent of a hydrocarbylating agent. The invention further relates to a polymer obtainable by the process of the invention.
Type:
Grant
Filed:
August 3, 2004
Date of Patent:
October 23, 2007
Assignee:
DSM IP Assets B.V.
Inventors:
Edwin Ijpeij, Henricus Arts, Gerardus van Doremaele, Felix Beijer, Francis van der Burgt, Martin Zuideveld
Abstract: The present invention relates to the preparation of syndiotactic 1,2-polybutadiene polymer using a catalyst containing a carbon disulfide in which the polymerizate thereof is treated with hydrogen peroxide, to preparation of a composite of conjugated diene-based elastomer and syndiotactic 1,2-polybutadiene polymer using a catalyst containing a carbon disulfide which the polymerizate thereof is treated with hydrogen peroxide, a rubber composition containing said syndiotactic 1,2-polybutadiene polymer and/or said composite and a tire having at least one rubber component thereof.
Abstract: In a method of adding catalysts for the polymerization of C2-C20-olefins, the catalyst is firstly introduced into a container A and the cocatalysts used are subsequently mixed with an inert solvent in a container B, and the contents of the container B are introduced into the container A and mixed with the catalyst there and the mixture is introduced from there into the actual polymerization reactor.
Abstract: A process for the oligomerization of ethylene to a mixture of olefinic products having high linearity is provided, by using a catalyst comprising a reaction product of a simple divalent nickel salt; a boron hydride reducing agent; a water soluble base; a ligand selected from the group consisting of an o-dihydrocarbylphosphinobenzoic acid and alkali metal salts thereof; and a phosphite.
Type:
Grant
Filed:
April 10, 2001
Date of Patent:
November 30, 2004
Assignee:
Shell Oil Company
Inventors:
David Stephen Brown, Richard Edward Robertson
Abstract: A novel process for the polymerization of olefins is provided. The process involves contacting at least one olefin with a Ziegler-Natta type catalyst in the presence of a specified compound that results in the production of polymeric products having a narrower molecular weight distribution. Also provide is a process for narrowing the molecular weight distribution of a polyolefin comprising contacting an olefin, a Ziegler-Natta catalyst and a compound specified herein. Further provided are novel polyethylenes, and films and articles produced therefrom.
Type:
Application
Filed:
June 19, 2003
Publication date:
November 13, 2003
Inventors:
Randal Ray Ford, Richard Kingsley Stuart
Abstract: A novel process for the polymerization of olefins is provided. The process involves contacting at least one olefin with a Ziegler-Natta type catalyst in the presence of a specified compound that results in the production of polymeric products having a narrower molecular weight distribution. Also provide is a process for narrowing the molecular weight distribution of a polyolefin comprising contacting an olefin, a Ziegler-Natta catalyst and a compound specified herein. Further provided are novel polyethylenes, and films and articles produced therefrom.
Type:
Grant
Filed:
July 27, 2001
Date of Patent:
August 19, 2003
Assignee:
Eastman Chemical Company
Inventors:
Randal Ray Ford, Richard Kingsley Stuart, Jr.
Abstract: A catalyst composition that is the combination of or the reaction product of ingredients comprising (a) an molybdenum-containing compound, (b) a silyl phosphonate, and (c) an organoaluminum compound.
Type:
Grant
Filed:
June 8, 2001
Date of Patent:
April 8, 2003
Assignee:
Bridgestone Corporation
Inventors:
Steven Luo, Michael W. Hayes, Dennis R. Brumbaugh
Abstract: Ethylene and/or propylene are polymerized to form highly branched, liquid polymers by contacting ethylene and/or propylene monomer, in the presence of an inert reaction medium, with a catalyst system which comprises (1) an alkyl aluminum component, (2) an aluminum or gallium trihalide component, and, optionally, (3) a Group 4 metallocene dihalide component.
Type:
Grant
Filed:
November 1, 2000
Date of Patent:
February 11, 2003
Inventors:
Ayusman Sen, Louis M. Wojcinski, II, Shahid Murtuza
Abstract: A catalyst composition that is the combination of or the reaction product of ingredients comprising (a) a chromium-containing compound; (b) an organomagnesium compound; and (c) a silyl phosphonate, also, a process for forming conjugated diene polymers by using the catalyst composition.
Abstract: A catalyst composition that is the combination of or the reaction product of ingredients comprising (a) (i) a halogen-containing iron compound or (ii) an iron-containing compound and a halogen-containing compound, (b) a silyl phosphonate, and (c) an organoaluminum compound.
Abstract: The present invention concerns a method for the copolymerization of conjugated diolefins and vinyl-aromatic monomers in the presence of rare-earth catalysts and the use of the copolymers in rubber mixtures for tire applications.
Type:
Grant
Filed:
August 15, 2000
Date of Patent:
June 4, 2002
Assignee:
Bayer Aktiengesellschaft
Inventors:
Heike Windisch, Jürgen Trimbach, Peter Schertl, Ellen Giebeler, Rüdiger Engehausen
Abstract: A process for producing polymer in a gas phase reactor by introducing a stream of monomer and gas into a polymerization zone while providing at least one liquid component in the polymerization zone.
Type:
Grant
Filed:
April 5, 2000
Date of Patent:
May 7, 2002
Assignee:
Union Carbide Chemicals & Plastics Technology
Corporation
Inventors:
Robert Joseph Noel Bernier, Robert Lorenz Boysen, Robert Cecil Brown, Mark Gregory Goode, John Henry Moorhouse, Robert Darrell Olson, Leonard Sebastian Scarola, Thomas Edward Spriggs, Duan-Fan Wang, Gary Harry Williams, Kevin Joseph Cann, Maria Angelica Apecetche, Natarajan Muruganandam, Gregory George Smith
Abstract: A process for production of an ethylene-propylene-diene-methylene (EPDM) tetrapolymer having long chain branching is described. The process comprises the step of polymerizing a monomer mixture comprising ethylene, propylene, a first diolefin monomer containing one polymerizable double bond (preferably ENB) and a second diolefin containing two polymerizable double bonds (preferably VNB) in the presence of a catalyst system. The catalyst system comprises: a catalyst comprising a compound containing vanadium +3 with the proviso that the compound does not comprise a halogen directly bound to the vanadium; a halogenated organoaluminum cocatalyst having a halogen to aluminum molar ratio in the range of from about 1 to about 2; and an activator. The branched polymer product of the present process exhibits a molecular weight distribution of less than about 3.5 and improved rheological properties and enhanced processability characteristics.
Type:
Grant
Filed:
December 15, 2000
Date of Patent:
May 7, 2002
Assignee:
Bayer Aktiengesellschaft
Inventors:
Hayder A. Zahalka, Dilipkumar Padliya, Harald Bender
Abstract: A method for preparing an &agr;-olefin polymer comprising the step of polymerizing or copolymerizing an &agr;-olefin in the presence of a catalyst containing a solid catalyst constituent (A) which contains magnesium, titanium, a halogen element and an electron donor, an organoaluminum compound constituent (B), an organosilicon compound constituent (C) represented by the following general formula (1); and an organosilicon compound constituent (D) represented by the following general formulas (2) or (3) to prepare an &agr;-olefin polymer
RnSi(OR)4−n (1)
wherein R is a hydrocarbon group having 1 to 8 carbon atoms, n is integer of 1 or 2;
wherein R1 is a hydrocarbon group having 1 to 8 carbon atoms, R2 is a hydrocarbon group having 1 to 8 carbon atoms, a hydrocarbylamino group having 2 to 24 carbon atoms, or a hydrocarbylalkoxy group having 1 to 24 carbon atoms, R3N is a polycyclic amino group having 7 to 40 carbon atoms, wherein the carbon atoms and the nitrogen atom form a c
Abstract: A polymer composition comprising at least two end segments that make up less than 15% of the total polymer composition. Each end segment has a vinyl content greater than about 45%. However, the vinyl content is less than about 35% throughout the remainder of the polymer composition.
Abstract: There are provided (i) a catalyst component (C), (ii) an olefin polymerization catalyst, and (iii) a process for producing an olefin polymer. The catalyst being obtained by contacting a solid catalyst component (A), an organoaluminum compound (B) and the catalyst component (C) of an organosilicon compound represented by the following formula (1),
wherein n is 1 or 2, R1 to and R6 are independently of one another a hydrogen or halogen atom or a hydrocarbon group, or may be bonded with one another to form a ring, R7 is a hydrocarbon group, and when n is 2, two R1s, R2s, R3s, R4s, R5s and R6s may be the same or different.
Abstract: The present invention includes novel ligands which may be utilized as part of a catalyst system. A catalyst system of the present invention is a transition metal-ligand complex. In particular, the catalyst system includes a transition metal component and a ligand component comprising a Nitrogen atom and/or functional groups comprising a Nitrogen atom, generally in the form of an imine functional group. In certain embodiments, the ligand component may further comprise a phosphorous atom. Preferred ligand components are bidentate (bind to the transition metal at two or more sites) and include a nitrogen-transition metal bond. The transition metal-ligand complex is generally cationic and associated with a weakly coordinating anion.
Type:
Application
Filed:
February 5, 2001
Publication date:
March 21, 2002
Inventors:
James Allen Ponasik,Jr., Jason Patrick McDevitt, Christopher Moore Killian, Peter Borden Mackenzie, Leslie Shane Moody
Abstract: A novel process for the polymerization of olefins is provided. The process involves contacting at least one olefin with a Ziegler-Natta type catalyst in the presence of a specified compound that results in the production of polymeric products having a narrower molecular weight distribution. Also provide is a process for narrowing the molecular weight distribution of a polyolefin comprising contacting an olefin, a Ziegler-Natta catalyst and a compound specified herein. Further provided are novel polyethylenes, and films and articles produced therefrom.
Type:
Application
Filed:
July 27, 2001
Publication date:
January 24, 2002
Inventors:
Randal Ray Ford, Richard Kingsley Stuart
Abstract: A catalyst composition that is the combination of or the reaction product of ingredients comprising a iron-containing compound, an organomagnesium compound, and a silyl phosphonate.
Abstract: This invention relates to a composition of matter represented by the formula below, and to a polymerization process comprising combining an olefin in the gas or slurry phase with an activator, a support and a compound represented by the following formula: 1
Type:
Application
Filed:
May 24, 2001
Publication date:
November 15, 2001
Inventors:
David H. McConville, Richard R. Schrock
Abstract: Conjugated diolefins, optionally in combination with other unsaturated compounds which may be copolymerized with the diolefins, are polymerized by performing the polymerization of the diolefins in the presence of catalysts based on cobalt compounds, organoaluminum compounds and modifiers in the presence of aromatic vinyl compounds at temperatures of −30° C. to +80° C. By means of the process according to the invention, it is possible straightforwardly to produce solutions of polydiolefins, such as polybutadiene, having different 1,2 unit contents in aromatic vinyl compounds, which solutions may then, for example, be further processed to yield ABS or HIPS.
Type:
Grant
Filed:
January 12, 2001
Date of Patent:
October 30, 2001
Assignee:
Bayer Aktiengesellschaft
Inventors:
Heike Windisch, Werner Obrecht, Gisbert Michels, Norbert Steinhauser
Abstract: A single-site olefin polymerization catalyst is described. The catalyst comprises an activator and an organometallic compound that includes a Group 3 to 10 transition or lanthanide metal, M, and a modified boraaryl ligand. We surprisingly found that the catalyst is more active in olefin polymerization compared to other catalysts containing non-modified boraaryl ligands. Most surprisingly, the supported catalyst gives polyolefins with a multimodal molecular weight distribution having separate components of distinct molecular weight.
Abstract: A catalyst composition that is the combination of or the reaction product of ingredients including an iron-containing compound, a hydrogen phosphite, a halogen-containing compound, and an organoaluminum compound. This catalyst composition is particularly useful for preparing oligomers of conjugated dienes.
Abstract: A high molecular weight polyethylene prepared by preliminary polymerization is added at the time of main polymerization of an olefin, for example, propylene, to prepare an olefin (co)polymer composition comprising the above high molecular weight polyethylene finely dispersed as fine particles in the polyolefin, such as polypropylene, and a cross-linked structure is formed in the olefin (co)polymer composition. This process can provide a modified olefin (co)polymer composition improved in the strength in a molten state in terms of melt tension or the like and in crystallization temperature and excellent in moldability such as high-speed producibility, and a molded modified olefin (co)polymer composition excellent in properties such as heat resistance and rigidity.
Type:
Grant
Filed:
October 1, 1999
Date of Patent:
May 15, 2001
Assignee:
Chisso Corporation
Inventors:
Akira Yamauchi, Shingo Kikukawa, Jun Saito, Hitoshi Sato
Abstract: The present invention provides catalyst systems useful in the polymerization of olefins comprising a transition metal component and a ligand component comprising a Nitrogen atom and/or functional groups comprising a Nitrogen atom, generally in the form of an imine functional group. In certain embodiments, the ligand component may further comprise a phosphorous atom. Preferred ligand components are bidentate (bind to the transition metal at two or more sites) and include a nitrogen-transition metal bond. The transition metal-ligand complex is generally cationic and associated with a weakly coordinating anion. In a preferred embodiment, the catalyst system of the present invention further comprises a Lewis or Bronsted acid complexed with the ligand component of the transition metal-ligand complex.
Type:
Grant
Filed:
December 29, 1998
Date of Patent:
March 13, 2001
Assignee:
Eastman Chemical Company
Inventors:
James Allen Ponasik, Jr., Jason Patrick McDevitt, Christopher Moore Killian, Peter Borden Mackenzie, Leslie Shane Moody, Gino Georges Lavoie
Abstract: A process for polymerizing 1,3-butadiene into syndiotactic 1,2-polybutadiene is described using a catalyst system comprising (a) a chromium-containing compound, (b) an organoaluminum hydride, and (c) a hydrogen phosphite. The use of the catalyst system avoids the use of environmentally detrimental components such as carbon disulfide and halogenated solvents. The syndiotactic 1,2-polybutadiene can be used as a plastic or as an additive for rubber compositions wherein it can crosslink with conventional rubbers using conventional crosslinking agents.
Type:
Grant
Filed:
October 14, 1998
Date of Patent:
July 6, 1999
Assignee:
Bridgestone Corporation
Inventors:
Steven Luo, Michael W. Hayes, Dennis R. Brumbaugh
Abstract: Diene rubbers are produced in the gas phase by first polymerizing the dienes or diene mixtures in the presence of a catalyst system, which is based on rare earth compounds, at temperatures of from 0 to 150.degree. C. and at pressures of from 1 mbar to 50 bar, so that a pourable diene rubber having a Mooney viscosity ML (1+4', 100.degree. C.) of 70 to 180 Mooney units is obtained, and subsequently subjecting the pourable diene rubber obtained to a chemical or thermal decomposition reaction until a Mooney viscosity of 10 to 70 Mooney units is obtained.
Abstract: A process for the preparation of a 1,2-vinyl-polybutadiene with an adjustable amount of vinyl linkages in the microstructure of the polymer which comprises polymerizing 1,3-butadiene in a gas phase reactor under polymerization conditions using an inert gas in the presence of a catalyst comprising: (a) a cobalt compound; (b) a compound selected from the group consisting of a phosphine, a xanthogen, a thiocyanide, a carbon disulfide, and mixtures thereof; and (c) an organoaluminum compound, and optionally a modifier (d) can be included in the catalyst composition. There is also provided a novel resin particle prepared by the process.
Type:
Grant
Filed:
September 9, 1997
Date of Patent:
March 9, 1999
Assignee:
Union Carbide Chemicals & Plastics Technology Corporation
Abstract: The synthesis and characterization of novel linear polymers and multi-arm star polymers comprising polyisobutylene arms connected to a well-defined calixarene core are described. The synthesis has been achieved using the "core first" method wherein multifunctional calix?n!arene (where n=4 to 16) derivatives or their monofunctional analogues are used as initiators which, in conjunction with certain Freidel-Crafts acids as co-initiators, induce the living polymerization of isobutylene or a similar carbocationic polymerizable monomer to form star polymers or block copolymers. Novel initiators suitable for inducing the polymerization are also described.
Type:
Grant
Filed:
May 23, 1997
Date of Patent:
September 8, 1998
Inventors:
Joseph P. Kennedy, Istvan J. Majoros, Sunny Jacob
Abstract: A process for polymerizing C.sub.2 -C.sub.10 -alk-1-enes in the presence of a metallocene complex of the formula I ##STR1## where the substituent groups have the meanings described in the specification.
Type:
Grant
Filed:
July 12, 1996
Date of Patent:
May 26, 1998
Assignee:
BASF Aktiengesellschaft
Inventors:
Franz Langhauser, David Fischer, Jurgen Kerth, Gunther Schweier, Hans-Herbert Brintzinger, Elke Barsties, Werner Roell
Abstract: This invention relates to a process for preparation of non-crosslinked linear monofunctional and telechelic difunctional unsaturated polymers wherein the functional groups are acrylate or methacrylate groups. The average functionality number of the monofunctional unsaturated polymers is at least 0.7, as determined by nuclear magnetic resonance spectroscopy (NMR). The average functionality number of the telechelic difunctional polymers is at least 1.7, as determined by NMR. Alkyl acrylates or alkyl methacrylates are reacted with cyclic olefinic non-conjugated compounds or unsaturated hydrocarbon polymers to prepare monofunctional and difunctional polymers. The process is substantially free of side reactions comprising double bond migration and cyclization.
Type:
Grant
Filed:
October 13, 1995
Date of Patent:
April 15, 1997
Assignee:
Amoco Corporation
Inventors:
Philip O. Nubel, Howard B. Yokelson, Steven A. Cohen, William G. Bouslog
Abstract: The subject invention relates to a technique for synthesizing rubbery non-tapered, random, copolymers of 1,3-butadiene and isoprene. These rubbery copolymers exhibit an excellent combination of properties for utilization in tire sidewall rubber compounds for truck tires. By utilizing these isoprene-butadiene rubbers in tire sidewalls, tires having improved cut growth resistance can be built without sacrificing rolling resistance. Such rubbers can also be employed in tire tread compounds to improve tread wear characteristics and decrease rolling resistance without sacrificing traction characteristics.
Type:
Grant
Filed:
October 28, 1994
Date of Patent:
March 26, 1996
Assignee:
The Goodyear Tire & Rubber Company
Inventors:
Anthony J. Bell, Barry A. Matrana, Adel F. Halasa