Contains Non-transition Elemental Metal, Hydride Thereof, Or Carbon To Non Transition Metal Atom Bond Patents (Class 526/136)
  • Patent number: 11059774
    Abstract: The present disclosure relates to fluid bed processes that utilize silica particles as a fluidization aid. The process comprises reacting one or more reactants in a reactor comprising a fluid bed to form a product. The fluid bed comprises a catalyst composition comprising a catalyst and an inert additive composition comprising silica particles from 0.5 wt % to 30 wt %, based on the total weight of the catalyst composition. The silica particles are discrete, inert particles that are mixed with the catalyst in the fluid bed.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: July 13, 2021
    Assignee: Ascend Performance Materials Operations LLC
    Inventors: Yawu T. Chi, James Sutton, Ali Akhavan, Celia L. Kniepmann, Matthew D. Cox, Valerie S. Monical
  • Patent number: 10301412
    Abstract: The invention provides a molecular transition metal complex selected from Formula 1, as described herein; an ethylene-based polymer; and a process to form the ethylene-based polymer, said process comprising polymerizing ethylene in the presence of at least one molecular transition metal complex selected from Formula 1, as described herein, and wherein either Z1 or Z2 is dative covalent (coordinate) to the metal (M).
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: May 28, 2019
    Assignee: Dow Global Technologies LLC
    Inventors: Jerzy Klosin, Endre Szuromi, Liam P. Spencer
  • Patent number: 9512305
    Abstract: The invention provides a rubber composition for tires, enabling a balanced improvement of processability, rubber strength, fuel economy, and crack growth resistance; and a pneumatic tire formed from the rubber composition. The invention relates to a rubber composition for tires, including: a butadiene rubber (a) having a cis content of 96% by mass or more, a Mooney viscosity of 35 to 75, and a ratio of (Weight average molecular weight (Mw))/(Number average molecular weight (Mn)) of 2.7 or less; and a butadiene rubber (b) containing 1,2-syndiotactic polybutadiene crystals with a melting point of 90 to 140° C., and having a weight average molecular weight of 50,000 to 500,000.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: December 6, 2016
    Assignee: SUMITOMO RUBBER INDUSTRIES, LTD.
    Inventor: Soh Ishino
  • Patent number: 8664343
    Abstract: A polymerization catalyst composition for preparing cis 1,4-polydienes is provided. The catalyst composition comprises (a) a metal-containing compound, said metal being a transition metal or a lanthanide metal; (b) a carbene, (c) an alkylating agent, and optionally (d) a halogen-containing compound with the proviso that the halogen-containing compound must be present when none of the metal-containing compound and the alkylating agent contain a labile halogen atom. Also provided is a process for producing a polydiene comprising reacting a conjugated diene in the presence of the polymerization catalyst composition.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: March 4, 2014
    Assignee: Bridgestone Corporation
    Inventors: Zengquan Qin, Jason T. Poulton
  • Patent number: 8497330
    Abstract: Methods for gas phase olefin polymerization are provided. The method can include combining a spray dried catalyst system with a diluent to produce a catalyst slurry. The catalyst system can include a metallocene compound. Ethylene, a continuity additive, and the catalyst slurry can be introduced to a gas phase fluidized bed reactor. The reactor can be operated at conditions sufficient to produce a polyethylene. The spray dried catalyst system can have a catalyst productivity of at least 12,000 grams polyethylene per gram of the catalyst system.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: July 30, 2013
    Assignee: Univation Technologies, LLC
    Inventors: F. David Hussein, Kevin J. Cann, Ann M. Schoeb-Wolters, Phuong A. Cao, Bruce J. Savatsky, Eric J. Markel, Daniel P. Zilker, Jr., Garth R. Giesbrecht
  • Publication number: 20130144018
    Abstract: The present invention generally relates to a process that copolymerizes two or more polymerizable olefins, and to cataclyst comprising a metal-ligand complex (precatalyst). The present invention also generally relates to ligands useful for preparing the metal-ligand complex.
    Type: Application
    Filed: August 24, 2011
    Publication date: June 6, 2013
    Applicant: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Jerzy Klosin, Pulikkottil J. Thomas, Carl N. Iverson, Nermeen W. Aboelella, Kevin A. Frazier
  • Patent number: 8372925
    Abstract: In general the present invention provides a process for forming conjugated diene polymer, the process comprising the step of polymerizing conjugated diene monomer in the presence of a catalytically effective amount of a catalyst composition formed by combining (a) a nickel-containing compound, (b) an alkylating agent, (c) a fluorine-containing compound, (d) a carboxylic acid, and (e) an alcohol.
    Type: Grant
    Filed: April 7, 2008
    Date of Patent: February 12, 2013
    Assignee: Bridgestone Corporation
    Inventors: Zengquan Qin, Jason T. Poulton, David M. Roggeman, Shigeaki Matsuo
  • Patent number: 8178634
    Abstract: The present invention discloses a catalyst system based on a metallocene catalyst component and a new single site catalyst component for the production in a single reactor of improved polyolefins having a bimodal molecular weight distribution.
    Type: Grant
    Filed: October 20, 2005
    Date of Patent: May 15, 2012
    Assignee: Total Petrochemicals Research Feluy
    Inventor: Abbas Razavi
  • Publication number: 20110282015
    Abstract: A catalyst component for the polymerization of olefins comprising Mg, Ti and Cl obtained by a process comprising the following steps: a) reacting a precursor of formula MgCl2.mEtOH, wherein m?1.5 having a porosity due to pores with radius up to 1? of higher than 0.4 cm3/g with an alcohol of formula RIOH where RI is an alkyl different from ethyl, a cycloalkyl or aryl radical having 3-20 carbon atoms said RIOH being reacted with the said precursor using molar ratio RIOH/Mg ranging from 0.01 to 10; and b) reacting the product obtained in (a) with TiCl4 using Ti/Mg molar ratio ranging from 0.01 to 15.
    Type: Application
    Filed: December 21, 2009
    Publication date: November 17, 2011
    Applicant: BASELL POLIOLEFINE ITALIA S.R.L.
    Inventors: Friedhelm Gundert, Martin Schneider
  • Patent number: 8012900
    Abstract: The present invention provides polymerization catalyst compositions employing novel dinuclear metallocene compounds. Methods for making these new dinuclear metallocene compounds and for using such compounds in catalyst compositions for the polymerization and copolymerization of olefins are also provided.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: September 6, 2011
    Assignee: Chevron Phillips Chemical Company, L.P.
    Inventors: Rex E. Murray, Kumudini C. Jayaratne, Qing Yang, Joel L. Martin
  • Patent number: 7932330
    Abstract: A process for producing a modified particle, which comprises the step of contacting a compound (a) defined by the formula, M1L13, a compound (b) defined by the formula, R1t-1TH, a compound (c) or (e) defined by the formula, R2m-uM2(OH)u or R24-nJ(OH)n, respectively, and a particle (d) with one another; a carrier comprising a modified particle produced by said process; a catalyst component (A) comprising a modified particle produced by said process; a process for producing a catalyst for addition polymerization, which comprises the step of contacting said catalyst component (A), a transition metal compound (B) and an optional organoaluminum compound (C) with one another; and a process for producing an addition polymer, which comprises the step of addition polymerizing an addition-polymerizable monomer in the presence of a catalyst for addition polymerization produced by said process.
    Type: Grant
    Filed: April 7, 2008
    Date of Patent: April 26, 2011
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Hideki Oshima, Makoto Satoh
  • Patent number: 7919569
    Abstract: The present invention relates to a process for the polymerization of olefins, comprising the steps of introducing at least one olefin, at least one polymerization catalyst, at least one cocatalyst and at least one cocatalyst aid, and optionally a scavenger, into a polymerization reactor, and polymerizing the olefin, wherein the cocatalyst aid is a reaction product prepared separately prior to the introduction into the reactor by reacting at least one metal alkyl compound of group IIA or IIIA of the periodic system of elements and at least one compound (A) of the formula RmXR?n, wherein R is a branched, straight, or cyclic, substituted or unsubstituted, hydrocarbon group having 1 to 30 carbon atoms, R? is hydrogen or any functional group with at least one active hydrogen, X is at least one heteroatom selected from the group of O, N, P or S or a combination thereof, and wherein n and m are each at least 1 and are such that the formula has no net charge.
    Type: Grant
    Filed: May 12, 2006
    Date of Patent: April 5, 2011
    Assignee: Saudi Basic Industries Corporation
    Inventors: Wei Xu, Vugar O. Aliyev, Sirajudeen Mohamed, Atieh Abu-Raqabah
  • Patent number: 7868103
    Abstract: A method for producing a polybutadiene, which comprises subjecting 1,3-butadiene to cis-1,4 polymerization, and subsequently subjecting a resultant in the resulting polymerization system to syndiotactic-1,2 polymerization, the method being characterized in that there is added, after the polymerization, a halogen acid or halogen acid salt.
    Type: Grant
    Filed: May 17, 2007
    Date of Patent: January 11, 2011
    Assignee: Ube Industries, Ltd.
    Inventors: Koji Shiba, Michinori Suzuki, Masato Murakami, Yuji Matsudaira
  • Publication number: 20090018012
    Abstract: A process for producing an olefin copolymerization catalyst, comprising the step of contacting, with one another, (A) a solid catalyst component containing a titanium atom, a magnesium atom and a halogen atom, (B) an organoaluminum compound and/or organoaluminumoxy compound, and (C) a nitrogen-containing aromatic heterocyclic compound, whose one or more carbon atoms adjacent to its nitrogen atom are linked to an electron-withdrawing group, or a group containing an electron-withdrawing group; and a process for producing an olefin copolymer using the an olefin copolymerization catalyst.
    Type: Application
    Filed: November 26, 2007
    Publication date: January 15, 2009
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Shinya NAKAHARA, Shin-ichi KUMAMOTO
  • Publication number: 20080255327
    Abstract: In general the present invention provides a process for forming conjugated diene polymer, the process comprising the step of polymerizing conjugated diene monomer in the presence of a catalytically effective amount of a catalyst composition formed by combining (a) a nickel-containing compound, (b) an alkylating agent, (c) a fluorine-containing compound, (d) a carboxylic acid, and (e) an alcohol.
    Type: Application
    Filed: April 7, 2008
    Publication date: October 16, 2008
    Inventors: Zenquan Qin, Jason T. Poulton, David M. Roggeman, Shigeaki Matsuo
  • Publication number: 20080182950
    Abstract: The present invention relates to a prepolymerized catalyst for olefin polymerization, a process for polymerizing an olefin by using the catalyst and a polyolefin produced by the process, in which a Ziegler-Natta catalyst is prepolymerized sequentially using ?-olefin and vinyl saturated cyclic hydrocarbon, and then an olefin is polymerized using the prepolymerized Ziegler-Natta catalyst, thereby producing a polyolefin with high yield. Therefore, the polymerized polyolefin has high Isotactic index, bulk density, and crystallinity.
    Type: Application
    Filed: January 18, 2008
    Publication date: July 31, 2008
    Applicant: LG Chem, Ltd.
    Inventors: Ro-Mi Lee, Churl-Young Park, Cheon-II Park, Dong-Ryul Im, Jin-Woo Lee, Nan-Young Lee
  • Patent number: 7285606
    Abstract: The invention related to a process for the polymerization of at least one aliphatic or aromatic hydrocarbyl C2-20 mono- or multiolefin in the presence of a catalyst and a boron comprising co-catalyst, wherein the catalyst comprises a composition of a metal-organic reagent, a spectator ligand and optionally at least one equivalent of a hydrocarbylating agent. The invention further relates to a polymer obtainable by the process of the invention.
    Type: Grant
    Filed: August 3, 2004
    Date of Patent: October 23, 2007
    Assignee: DSM IP Assets B.V.
    Inventors: Edwin Ijpeij, Henricus Arts, Gerardus van Doremaele, Felix Beijer, Francis van der Burgt, Martin Zuideveld
  • Patent number: 6956093
    Abstract: The present invention relates to the preparation of syndiotactic 1,2-polybutadiene polymer using a catalyst containing a carbon disulfide in which the polymerizate thereof is treated with hydrogen peroxide, to preparation of a composite of conjugated diene-based elastomer and syndiotactic 1,2-polybutadiene polymer using a catalyst containing a carbon disulfide which the polymerizate thereof is treated with hydrogen peroxide, a rubber composition containing said syndiotactic 1,2-polybutadiene polymer and/or said composite and a tire having at least one rubber component thereof.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: October 18, 2005
    Assignee: The Goodyear Tire & Rubber Company
    Inventors: Wen-Liang Hsu, Adel Farhan Halasa
  • Patent number: 6881801
    Abstract: In a method of adding catalysts for the polymerization of C2-C20-olefins, the catalyst is firstly introduced into a container A and the cocatalysts used are subsequently mixed with an inert solvent in a container B, and the contents of the container B are introduced into the container A and mixed with the catalyst there and the mixture is introduced from there into the actual polymerization reactor.
    Type: Grant
    Filed: February 28, 2002
    Date of Patent: April 19, 2005
    Assignee: Basell Polyolefine GmbH
    Inventors: Volker Dolle, Eduardo Enrique Chicote
  • Patent number: 6825148
    Abstract: A process for the oligomerization of ethylene to a mixture of olefinic products having high linearity is provided, by using a catalyst comprising a reaction product of a simple divalent nickel salt; a boron hydride reducing agent; a water soluble base; a ligand selected from the group consisting of an o-dihydrocarbylphosphinobenzoic acid and alkali metal salts thereof; and a phosphite.
    Type: Grant
    Filed: April 10, 2001
    Date of Patent: November 30, 2004
    Assignee: Shell Oil Company
    Inventors: David Stephen Brown, Richard Edward Robertson
  • Publication number: 20030216525
    Abstract: A novel loop/slurry olefin polymerization process is provided which produces ultra-high molecular weight ethylene homopolymer.
    Type: Application
    Filed: June 17, 2003
    Publication date: November 20, 2003
    Inventors: Max P. McDaniel, Elizabeth A. Benham
  • Publication number: 20030212219
    Abstract: A novel process for the polymerization of olefins is provided. The process involves contacting at least one olefin with a Ziegler-Natta type catalyst in the presence of a specified compound that results in the production of polymeric products having a narrower molecular weight distribution. Also provide is a process for narrowing the molecular weight distribution of a polyolefin comprising contacting an olefin, a Ziegler-Natta catalyst and a compound specified herein. Further provided are novel polyethylenes, and films and articles produced therefrom.
    Type: Application
    Filed: June 19, 2003
    Publication date: November 13, 2003
    Inventors: Randal Ray Ford, Richard Kingsley Stuart
  • Patent number: 6608152
    Abstract: A novel process for the polymerization of olefins is provided. The process involves contacting at least one olefin with a Ziegler-Natta type catalyst in the presence of a specified compound that results in the production of polymeric products having a narrower molecular weight distribution. Also provide is a process for narrowing the molecular weight distribution of a polyolefin comprising contacting an olefin, a Ziegler-Natta catalyst and a compound specified herein. Further provided are novel polyethylenes, and films and articles produced therefrom.
    Type: Grant
    Filed: July 27, 2001
    Date of Patent: August 19, 2003
    Assignee: Eastman Chemical Company
    Inventors: Randal Ray Ford, Richard Kingsley Stuart, Jr.
  • Patent number: 6545107
    Abstract: A catalyst composition that is the combination of or the reaction product of ingredients comprising (a) an molybdenum-containing compound, (b) a silyl phosphonate, and (c) an organoaluminum compound.
    Type: Grant
    Filed: June 8, 2001
    Date of Patent: April 8, 2003
    Assignee: Bridgestone Corporation
    Inventors: Steven Luo, Michael W. Hayes, Dennis R. Brumbaugh
  • Patent number: 6518384
    Abstract: Ethylene and/or propylene are polymerized to form highly branched, liquid polymers by contacting ethylene and/or propylene monomer, in the presence of an inert reaction medium, with a catalyst system which comprises (1) an alkyl aluminum component, (2) an aluminum or gallium trihalide component, and, optionally, (3) a Group 4 metallocene dihalide component.
    Type: Grant
    Filed: November 1, 2000
    Date of Patent: February 11, 2003
    Inventors: Ayusman Sen, Louis M. Wojcinski, II, Shahid Murtuza
  • Patent number: 6465585
    Abstract: A catalyst composition that is the combination of or the reaction product of ingredients comprising (a) a chromium-containing compound; (b) an organomagnesium compound; and (c) a silyl phosphonate, also, a process for forming conjugated diene polymers by using the catalyst composition.
    Type: Grant
    Filed: February 19, 2001
    Date of Patent: October 15, 2002
    Assignee: Bridgestone Corporation
    Inventor: Steven Luo
  • Patent number: 6433237
    Abstract: A catalyst composition that is the combination of or the reaction product of ingredients comprising (a) (i) a halogen-containing iron compound or (ii) an iron-containing compound and a halogen-containing compound, (b) a silyl phosphonate, and (c) an organoaluminum compound.
    Type: Grant
    Filed: February 19, 2001
    Date of Patent: August 13, 2002
    Assignee: Bridgestone Corporation
    Inventor: Steven Luo
  • Patent number: 6399726
    Abstract: The present invention concerns a method for the copolymerization of conjugated diolefins and vinyl-aromatic monomers in the presence of rare-earth catalysts and the use of the copolymers in rubber mixtures for tire applications.
    Type: Grant
    Filed: August 15, 2000
    Date of Patent: June 4, 2002
    Assignee: Bayer Aktiengesellschaft
    Inventors: Heike Windisch, Jürgen Trimbach, Peter Schertl, Ellen Giebeler, Rüdiger Engehausen
  • Patent number: 6384156
    Abstract: A process for producing polymer in a gas phase reactor by introducing a stream of monomer and gas into a polymerization zone while providing at least one liquid component in the polymerization zone.
    Type: Grant
    Filed: April 5, 2000
    Date of Patent: May 7, 2002
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: Robert Joseph Noel Bernier, Robert Lorenz Boysen, Robert Cecil Brown, Mark Gregory Goode, John Henry Moorhouse, Robert Darrell Olson, Leonard Sebastian Scarola, Thomas Edward Spriggs, Duan-Fan Wang, Gary Harry Williams, Kevin Joseph Cann, Maria Angelica Apecetche, Natarajan Muruganandam, Gregory George Smith
  • Patent number: 6384162
    Abstract: A process for production of an ethylene-propylene-diene-methylene (EPDM) tetrapolymer having long chain branching is described. The process comprises the step of polymerizing a monomer mixture comprising ethylene, propylene, a first diolefin monomer containing one polymerizable double bond (preferably ENB) and a second diolefin containing two polymerizable double bonds (preferably VNB) in the presence of a catalyst system. The catalyst system comprises: a catalyst comprising a compound containing vanadium +3 with the proviso that the compound does not comprise a halogen directly bound to the vanadium; a halogenated organoaluminum cocatalyst having a halogen to aluminum molar ratio in the range of from about 1 to about 2; and an activator. The branched polymer product of the present process exhibits a molecular weight distribution of less than about 3.5 and improved rheological properties and enhanced processability characteristics.
    Type: Grant
    Filed: December 15, 2000
    Date of Patent: May 7, 2002
    Assignee: Bayer Aktiengesellschaft
    Inventors: Hayder A. Zahalka, Dilipkumar Padliya, Harald Bender
  • Patent number: 6376628
    Abstract: A method for preparing an &agr;-olefin polymer comprising the step of polymerizing or copolymerizing an &agr;-olefin in the presence of a catalyst containing a solid catalyst constituent (A) which contains magnesium, titanium, a halogen element and an electron donor, an organoaluminum compound constituent (B), an organosilicon compound constituent (C) represented by the following general formula (1); and an organosilicon compound constituent (D) represented by the following general formulas (2) or (3) to prepare an &agr;-olefin polymer RnSi(OR)4−n  (1) wherein R is a hydrocarbon group having 1 to 8 carbon atoms, n is integer of 1 or 2; wherein R1 is a hydrocarbon group having 1 to 8 carbon atoms, R2 is a hydrocarbon group having 1 to 8 carbon atoms, a hydrocarbylamino group having 2 to 24 carbon atoms, or a hydrocarbylalkoxy group having 1 to 24 carbon atoms, R3N is a polycyclic amino group having 7 to 40 carbon atoms, wherein the carbon atoms and the nitrogen atom form a c
    Type: Grant
    Filed: May 19, 1999
    Date of Patent: April 23, 2002
    Assignee: Grand Polymer Co., Ltd.
    Inventors: Shigeru Ikai, Hiroyuki Ikeuchi, Yasuhisa Sakakibara, Hiroshi Satoh
  • Patent number: 6362282
    Abstract: A polymer composition comprising at least two end segments that make up less than 15% of the total polymer composition. Each end segment has a vinyl content greater than about 45%. However, the vinyl content is less than about 35% throughout the remainder of the polymer composition.
    Type: Grant
    Filed: September 29, 2000
    Date of Patent: March 26, 2002
    Assignee: Firestone Polymers, LLC
    Inventor: Mark N. DeDecker
  • Patent number: 6362124
    Abstract: There are provided (i) a catalyst component (C), (ii) an olefin polymerization catalyst, and (iii) a process for producing an olefin polymer. The catalyst being obtained by contacting a solid catalyst component (A), an organoaluminum compound (B) and the catalyst component (C) of an organosilicon compound represented by the following formula (1), wherein n is 1 or 2, R1 to and R6 are independently of one another a hydrogen or halogen atom or a hydrocarbon group, or may be bonded with one another to form a ring, R7 is a hydrocarbon group, and when n is 2, two R1s, R2s, R3s, R4s, R5s and R6s may be the same or different.
    Type: Grant
    Filed: February 15, 2000
    Date of Patent: March 26, 2002
    Assignee: Sumitomo Chemical Co., Ltd.
    Inventors: Hiroshi Kuribayashi, Makoto Satoh
  • Publication number: 20020035030
    Abstract: The present invention includes novel ligands which may be utilized as part of a catalyst system. A catalyst system of the present invention is a transition metal-ligand complex. In particular, the catalyst system includes a transition metal component and a ligand component comprising a Nitrogen atom and/or functional groups comprising a Nitrogen atom, generally in the form of an imine functional group. In certain embodiments, the ligand component may further comprise a phosphorous atom. Preferred ligand components are bidentate (bind to the transition metal at two or more sites) and include a nitrogen-transition metal bond. The transition metal-ligand complex is generally cationic and associated with a weakly coordinating anion.
    Type: Application
    Filed: February 5, 2001
    Publication date: March 21, 2002
    Inventors: James Allen Ponasik,Jr., Jason Patrick McDevitt, Christopher Moore Killian, Peter Borden Mackenzie, Leslie Shane Moody
  • Publication number: 20020022706
    Abstract: A novel loop/slurry olefin polymerization process is provided which produces ultra-high molecular weight ethylene homopolymer.
    Type: Application
    Filed: August 7, 2001
    Publication date: February 21, 2002
    Applicant: Phillips Petroleum Company
    Inventors: Max P. McDaniel, Elizabeth A. Benham
  • Publication number: 20020010292
    Abstract: A novel process for the polymerization of olefins is provided. The process involves contacting at least one olefin with a Ziegler-Natta type catalyst in the presence of a specified compound that results in the production of polymeric products having a narrower molecular weight distribution. Also provide is a process for narrowing the molecular weight distribution of a polyolefin comprising contacting an olefin, a Ziegler-Natta catalyst and a compound specified herein. Further provided are novel polyethylenes, and films and articles produced therefrom.
    Type: Application
    Filed: July 27, 2001
    Publication date: January 24, 2002
    Inventors: Randal Ray Ford, Richard Kingsley Stuart
  • Patent number: 6320004
    Abstract: A catalyst composition that is the combination of or the reaction product of ingredients comprising a iron-containing compound, an organomagnesium compound, and a silyl phosphonate.
    Type: Grant
    Filed: April 5, 2001
    Date of Patent: November 20, 2001
    Assignee: Bridgestone Corporation
    Inventor: Steven Luo
  • Publication number: 20010041778
    Abstract: This invention relates to a composition of matter represented by the formula below, and to a polymerization process comprising combining an olefin in the gas or slurry phase with an activator, a support and a compound represented by the following formula: 1
    Type: Application
    Filed: May 24, 2001
    Publication date: November 15, 2001
    Inventors: David H. McConville, Richard R. Schrock
  • Patent number: 6310151
    Abstract: Conjugated diolefins, optionally in combination with other unsaturated compounds which may be copolymerized with the diolefins, are polymerized by performing the polymerization of the diolefins in the presence of catalysts based on cobalt compounds, organoaluminum compounds and modifiers in the presence of aromatic vinyl compounds at temperatures of −30° C. to +80° C. By means of the process according to the invention, it is possible straightforwardly to produce solutions of polydiolefins, such as polybutadiene, having different 1,2 unit contents in aromatic vinyl compounds, which solutions may then, for example, be further processed to yield ABS or HIPS.
    Type: Grant
    Filed: January 12, 2001
    Date of Patent: October 30, 2001
    Assignee: Bayer Aktiengesellschaft
    Inventors: Heike Windisch, Werner Obrecht, Gisbert Michels, Norbert Steinhauser
  • Patent number: 6294626
    Abstract: A single-site olefin polymerization catalyst is described. The catalyst comprises an activator and an organometallic compound that includes a Group 3 to 10 transition or lanthanide metal, M, and a modified boraaryl ligand. We surprisingly found that the catalyst is more active in olefin polymerization compared to other catalysts containing non-modified boraaryl ligands. Most surprisingly, the supported catalyst gives polyolefins with a multimodal molecular weight distribution having separate components of distinct molecular weight.
    Type: Grant
    Filed: November 15, 1999
    Date of Patent: September 25, 2001
    Assignee: Equistar Chemicals, LP
    Inventors: Shaotian Wang, Jean A. Merrick-Mack
  • Patent number: 6281305
    Abstract: A catalyst composition that is the combination of or the reaction product of ingredients including an iron-containing compound, a hydrogen phosphite, a halogen-containing compound, and an organoaluminum compound. This catalyst composition is particularly useful for preparing oligomers of conjugated dienes.
    Type: Grant
    Filed: November 5, 1999
    Date of Patent: August 28, 2001
    Assignee: Bridgestone Corporation
    Inventor: Steven Luo
  • Patent number: 6231804
    Abstract: A high molecular weight polyethylene prepared by preliminary polymerization is added at the time of main polymerization of an olefin, for example, propylene, to prepare an olefin (co)polymer composition comprising the above high molecular weight polyethylene finely dispersed as fine particles in the polyolefin, such as polypropylene, and a cross-linked structure is formed in the olefin (co)polymer composition. This process can provide a modified olefin (co)polymer composition improved in the strength in a molten state in terms of melt tension or the like and in crystallization temperature and excellent in moldability such as high-speed producibility, and a molded modified olefin (co)polymer composition excellent in properties such as heat resistance and rigidity.
    Type: Grant
    Filed: October 1, 1999
    Date of Patent: May 15, 2001
    Assignee: Chisso Corporation
    Inventors: Akira Yamauchi, Shingo Kikukawa, Jun Saito, Hitoshi Sato
  • Patent number: 6200925
    Abstract: The present invention provides catalyst systems useful in the polymerization of olefins comprising a transition metal component and a ligand component comprising a Nitrogen atom and/or functional groups comprising a Nitrogen atom, generally in the form of an imine functional group. In certain embodiments, the ligand component may further comprise a phosphorous atom. Preferred ligand components are bidentate (bind to the transition metal at two or more sites) and include a nitrogen-transition metal bond. The transition metal-ligand complex is generally cationic and associated with a weakly coordinating anion. In a preferred embodiment, the catalyst system of the present invention further comprises a Lewis or Bronsted acid complexed with the ligand component of the transition metal-ligand complex.
    Type: Grant
    Filed: December 29, 1998
    Date of Patent: March 13, 2001
    Assignee: Eastman Chemical Company
    Inventors: James Allen Ponasik, Jr., Jason Patrick McDevitt, Christopher Moore Killian, Peter Borden Mackenzie, Leslie Shane Moody, Gino Georges Lavoie
  • Patent number: 5919875
    Abstract: A process for polymerizing 1,3-butadiene into syndiotactic 1,2-polybutadiene is described using a catalyst system comprising (a) a chromium-containing compound, (b) an organoaluminum hydride, and (c) a hydrogen phosphite. The use of the catalyst system avoids the use of environmentally detrimental components such as carbon disulfide and halogenated solvents. The syndiotactic 1,2-polybutadiene can be used as a plastic or as an additive for rubber compositions wherein it can crosslink with conventional rubbers using conventional crosslinking agents.
    Type: Grant
    Filed: October 14, 1998
    Date of Patent: July 6, 1999
    Assignee: Bridgestone Corporation
    Inventors: Steven Luo, Michael W. Hayes, Dennis R. Brumbaugh
  • Patent number: 5914377
    Abstract: Diene rubbers are produced in the gas phase by first polymerizing the dienes or diene mixtures in the presence of a catalyst system, which is based on rare earth compounds, at temperatures of from 0 to 150.degree. C. and at pressures of from 1 mbar to 50 bar, so that a pourable diene rubber having a Mooney viscosity ML (1+4', 100.degree. C.) of 70 to 180 Mooney units is obtained, and subsequently subjecting the pourable diene rubber obtained to a chemical or thermal decomposition reaction until a Mooney viscosity of 10 to 70 Mooney units is obtained.
    Type: Grant
    Filed: March 4, 1997
    Date of Patent: June 22, 1999
    Assignee: Bayer AG
    Inventors: Gerd Sylvester, Hugo Vernaleken
  • Patent number: 5879805
    Abstract: A process for the preparation of a 1,2-vinyl-polybutadiene with an adjustable amount of vinyl linkages in the microstructure of the polymer which comprises polymerizing 1,3-butadiene in a gas phase reactor under polymerization conditions using an inert gas in the presence of a catalyst comprising: (a) a cobalt compound; (b) a compound selected from the group consisting of a phosphine, a xanthogen, a thiocyanide, a carbon disulfide, and mixtures thereof; and (c) an organoaluminum compound, and optionally a modifier (d) can be included in the catalyst composition. There is also provided a novel resin particle prepared by the process.
    Type: Grant
    Filed: September 9, 1997
    Date of Patent: March 9, 1999
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: Monika Brady, Kevin Joseph Cann
  • Patent number: 5804664
    Abstract: The synthesis and characterization of novel linear polymers and multi-arm star polymers comprising polyisobutylene arms connected to a well-defined calixarene core are described. The synthesis has been achieved using the "core first" method wherein multifunctional calix?n!arene (where n=4 to 16) derivatives or their monofunctional analogues are used as initiators which, in conjunction with certain Freidel-Crafts acids as co-initiators, induce the living polymerization of isobutylene or a similar carbocationic polymerizable monomer to form star polymers or block copolymers. Novel initiators suitable for inducing the polymerization are also described.
    Type: Grant
    Filed: May 23, 1997
    Date of Patent: September 8, 1998
    Inventors: Joseph P. Kennedy, Istvan J. Majoros, Sunny Jacob
  • Patent number: 5756608
    Abstract: A process for polymerizing C.sub.2 -C.sub.10 -alk-1-enes in the presence of a metallocene complex of the formula I ##STR1## where the substituent groups have the meanings described in the specification.
    Type: Grant
    Filed: July 12, 1996
    Date of Patent: May 26, 1998
    Assignee: BASF Aktiengesellschaft
    Inventors: Franz Langhauser, David Fischer, Jurgen Kerth, Gunther Schweier, Hans-Herbert Brintzinger, Elke Barsties, Werner Roell
  • Patent number: 5621047
    Abstract: This invention relates to a process for preparation of non-crosslinked linear monofunctional and telechelic difunctional unsaturated polymers wherein the functional groups are acrylate or methacrylate groups. The average functionality number of the monofunctional unsaturated polymers is at least 0.7, as determined by nuclear magnetic resonance spectroscopy (NMR). The average functionality number of the telechelic difunctional polymers is at least 1.7, as determined by NMR. Alkyl acrylates or alkyl methacrylates are reacted with cyclic olefinic non-conjugated compounds or unsaturated hydrocarbon polymers to prepare monofunctional and difunctional polymers. The process is substantially free of side reactions comprising double bond migration and cyclization.
    Type: Grant
    Filed: October 13, 1995
    Date of Patent: April 15, 1997
    Assignee: Amoco Corporation
    Inventors: Philip O. Nubel, Howard B. Yokelson, Steven A. Cohen, William G. Bouslog
  • Patent number: 5502126
    Abstract: The subject invention relates to a technique for synthesizing rubbery non-tapered, random, copolymers of 1,3-butadiene and isoprene. These rubbery copolymers exhibit an excellent combination of properties for utilization in tire sidewall rubber compounds for truck tires. By utilizing these isoprene-butadiene rubbers in tire sidewalls, tires having improved cut growth resistance can be built without sacrificing rolling resistance. Such rubbers can also be employed in tire tread compounds to improve tread wear characteristics and decrease rolling resistance without sacrificing traction characteristics.
    Type: Grant
    Filed: October 28, 1994
    Date of Patent: March 26, 1996
    Assignee: The Goodyear Tire & Rubber Company
    Inventors: Anthony J. Bell, Barry A. Matrana, Adel F. Halasa