Non-metal Phosphorus-containing Material Patents (Class 526/145)
  • Publication number: 20100227988
    Abstract: Disclosed are catalyst compositions having an external electron donor which includes one or more of the following compositions: a phosphite, a phosphonite, a pyrophosphite, and/or a diphosphazane. Ziegler-Natta catalyst compositions containing the present external electron donor exhibit strong activity and produce propylene-based olefins with high isotacticity and high melt flow rate.
    Type: Application
    Filed: December 29, 2009
    Publication date: September 9, 2010
    Inventor: Joseph N. Coalter, III
  • Publication number: 20100219405
    Abstract: A polymer containing a repeating unit expressed by General Formula (I): General Formula (I) where Ar1 represents a substituted or unsubstituted aromatic hydrocarbon group; Ar2 and Ar3 each independently represent a divalent group of a substituted or unsubstituted aromatic hydrocarbon group; and R1 and R2 each independently represent a hydrogen atom, substituted or unsubstituted alkyl group, or substituted or unsubstituted aromatic hydrocarbon group.
    Type: Application
    Filed: September 11, 2008
    Publication date: September 2, 2010
    Inventors: Toshiya Sagisaka, Takashi Okada, Masaomi Sasaki, Masafumi Torii, Takuji Kato, Tamotsu Aruga, Satoshi Yamamoto, Daisuke Goto, Shinji Matsumoto
  • Publication number: 20100216957
    Abstract: The invention refers to a process for preparing a Group 2 metal/transition metal olefin polymerization catalyst component in particulate form having an improved polymerisation properties due to the addition of a phosphorous compound during catalyst component preparation and the use thereof in a process for polymerising olefins.
    Type: Application
    Filed: December 28, 2007
    Publication date: August 26, 2010
    Applicant: BOREALIS TECHNOLOGY OY
    Inventors: Anssi Haikarainen, Peter Denifl, Timo Leinonen
  • Publication number: 20100190939
    Abstract: The present invention relates to a catalyst composition and a process for di-, tri- and/or tetramerization of ethylene, wherein the catalyst composition comprises a chromium compound, a ligand of the general structure (A) R1R2P—N(R3)—P(R4)—N(R5)—H or (B) R1R2P—N(R3)—P(R4)—N(R5)—PR6R7, or any cyclic derivatives of (A) and (B), wherein at least one of the P or N atoms of the PNPN-unit or PNPNP-unit is member of a ring system, the ring system being formed from one or more constituent compounds of structures (A) or (B) by substitution and a co-catalyst or activator.
    Type: Application
    Filed: June 16, 2008
    Publication date: July 29, 2010
    Inventors: Peter M. Fritz, Heinz Bölt, Anina Wöhl, Wolfgang Müller, Florian Winkler, Anton Wellenhofer, Uwe Rosenthal, Bernd H. Müller, Marko Hapke, Normen Peulecke, Mohammed Hassan Al-Hazmi, Vugar O. Aliyev, Fuad Mohammed Mosa
  • Patent number: 7759439
    Abstract: A method of controlling the molecular weight of poly(cyclic)olefin (norbornene-type) polymers and activating the polymerization thereof with a single material is provided. Such method include adding a chain transfer/activating agent to a mixture of monomer(s), catalyst, solvent and an optional cocatalyst and polymerizing the mixture to form a polymer. It is shown that the amount of chain transfer/activating agent in the mixture can serve to control the molecular weight of the resulting polymer, its percent conversion or both, and in some embodiments the optical density of the resulting polymer.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: July 20, 2010
    Assignee: Promerus LLC
    Inventors: Larry F. Rhodes, Steven Smith, Pramod Kandanarachchi, Chun Chang, Patrick Bradley
  • Patent number: 7737233
    Abstract: Novel catalyst systems for metathesis reactions, in particular for the metathesis of nitrile rubber, which contain a specific salt additive in addition to the metathesis catalyst are provided.
    Type: Grant
    Filed: August 18, 2008
    Date of Patent: June 15, 2010
    Assignee: LANXESS Deutschland GmbH
    Inventors: Werner Obrecht, Kirstin Langfeld, Martin Schneider, Oskar Nuyken
  • Publication number: 20100144969
    Abstract: The present invention provides novel bimetallic complexes and methods of using the same in the isoselective polymerization of epoxides. The invention also provides methods of kinetic resolution of epoxides. The invention further provides polyethers with high enantiomeric excess that are useful in applications ranging from consumer goods to materials.
    Type: Application
    Filed: February 16, 2010
    Publication date: June 10, 2010
    Applicant: CORNELL UNIVERSITY
    Inventors: Geoffrey W. Coates, Wataru Hirahata
  • Publication number: 20100093920
    Abstract: Embodiments relate to a novel catalyst composition comprising a transition metal-containing compound, a PNP compound, an alkylating agent and a fluorine containing compound. Other embodiments relate to a method of polymerizing a diene monomer in the presence of the novel composition to form a diene-containing polymer having greater than 90% cis content.
    Type: Application
    Filed: October 1, 2009
    Publication date: April 15, 2010
    Inventors: James H. PAWLOW, Terrence E. HOGAN
  • Publication number: 20100081777
    Abstract: A new P—N—P ligand is useful in ethylene oligomerizations. In combination with i) a source of chromium and ii) an activator such as methylalumoxane; the ligand of this invention may be used to prepare an oligomer product that contains a mixture of hexenes and octenes. The hexenes and octenes produced with this ligand contain very low levels of internal olefins when produced under preferred reaction conditions.
    Type: Application
    Filed: September 1, 2009
    Publication date: April 1, 2010
    Inventors: Xiaoliang Gao, Charles Ashton Garret Carter, Lee Douglas Henderson
  • Patent number: 7678869
    Abstract: A polymerization process comprising initiating a first polymerization of monomers using an initiator functionalized with an ATRP initiating site, wherein the first polymerization is selected from the group of cationic polymerization, anionic polymerization, conventional free radical polymerization, metathesis, ring opening polymerization, cationic ring opening polymerization, and coordination polymerization to form a macroinitiator comprising an ATRP initiating site and further initiating an ATRP polymerization of radically polymerizable monomers using the macroinitiator comprising an ATRP initiating site. Novel block copolymers may be formed by the disclosed method.
    Type: Grant
    Filed: May 8, 2006
    Date of Patent: March 16, 2010
    Assignee: Carnegie Mellon University
    Inventors: Krzysztof Matyjaszewski, Scott G. Gaynor, Simion Coca, Yoshiki Nakagawa
  • Publication number: 20090292088
    Abstract: A process is provided whereby cycloolefin addition (co)polymers having excellent heat resistance, transparency and toughness and having a molecular weight adjusted such that the copolymers can form films, sheets and the like, are produced simply by using small amounts of a palladium catalyst and a molecular weight modifier without steps for removing the catalyst residues and unreacted monomers. The process for producing cycloolefin addition (co)polymers includes addition (co)polymerizing monomers including a cycloolefin compound as a main monomer, in the presence of ethene and catalysts including (a) an organic acid salt of palladium or a ?-diketonate compound of palladium; (b) a cyclopentylphosphine compound; and (c) an ionic boron compound or an ionic aluminum compound.
    Type: Application
    Filed: December 7, 2006
    Publication date: November 26, 2009
    Applicant: JSR CORPORATION
    Inventors: Noboru Oshima, Takashi Imamura, Kenzo Ohkita
  • Patent number: 7595413
    Abstract: The invention relates to a phosphine-substituted vinyl containing metallocene catalyst, and also to the preparation process of the same as well as to the application of the catalyst. The catalyst has the general formula of Cp2(CR1?CR2(P(R3)2))MX, wherein Cp is a ligand containing cyclopentadiene having 1˜5 substitutions, of which two neighbors connecting to each other to form fused rings having more than two members; R1-R3 is selected from the groups consisting of hydrogen, C1˜C18 alkyl or perfluoro-alkyl, C6˜C24 aralkyl or alkaryl; M is selected from the groups consisting of metals of the IVB group; and X is selected from the groups consisting of halogens, C1˜C24 alkyl alkoxyl, silicone or alkaryl. With aluminoxane or modified aluminoxane, aluminum alkyl, halogenated aluminum alkyl or their mixture as the catalyst promoter the phosphine-substituted vinyl containing metallocene catalyst may be employed as the major catalyst for the polymerization or copolymerization of alpha-olefin.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: September 29, 2009
    Assignee: PetroChina Company Limited
    Inventors: Jianjun Yi, Wenhua Sun, Peng Hao, Shu Zhang
  • Patent number: 7524912
    Abstract: A polymerizable composition including a late transition metal complex, a non-polar olefin, a polar olefin, and a free radical scavenger, wherein the polymerizable composition is capable of forming a linear poly[(non-polar olefin)-(polar olefin)] substantially free of free radical addition polymer, is disclosed. A method of copolymerizing a non-polar olefin with a polar olefin, catalyzed by a late transition metal complex in the presence of a free radical scavenger, to produce a linear poly[(non-polar olefin)-(polar olefin)] substantially free of free radical addition polymer is also disclosed.
    Type: Grant
    Filed: February 13, 2008
    Date of Patent: April 28, 2009
    Assignee: Rohm and Haas Company
    Inventors: Brian Leslie Goodall, Thomas Cleveland Kirk, Lester Howard McIntosh, III
  • Patent number: 7524905
    Abstract: Substantially linear copolymers derived from at least one acyclic aliphatic olefin monomer and at least one nitrogen containing vinyl monomer, wherein the at least one nitrogen containing vinyl monomer is according to Formula (I) wherein R19 is selected —C?C; and —C(O)—C?C; wherein R20 and R21 are independently selected from H, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a biphenyl group, a carboxylate group, a carboxyalkyl group, a carboxyarylalkyl group, an alkoxy group, an alkenyloxy group, an alkynyloxy group, an aryloxy group, an alkoxycarbonyl group, and derivatives thereof. Also disclosed are methods of making such copolymers using late transition metal catalyst complexes.
    Type: Grant
    Filed: February 20, 2008
    Date of Patent: April 28, 2009
    Assignee: Rohm and Haas Company
    Inventors: David M. Conner, Brian Leslie Goodall, Lester Howard McIntosh, III
  • Publication number: 20090069517
    Abstract: The present invention relates to ligands and catalyst systems and a process for the simultaneous trimerization and tetramerization of olefinic monomers using said ligands, the ligands having the general formula (I): (R1)2P—P(R1)m(R2)n?N(R3)??(I) wherein R3 is selected from hydrogen, a hydrocarbyl group, a substituted hydrocarbyl group, a heterohydrocarbyl group, a substituted heterohydrocarbyl group, a silyl group or derivative thereof; the R1 groups are independently selected from an optionally substituted aromatic group bearing a polar substituent on at least one of the ortho-positions; and the R2 groups are independently selected from hydrocarbyl, substituted hydrocarbyl, heterohydrocarbyl and substituted heterohydrocarbyl groups with the proviso that when the group is aromatic it does not contain a polar substituent at any of the ortho-positions; with the proviso that m is 0 or 1, n is 1 or 2 and the total of m+n is 2.
    Type: Application
    Filed: December 20, 2007
    Publication date: March 12, 2009
    Inventors: Eric Johannes Maria DE BOER, Harry Van Der Heijden, Quoc An On, Johan Paul Smit, Arie Van Zon
  • Publication number: 20090069516
    Abstract: Novel catalyst systems for metathesis reactions, in particular for the metathesis of nitrile rubber, which contain a specific salt additive in addition to the metathesis catalyst are provided.
    Type: Application
    Filed: August 18, 2008
    Publication date: March 12, 2009
    Applicant: LANXESS DEUTSCHLAND GMBH
    Inventors: Werner Obrecht, Kerstin Langfeld, Martin Schneider, Oskar Nuyken
  • Publication number: 20090062493
    Abstract: The present invention relates to a ligand and its use in a catalyst for the oligomerization of olefinic monomers, the ligand having the general formula (I); P(R4)—P(R1)(R2)?N(R3)??(I) wherein: the R1 group is selected from a hydrocarbyl, substituted hydrocarbyl, heterohydrocarbyl and substituted heterohydrocarbyl group; the R2 group is selected from hydrocarbyl, substituted hydrocarbyl, heterohydrocarbyl and substituted heterohydrocarbyl groups; the R3 is selected from hydrogen, a hydrocarbyl group, a substituted hydrocarbyl group, a heterohydrocarbyl group, a substituted heterohydrocarbyl group, a silyl group or derivative thereof; the R4 group is an optionally substituted alkylenedioxy, alkylenedimercapto or alkylenediamino structure which is bound to the phosphorus atom through the two oxygen, sulphur or nitrogen atoms of the alkylenedioxy, alkylenedimercapto or alkylenediamino structure or an optionally substituted arylenedioxy, arylenedimercapto or arylenediamino structure which is bound to the ph
    Type: Application
    Filed: December 20, 2007
    Publication date: March 5, 2009
    Inventors: Eric Johannes Maria DE BOER, Harry VAN DER HEIJDEN, Quoc An ON, Johan Paul SMIT, Arie VAN ZON
  • Publication number: 20090030093
    Abstract: Process for the emulsion polymerization of one or more olefins by reacting a quinoid compound with a metal compound and a phosphine compound which is substituted by at least one polar radical and subsequently using the reaction product for the polymerization or copolymerization of olefins in water or in a solvent mixture which contains at least 50% by weight of water and at least one emulsifier.
    Type: Application
    Filed: July 28, 2008
    Publication date: January 29, 2009
    Applicant: BASF Aktiengessellschaft
    Inventors: Mubarik Mahmood Chowdhry, Xavier Sava, Monica Haag, Jacob Wildeson, Stefan Mecking, Ludmila Kolb
  • Publication number: 20090023874
    Abstract: The process of producing a ring-opening metathesis polymer of the present invention is mainly characterized in that a treatment to decrease the amount of oxygen and/or peroxide in at least one kind of polymerization starting material is performed prior to the ring-opening metathesis polymerization reaction of a cyclic olefin performed in the presence of a ruthenium carbene complex (catalyst). As used herein, the “polymerization starting material” refers to various materials used for a ring-opening metathesis polymerization reaction and present in the reaction system, such as ruthenium carbene complex (catalyst) and cyclic olefin (monomer), as well as solvents, chain transfer agents and the like.
    Type: Application
    Filed: February 7, 2006
    Publication date: January 22, 2009
    Inventors: Hideharu Iwasaki, Yasutaka Inubushi
  • Publication number: 20080177014
    Abstract: A polymerization catalyst composition for a radically polymerizable monomer of the present invention comprises a transition metal-containing phosphazenium composition which is produced by mixing a phosphazenium compound with a compound of a transition metal belonging to Groups 4 to 12 in the periodic table and an organic halogen compound.
    Type: Application
    Filed: February 21, 2006
    Publication date: July 24, 2008
    Applicant: Mitsui Chemicals, Inc.
    Inventors: Makoto Suzuki, Yoshihisa Inoue, Tadahito Nobori, Yoshihiro Yamamoto
  • Publication number: 20080125556
    Abstract: The present invention provides a method for producing a cyclic olefin addition copolymer wherein a monomer composition containing 5 to 80 mol % of a cyclic olefin having a substituent selected from alkyl groups, alkylsilyl group, and alkylsilylmethyl group represented by formula (1) below and 20 to 95 mol % of a cyclic olefin represented by formula (2) below is addition-copolymerized in the presence of a palladium-based multicomponent catalyst containing a specific palladium compound (i), a specific phosphorus compound (ii), and an ionic boron compound or an ionic aluminum compound (iii): (one of A1 to A4 is a C4-5 alkyl group, trimethylsilyl group, or trimethylsilylmethyl group, and the others each independently are a hydrogen atom, halogen atom, or methyl group) (B1 to B4 are each independently a hydrogen atom, methyl group, or halogen atom.
    Type: Application
    Filed: December 5, 2005
    Publication date: May 29, 2008
    Applicant: JSR CORPORATION
    Inventors: Kenzo Ohkita, Noboru Oshima, Nobuyuki Sakabe, Katsutoshi Sawada
  • Patent number: 7307130
    Abstract: The present invention relates to a catalyst composition and a method for making the catalyst composition of a polymerization catalyst and a static charge modifier. The invention is also directed to the use of the catalyst composition in the polymerization of olefin(s). In particular, the polymerization catalyst system is supported on a carrier. More particularly, the polymerization catalyst comprises a bulky ligand metallocene-type catalyst system.
    Type: Grant
    Filed: March 16, 2005
    Date of Patent: December 11, 2007
    Assignee: Univation Technologies, LLC
    Inventors: Brant Patrick, Michael Elroy Muhle, Matt Kuchta
  • Patent number: 7300990
    Abstract: Polymers may be made from zwitterionic monomers having controlled architectures and molecular weights, using living polymerisations such as group or atom transfer radical polymerisation. For instance polymers may be formed by atom transfer radical polymerisation using a copper chloride catalyst, a ligand which is water soluble, and a water soluble tertiary alkyl halide initiator to form homopolymers having controlled polydispersities of less than 1.5 and block copolymers with other hydrophilic or hydrophobic monomers. One suitable zwitterionic monomer is 2-methacryloyloxy-2?-trimethylammoniumethyl phosphate inner salt. The block copolymers may spontaneously form micelles, believed to have zwitterionic, for instance phosphorylcholine, groups at the external surface, which may be useful as drug delivery systems with improved biocompatibility.
    Type: Grant
    Filed: January 3, 2005
    Date of Patent: November 27, 2007
    Assignee: Biocompatibles UK Limited
    Inventors: Andrew Lennard Lewis, Sean Leo Willis, Steven Peter Armes, Emma Janice Lobb, Yinghua Ma
  • Patent number: 7285607
    Abstract: This invention relates to a process for producing a polymeric product by the polymerisation of at least one olefinic compound in the form of an olefin or a compound including an olefinic moiety by contacting the at least one olefinic compound with a polymerisation catalyst. The catalyst comprises the combination of a source of a Group IV to VI transition metal; and a ligating compound of the formula (R1)mX1(Y)X2(R2)n. The process is characterised therein that when R1 and R2 are independently a hydrocarbyl group or a heterohydrocarbyl group which contains at least one non-polar substituent, the olefinic compound is contacted with the polymerisation catalyst at a reaction temperature from and above 70° C.; and where R1 and R2 are independently a hydrocarbyl group or a heterohydrocarbyl group which contains no substituent, the olefinic compound is contacted with the polymerisation catalyst at a reaction temperature from and above 90° C.
    Type: Grant
    Filed: May 17, 2005
    Date of Patent: October 23, 2007
    Assignee: Sasol, Chemical Industries, Limited
    Inventors: Kevin Blann, Deon De Wet-Roos, Dawid Johannes Joubert, Esna Killian, John Thomas Dixon, Nonhlanhla Jillian Phelembe, Aletta Du Toit
  • Patent number: 7268196
    Abstract: A process for producing a cycloolefin addition polymer in which one or more cycloolefin monomers can be (co)polymerized by addition polymerization with a small palladium catalyst amount to produce a cycloolefin addition (co)polymer while attaining high catalytic activity. The process for cycloolefin addition polymer production is characterized by addition-polymerizing one or more cycloolefin monomers comprising a cycloolefin compound represented by a specific formula in the presence of a multi-component catalyst comprising (a) a palladium compound and (b) a specific phosphorus compound.
    Type: Grant
    Filed: January 5, 2007
    Date of Patent: September 11, 2007
    Assignee: JSR Corporation
    Inventors: Noboru Oshima, Michitaka Kaizu, Satoshi Ebata, Takashi Imamura
  • Patent number: 7244788
    Abstract: A method of producing a polymer or a stellar polymer which comprises polymerizing a vinyl monomer in the manner of living radical polymerization and adding a compound having two or more polymerizable carbon-carbon double bonds at the end point of the polymerization. A composition which comprises, as an essential component, a hydroxyl-terminated polymer falling under said polymer and a compound having, in each molecule, not less than two functional groups reactive with the hydroxyl group.
    Type: Grant
    Filed: February 25, 2004
    Date of Patent: July 17, 2007
    Assignee: Kaneka Corporation
    Inventor: Yoshiki Nakagawa
  • Patent number: 7241847
    Abstract: A process for producing a cycloolefin addition polymer in which one or more cycloolefin monomers can be (co)polymerized by addition polymerization with a small palladium catalyst amount to produce a cycloolefin addition (co)polymer while attaining high catalytic activity. The process for cycloolefin addition polymer production is characterized by addition-polymerizing one or more cycloolefin monomers comprising a cycloolefin compound represented by a specific formula in the presence of a multi-component catalyst comprising (a) a palladium compound and (b) a specific phosphorus compound.
    Type: Grant
    Filed: August 4, 2004
    Date of Patent: July 10, 2007
    Assignee: JSR Corporation
    Inventors: Noboru Oshima, Michitaka Kaizu, Satoshi Ebata, Takashi Imamura
  • Patent number: 7208441
    Abstract: A copolymer of ethylene and a higher alpha olefin, preferably 1-hexene, can be produced using an activated chromium containing catalyst system and a cocatalyst selected from the group consisting of trialkylboron, trialkylsiloxyalutninum, and a combination of trialkylboron and thalkylaluminum compounds. The polymerization process must be carefully controlled to produce a copolymer resin having an exceptionally broad molecular weight distribution, extremely high PENT ESCR values, and a natural branch profile that impacts branching preferably into the high molecular weight portion of the polymer. The resulting copolymer resin is especially useful in high stiffness pipe applications.
    Type: Grant
    Filed: November 23, 2004
    Date of Patent: April 24, 2007
    Assignee: Chevron Philips Chemical Company LP
    Inventors: Elizabeth A. Benham, Paul J. DesLauriers, Max P. McDaniel, Al R. Wolfe
  • Patent number: 7160833
    Abstract: A spray-dried composition comprising the reaction product of a magnesium halide, a solvent, an electron donor compound, and a transition metal compound and an inert filler comprising substantially spherical particles having an average particle size ranging from about 1 ?m to about 12 ?m, and a polymerization process using the same.
    Type: Grant
    Filed: July 13, 2004
    Date of Patent: January 9, 2007
    Assignee: Dow Global Technologies Inc.
    Inventors: Burkhard Eric Wagner, Mark Wilton Smale, Robert James Jorgensen
  • Patent number: 7148302
    Abstract: This invention is based upon the discovery that a catalyst system which is comprised of (a) palladium or a palladium compound and (b) a fluorinated alcohol is effective for polymerizing norbornene-functional monomers into polynorbornene-functional polymers. It has been further discovered that this catalyst system is more effective in polymerizing certain norbornene-functional monomers that are difficult to polymerize, such as norbornene ester monomers, than prior art catalyst systems. The activity of the catalyst systems of this invention can be further improved with respect to polymerizing some monomers by including a Lewis acid and/or a ligand, such as a phosphine or a carbene, in the system. In any case, the catalyst systems of this invention offer the advantage of being soluble in a wide variety of solvents, relatively inexpensive, and capable of polymerizing many norbornene-functional monomers that are difficult to polymerize with conventional catalyst systems.
    Type: Grant
    Filed: October 3, 2005
    Date of Patent: December 12, 2006
    Assignee: The Goodyear Tire & Rubber Company
    Inventor: John-Henry Lipian
  • Patent number: 7122611
    Abstract: This invention is based upon the discovery that a catalyst system which is comprised of (a) palladium or a palladium compound and (b) a fluorinated alcohol is effective for polymerizing norbornene-functional monomers into polynorbornene-functional polymers. It has been further discovered that this catalyst system is more effective in polymerizing certain norbornene-functional monomers that are difficult to polymerize, such as norbornene ester monomers, than prior art catalyst systems. The activity of the catalyst systems of this invention can be further improved with respect to polymerizing some monomers by including a Lewis acid and/or a ligand, such as a phosphine or a carbene, in the system. In any case, the catalyst systems of this invention offer the advantage of being soluble in a wide variety of solvents, relatively inexpensive, and capable of polymerizing many norbornene-functional monomers that are difficult to polymerize with conventional catalyst systems.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: October 17, 2006
    Assignee: The Goodyear Tire & Rubber Company
    Inventor: John-Henry Lipian
  • Patent number: 7094852
    Abstract: Processes for making acrylic acid/allyl ether copolymers are provided wherein hypo phosphorous acid and its salts are used as chain transfer agents during the polymerization process. The hypo phosphorous acid feed time is regulated in comparison to the feed time of the acrylic acid feed at a duration of about 0–75% hypo phosphorous acid feed:total acrylic acid feed time. Phosphorus containing copolymers made by the processes are also disclosed.
    Type: Grant
    Filed: August 22, 2003
    Date of Patent: August 22, 2006
    Assignee: General Electric Company
    Inventors: Natalie A. Solov, William S. Carey
  • Patent number: 7094901
    Abstract: A cocatalyst or cocatalyst component, including a compound corresponding to the formula: (A*+a)b(Z*J*j)?cd, wherein: A* is a cation of from 1 to 80 atoms, not counting hydrogen atoms, Z* is an anion group of from 1 to 50 atoms, not counting hydrogen atoms, containing two or more Lewis base sites; J* is a Lewis acid of from 1 to 80, not counting hydrogen atoms, coordinated to at least one Lewis base site, and optionally two or more such J* groups may be joined together in a moiety having multiple Lewis acidic functionality, j is from 2 to 12 and a, b, c, and d are integers from 1 to 3, with the proviso that a×b is equal to c×d, and provided further that one or more of A*, Z* or J* comprises a hydroxyl group or a polar group containing quiescent reactive functionality.
    Type: Grant
    Filed: June 24, 2004
    Date of Patent: August 22, 2006
    Assignee: Dow Global Michigan Technologies Inc.
    Inventors: David A. Babb, David R. Neithamer, Richard E. Campbell, Jr., Grant B. Jacobsen, Edmund M. Carnahan
  • Patent number: 7084219
    Abstract: A contact product obtained by a process comprising the step of contacting a compound (a) represented by the formula, M1L1r, a compound (b) represented by the formula, R1s-1T1H, a compound (c) represented by the formula, R2t-2T2H2, and a nonionic surfactant (d) having no active hydrogen; a catalyst component for addition polymerization comprising said contact product; a catalyst for addition polymerization obtained by a process comprising the step of contacting said catalyst component with a compound of a metal selected from the group consisting of metals of the Groups 3 to 12 and Lanthanide Series of the Periodic Table, and optionally an organoaluminum compound; and a process for producing an addition polymer comprising the step of polymerizing an addition polymerizable monomer in the presence of said catalyst.
    Type: Grant
    Filed: January 20, 2004
    Date of Patent: August 1, 2006
    Assignee: Sumitomo Chemical Company, Limited
    Inventor: Kazuo Takaoki
  • Patent number: 7037990
    Abstract: A method is provided for the polymerization of olefins substituted with a functional group using a transition metal catalyst that, by virtue of one or more stabilizing groups incorporated within the catalyst structure, “fixes” the stereoconfiguration of each olefinic monomer relative to the transition metal complex during each successive reaction in the polymerization process. The invention substantially reduces the likelihood of olefin rearrangement at the active site of the catalyst during polymerization. In one particular embodiment, the functional group is a polar, electron-donating group and the stabilizing group is a Lewis acid substituent; examples of polymers that can be prepared with such a system include poly(vinyl acetate), poly(vinyl alcohol), and poly(vinyl ethers). Novel complexes and catalyst systems useful in the polymerization method are also provided.
    Type: Grant
    Filed: January 3, 2003
    Date of Patent: May 2, 2006
    Assignee: Nippon Synthetic Chemical Company
    Inventors: Christopher D. Tagge, Robert B. Wilson, Jr., Hiroyuki Ono
  • Patent number: 7019082
    Abstract: Embodiments of the present invention include a material comprising a polymer having a modulus of elasticity less than 105 Pa and a material comprising a polymer having a modulus of elasticity of less than 5×104 Pa. Embodiments also include a material comprising a polymeric network and a multiplicity of side chains attached to the polymeric network. The multiplicity of side chains may have an average molecular weight below the critical molecular weight for entanglements. In certain embodiments it may be advantageous for the side branches to have a glass transition temperature below the use temperature of the material. The polymer network may comprise at least two monomers so that the polymer network is a copolymer. Embodiments of the present invention also include methods of forming a polymer network. Such as, for example, a method of preparing a polymer network comprising cross-linking a polymer, wherein the polymer comprises a multiplicity of side chains.
    Type: Grant
    Filed: August 11, 2003
    Date of Patent: March 28, 2006
    Assignee: Carnegie Mellon University
    Inventors: Krzysztof Matyjaszewski, Tadeusz Pakula
  • Patent number: 7001961
    Abstract: The present invention relates to a catalyst composition and a method for making the catalyst composition which comprises a polymerization catalyst and at least one gelling agent. The invention is also directed to the use of the catalyst composition in the polymerization of olefin(s). In particular, the polymerization catalyst system is supported on a carrier.
    Type: Grant
    Filed: June 6, 2005
    Date of Patent: February 21, 2006
    Assignee: Univation Technologies, LLC
    Inventors: Agapios Kyriacos Agapiou, Chi-I Kuo, David M. Glowczwski, Steven K. Ackerman
  • Patent number: 6951831
    Abstract: A catalyst composition for use in dimerizing, co-dimerizing or oligomerizing olefins comprises: at least one zero-valent nickel complex; at least one acid with formula H+X? in which X? represents an anion; and at least one ionic liquid with general formula Q+ A? in which A? is an anion identical to or different from X?. The composition can also comprise a nitrogen-containing ligand. It can be used in dimerizing, co-dimerizing, oligomerizing and in polymerizing olefins.
    Type: Grant
    Filed: February 3, 2003
    Date of Patent: October 4, 2005
    Assignee: Institut Francais du Petrole
    Inventors: Vincent Lecocq, Hélène Olivier-Bourbigou
  • Patent number: 6949613
    Abstract: The application discloses supported initiators for transition metal mediated living free radical and/or atom transfer polymerisation comprising an initiator moiety attached to a support via a selectively cleavable link, and their use to produce polymers.
    Type: Grant
    Filed: June 8, 2001
    Date of Patent: September 27, 2005
    Assignee: University of Warwick
    Inventor: David Mark Haddleton
  • Patent number: 6933354
    Abstract: Single-site catalyst systems useful for polymerizing olefins are disclosed. The catalyst systems comprise an organometallic complex and an activator. The complex includes a Group 3-10 transition metal, M, and at least one indenoindolyl ligand that is pi-bonded to M. The activator is a reaction product of an alkylaluminum compound and an organoboronic acid. Catalyst systems of the invention significantly outperform known catalyst systems that employ a metallocene complex and similar aluminoboronate activators.
    Type: Grant
    Filed: March 23, 2004
    Date of Patent: August 23, 2005
    Assignee: Equistar Chemicals, LP
    Inventors: Michael W. Lynch, Craig C. Meverden, Sandor Nagy, Karen L. Neal-Hawkins
  • Patent number: 6908970
    Abstract: A process for producing a hydrogenated product of a polymer prepared through ring-opening polymerization which comprises a polymerization step of polymerizing a cyclic olefin through ring-opening polymerization in the presence of a polymerization catalyst comprising an organoruthenium compound or an organoosmium compound to prepare a polymer, and a hydrogenation step of adding a hydrogenation catalyst and hydrogen into a polymerization system resulting from the polymerization step to hydrogenate the carbon-carbon double bonds of the polymer prepared through the ring-opening polymerization. When the organoruthenium compound- or organoosmium compound-containing catalyst further comprises a carbene compound, the catalyst exhibits a higher activity for the ring-opening polymerization.
    Type: Grant
    Filed: October 7, 2002
    Date of Patent: June 21, 2005
    Assignee: Zeon Corporation
    Inventors: Yasuo Tsunogae, Masato Sakamoto, Masaharu Tokoro, Kazunori Taguchi
  • Patent number: 6887817
    Abstract: An olefin polymerization catalyst is described which includes: (A) a solid catalyst component being prepared by copulverizing a magnesium compound, an aluminum compound, an electron donor and a titanium compound, and (B) an organoaluminum compound. The present invention is also directed to a process for preparing polyolefins using the aforesaid catalyst system to polymerize olefins.
    Type: Grant
    Filed: August 27, 2003
    Date of Patent: May 3, 2005
    Assignee: Formosa Plastics Corporation, U.S.A.
    Inventors: Bing Lu, Honglan Lu, Chih-Jian Chen
  • Patent number: 6884859
    Abstract: A method is provided for synthesizing a polymer in a controlled fashion using a ring-opening metathesis polymerization (ROMP) reaction, wherein polymerization is carried out using a catalytically effective amount of an olefin metathesis catalyst and a bridged bicyclic or polycyclic olefin monomer that contains at least two heteroatoms directly or indirectly linked to each other. Preferred catalysts are Group 8 transition metal complexes, particularly complexes of Ru and Os. Such complexes include the ruthenium bisphosphine complex (PCy3)2(Cl)2Ru?CHPh (1) and the ruthenium carbene complex (IMesH2)(PCy3)(Cl)2Ru?CHPh (2). The invention also provides novel regioregular polymers synthesized using the aforementioned methodology, wherein the polymers may be saturated, unsaturated, protected, and/or telechelic. An exemplary polymer is poly((vinyl alcohol)2-alt-methylene)(MVOH).
    Type: Grant
    Filed: August 29, 2002
    Date of Patent: April 26, 2005
    Assignee: California Institute of Technology
    Inventors: Robert H. Grubbs, Oren A. Scherman, Hyunjin M. Kim
  • Patent number: 6855780
    Abstract: This invention provides a production method of a vinyl polymer having a functional group at a molecular chain terminus which comprises adding a compound (I) having a functional group and an internal alkenyl group or conjugated polyene compound (II) in the living radical polymerization of a radical-polymerizable vinyl monomer. The present invention relates to a vinyl polymer having a functional group at a molecular terminus, a production method of the same and a curable composition containing said polymer.
    Type: Grant
    Filed: January 28, 2000
    Date of Patent: February 15, 2005
    Assignee: Kaneka Corporation
    Inventors: Yoshiki Nakagawa, Kenichi Kitano, Nao Fujita
  • Patent number: 6852816
    Abstract: Polymers may be made from zwitterionic monomers having controlled architectures and molecular weights, using living polymerisations such as group or atom transfer radical polymerisation. For instance polymers may be formed by atom transfer radical polymerisation using a copper chloride catalyst, a ligand which is water soluble, and a water soluble tertiary alkyl halide initiator to form homopolymers having controlled polydispersities of less than 1.5 and block copolymers with other hydrophilic or hydrophobic monomers. One suitable zwitterionic monomer is 2-methacryloyloxy-2?-trimethylammoniumethyl phosphate inner salt. The block copolymers may spontaneously form micelles, believed to have zwitterionic, for instance phosphorylcholine, groups at the external surface, which may be useful as drug delivery systems with improved biocompatibility.
    Type: Grant
    Filed: October 5, 2001
    Date of Patent: February 8, 2005
    Assignee: Biocompatibles UK Limited
    Inventors: Andrew Lennard Lewis, Sean Leo Willis, Steven Peter Armes, Emma Janice Lobb, Yinghua Ma
  • Patent number: 6825297
    Abstract: Metal complexes comprising a polydentate chelating group, catalysts and polymerization processes using the same for the polymerization of olefins, especially propylene, are disclosed.
    Type: Grant
    Filed: October 5, 2001
    Date of Patent: November 30, 2004
    Assignee: The Dow Chemical Company
    Inventors: David D. Devore, Kevin A. Frazier, Shaoguang S. Feng, Jasson T. Patton
  • Patent number: 6803429
    Abstract: A catalytic method is provided for a ring-opening cross-metathesis reaction between a cycloolefinic substrate and a second olefinic reactant, wherein the catalyst used is a transition metal alkylidene complex substituted with an N-heterocyclic carbene ligand. The substrates are selected so that the rate of the cross-metathesis reaction of the second olefinic reactant, kCM, is greater than or equal to the rate of the ring-opening metathesis reaction, kRO. In this way, the predominant ROCM product is a monomer, dimer, and/or oligomer, but not a polymer. The invention additionally provides for selective production of an end-differentiated olefinic product, using trisubstituted cycloolefins as substrates and/or a subsequent cross-metathesis reaction following an initial ROCM step. The cycloolefinic substrates include low-strain olefins such as cyclohexene as well as higher strain olefins such as cyclooctene.
    Type: Grant
    Filed: April 1, 2002
    Date of Patent: October 12, 2004
    Assignee: California Institute of Technology
    Inventors: John P. Morgan, Christie Morrill, Robert H. Grubbs, Tae-Lim Choi
  • Publication number: 20040167301
    Abstract: A method of producing a polymer or a stellar polymer which comprises polymerizing a vinyl monomer in the manner of living radical polymerization and adding a compound having two or more polymerizable carbon-carbon double bonds at the end point of the polymerization.
    Type: Application
    Filed: February 25, 2004
    Publication date: August 26, 2004
    Applicant: Kaneka Corporation
    Inventor: Yoshiki Nakagawa
  • Patent number: 6720395
    Abstract: A method of producing a stellar polymer which comprises polymerizing a vinyl monomer in the manner of living radical polymerization and adding a compound having two or more polymerizable carbon-carbon double bonds at the end point of the polymerization is provided. A composition which comprises, as an essential component, a hydroxyl-terminated polymer falling under said polymer and a compound having, in each molecule, not less than two functional groups reactive with the hydroxyl group is provided.
    Type: Grant
    Filed: July 12, 2002
    Date of Patent: April 13, 2004
    Assignee: Kaneka Corporation
    Inventor: Yoshiki Nakagawa
  • Patent number: 6664350
    Abstract: The invention relates to supported ligands and catalysts for use in the polymerization of olefinically unsaturated monomers such as vinylic monomers, comprising the use of a compound attached to support, the compound being capable of complexing with a transitional metal. Preferably the compound capable of complexing with a transition metal is a diimine such as a 1,4-diaza-1,3-butadiene, a 2-pyridinecarbaldehyde imine, an oxazolidone or a quinoline carbaldeyde. Preferably the catalysts are used in conjunction with an initiator comprising a homolytically cleavable bond with a halogen atom. The application also discloses processes for attaching ligands to supports, and processes for using the catalysts disclosed in the application.
    Type: Grant
    Filed: August 14, 2000
    Date of Patent: December 16, 2003
    Assignee: University of Warwick
    Inventors: David M. Haddleton, Arnaud Radigue, Dax Kukulj, David Duncalf