At Least One Atom Of Ge, Sn, Or Pb In Elemental Form Or Bonded To Hydrogen Or Carbon Atom Patents (Class 526/150)
  • Patent number: 4554333
    Abstract: Olefins are polymerized in the presence of catalysts prepared from titanium compounds prepared by reacting a titanium compound such as titanium tetraisopropoxide with a compound containing at least one aliphatic hydroxyl group.
    Type: Grant
    Filed: November 13, 1984
    Date of Patent: November 19, 1985
    Assignee: The Dow Chemical Company
    Inventors: William M. Coleman, III, Morris S. Edmondson
  • Patent number: 4528339
    Abstract: Olefins are polymerized in the presence of catalysts prepared from titanium compounds prepared by reacting a titanium compound such as titanium tetraisopropoxide with a compound containing at least one aliphatic hydroxyl group.
    Type: Grant
    Filed: December 27, 1983
    Date of Patent: July 9, 1985
    Assignee: The Dow Chemical Company
    Inventors: William M. Coleman, III, Morris S. Edmondson
  • Patent number: 4499199
    Abstract: An improved titanium catalyst is produced by contacting a titanium tetrahalide such as TiCl.sub.4 with a catalyst precursor prepared by reacting a treating compound selected from mercaptans and tin hydroxides with an organometal such as a dialkyl magnesium compound. The resulting catalyst can either be supported or unsupported and it has been found to give high productivity and good particle size control in the production of olefin polymer such as polyethylene and also found to give a broad spectrum of molecular weight polymers including polymers having ultra high molecular weight and also narrow distribution polymers particularly suited for injection molding.
    Type: Grant
    Filed: July 25, 1983
    Date of Patent: February 12, 1985
    Assignee: Phillips Petroleum Company
    Inventor: Max P. McDaniel
  • Patent number: 4451573
    Abstract: A catalyst suitable for use in the polymerization of olefins is disclosed. This catalyst contains:[A] a solid catalyst component obtained by calcining a reaction product of (a) at least one compound selected from an amine compound, a phosphoric acid amide, a hydrocarbyloxy compound of titanium, vanadium, hafnium or zirconium, and a germanium compound having the general formula:R.sup.1 R.sup.2 R.sup.3 R.sup.4 Gewherein (i) R.sup.1, R.sup.2 and R.sup.3 are each independently a hydrocarbon group having 1 through 10 carbon atoms, and R.sup.4 is a hydrogen atom, a halogen atom, a --OH group, or a --OGeR.sup.1 R.sup.2 R.sup.3 group, or (ii) R.sup.1, R.sup.2, R.sup.3 and R.sup.4 are each independently --OR.sup.5 wherein R.sup.5 is a hydrocarbon group having 1 through 10 carbon atoms, or a halogen atom, and a tin compound having the general formula:R.sup.1 R.sup.2 R.sup.3 R.sup.6 Snwherein R.sup.1, R.sup.2 and R.sup.3 are the same as defined above and R.sup.
    Type: Grant
    Filed: June 4, 1982
    Date of Patent: May 29, 1984
    Assignee: Asahi Kasei Kogyo Kabushiki Kaisha
    Inventors: Tadashi Ikegami, Katsuhiko Takaya, Haruyuki Yoneda
  • Patent number: 4387200
    Abstract: A process for polymerizing olefins employing as a catalyst therefor, the reaction product of (A) the reaction product of (1) the reaction product of (a) an alkyl magnesium compound such as dibutylmagnesium, with (b) an oxygen-containing and/or nitrogen-containing compound such as n-propyl alcohol, or isopropylamine, with (2) a halide source such as titanium tetrachloride or silicon tetrachloride; and (B) a transition metal compound such as titanium tetrachloride and (C) a reducing agent such as triisobutylaluminum. The polymers which are produced in the presence of this catalyst and a cocatalyst such as triethylaluminum have a low catalyst support to transition metal ratio and therefore, the catalyst efficiency based on quantity of polymer per quantity of total catalyst is very high resulting in a polymer having good color and very little, if any, corrosion.
    Type: Grant
    Filed: March 22, 1982
    Date of Patent: June 7, 1983
    Assignee: The Dow Chemical Company
    Inventors: Donald E. Gessell, Ronald L. Gibbs, Ricardo Fuentes, Jr.
  • Patent number: 4335229
    Abstract: A process for polymerizing an .alpha.-olefin comprising contacting the olefin in liquid phase at a temperature of about 120.degree. to about 320.degree. C. with a catalyst comprising a component (A) and an organometal component (B), the component (A) being produced by reacting a hydrocarbon-soluble organomagnesium component (i) of the formula,M.sub..alpha. MgR.sub.p.sup.1 R.sub.q.sup.2 X.sub.r.sup.1 X.sub.s.sup.2 D.sub.twherein.alpha., p, q, r and s each independently is 0 or a number greater than 0,t is a number greater than 0,p+q+r+s=m.alpha.+2,O.ltoreq.(r+s)/(.alpha.+1)<2,m is the valance of M,M is a metal of the 1st to 3rd groups of the Periodic Table,R.sup.1 and R.sup.2 each independently is a hydrocarbon group having 1 to 20 carbon atoms,X.sup.1 and X.sup.
    Type: Grant
    Filed: August 13, 1980
    Date of Patent: June 15, 1982
    Assignee: Asahi Kasei Kogyo Kabushiki Kaisha
    Inventors: Hisaya Sakurai, Yoshihiko Katayama, Tadashi Ikegami, Masayasu Furusato
  • Patent number: 4330646
    Abstract: A process for polymerizing an .alpha.-olefin comprising contacting the olefin in liquid phase at a temperature of about 120.degree. to about 320.degree. C. with a catalyst comprising a component (A) and an organometal component (B), the component (A) being produced by reacting a hydrocarbon-soluble organomagnesium component (i) of the formulaM.sub..alpha. Mg.sub..beta. R.sub.p.sup.1 R.sub.q.sup.2 X.sub.r.sup.1 X.sub.s.sup.2wherein.alpha., p, q, r and s each independently is 0 or a number greater than 0,.beta. is 1 or a number greater than 1,p+q+r+s=m.alpha.+2.beta.,0.ltoreq.(r+s)/(.alpha.+.beta.)<2,m is the valence of M,M is a metal of the 1st to 3rd groups of the Periodic Table,R.sup.1 and R.sup.2 each independently is a hydrocarbon group having 1 to 20 carbon atoms,X.sup.1 and X.sup.
    Type: Grant
    Filed: July 21, 1980
    Date of Patent: May 18, 1982
    Assignee: Asahi Kasei Kogyo Kabushiki Kaisha
    Inventors: Hisaya Sakurai, Yoshihiko Katayama, Tadashi Ikegami, Masayasu Furusato
  • Patent number: 4323665
    Abstract: .alpha.-Olfins, particularly higher olefins, are polymerized in the presence of a catalyst prepared by reacting (A) tetravalent tianium compounds such as titanium tetraalkoxide, (B) an organoaluminum compound, (C) an organomagnesium component such as a hydrocarbon soluble complex of dialkyl magnesium and an organoaluminum compound such as triethyl aluminum and, (D) as a halide source, a tetravalent tin compound such as tin tetrachloride. Polymers prepared by this process provide higher efficiencies than polymers prepared from a process utilizing catalysts employing HCl as the halide source.
    Type: Grant
    Filed: April 14, 1980
    Date of Patent: April 6, 1982
    Assignee: The Dow Chemical Co.
    Inventors: Kirby Lowery, Jr., Donald F. Birkelbach, Randall S. Shipley
  • Patent number: 4317898
    Abstract: A novel catalyst and process for producing highly-crystalline polypropylene or pure block or terminal block types of copolymers of propylene and ethylene or propylene and another alpha-olefin in excellent yields which coproduce minor amounts of low-molecular-weight and, particularly, amorphous polymers. The catalyst comprises an aluminum alkyl compound, titanium trichloride, a sterically-hindered cyclic amine and an organotin sulfide. This novel catalyst and process are useful in polymerization techniques which use a polymerization medium or those in which the condensed monomer is polymerized from the liquid phase or those in which polymerization is accomplished from monomer substantially in the vapor phase.
    Type: Grant
    Filed: January 8, 1981
    Date of Patent: March 2, 1982
    Assignee: Standard Oil Company (Indiana)
    Inventors: Nicholas M. Karayannis, Sam S. Lee
  • Patent number: 4308369
    Abstract: Olefins are polymerized in the presence of a catalyst prepared by reacting tetravalent titanium compounds such as a titanium tetraalkoxide, an anhydrous zinc compound such as diethyl zinc, an organomagnesium component such as a hydrocarbon soluble complex of dialkyl magnesium and an alkyl aluminum and a halide source such as a hydrogen halide or an alkyl aluminum halide and an aluminum compound if the halide source or organomagnesium component does not contain sufficient quantities of aluminum. Polymerization processes employing this catalyst composition do not require conventional catalyst removal steps in order to provide polymers having suitable color and other physical characteristics and these catalysts produce polymers having broader molecular weight distributions than do corresponding catalysts without the anhydrous zinc compound.
    Type: Grant
    Filed: June 2, 1980
    Date of Patent: December 29, 1981
    Assignee: The Dow Chemical Company
    Inventors: Randall S. Shipley, Donald F. Birkelbach, Kirby Lowery, Jr.
  • Patent number: 4278781
    Abstract: A novel catalyst component and process for polymerization of ethylene or an ethylene containing mixture with a terminal olefin which consists essentially of contacting under polymerizing conditions said ethylene or mixture with (a) the reaction product of a Group IVB, Group VB or Group VIB transition metal compound and an organotin compound containing at least one reactive OH group and, (b) an organometallic compound.
    Type: Grant
    Filed: April 19, 1979
    Date of Patent: July 14, 1981
    Assignee: Standard Oil Company (Indiana)
    Inventors: Gunter Caspari, David E. Boone
  • Patent number: 4250285
    Abstract: A process for preparing a polymer or copolymer of an olefin having at least 3 carbon atoms which comprises polymerizing or copolymerizing an olefin having at least 3 carbon atoms and containing 0 to 10 mole % of another olefin or diolefin in the presence of a catalyst composed of (i) a solid titanium catalyst component and (ii) an organoaluminum compound; wherein the solid titanium catalyst component is obtained by contacting(1) a magnesium containing copulverization product comprising (A) an aluminum or germanium compound selected from the group consisting of aluminum compounds of the formula AlR.sub.n X.sub.3-n wherein R is a hydrogen atom, or an alkyl, alkenyl, aryl, alkoxy, aryloxy or acyloxy group optionally having a substituent, X is a halogen atom, and O<n.ltoreq.3, and germanium compounds of the formula GeR.sub.m X.sub.4-m wherein R and X are as defined above, and 0.ltoreq.m.ltoreq.
    Type: Grant
    Filed: May 4, 1978
    Date of Patent: February 10, 1981
    Assignee: Mitsui Petrochemical Industries Ltd.
    Inventors: Syuji Minami, Akinori Toyota, Norio Kashiwa
  • Patent number: 4224186
    Abstract: Compositions exhibiting high catalytic activity in the polymerization of .alpha.-olefins, particularly higher olefins, are prepared by reacting (A) tetravalent titanium compounds such as titanium tetraalkoxide, (B) an organoaluminum compound, (C) an organomagnesium component such as a hydrocarbon soluble complex of dialkyl magnesium and an organo aluminum compound such as triethyl aluminum and, (D) as a halide source, a tetravalent tin compound such as tin tetrachloride. Polymerization processes employing this catalyst composition do not require conventional catalyst removal steps in order to provide polymers having suitable color and other physical characteristics and these catalysts provide higher efficiencies than those catalysts employing HCl as the halide source.
    Type: Grant
    Filed: April 9, 1979
    Date of Patent: September 23, 1980
    Assignee: The Dow Chemical Company
    Inventors: Kirby Lowery, Jr., Donald F. Birkelbach, Randall S. Shipley
  • Patent number: 4215014
    Abstract: A new improved catalyst system for alpha-olefin type polymerizations includes a metal alkyl cocatalyst having the formula T.sub.n MR'.sub.3-n in combination with a Group IVB-VIII transition metal compound on a support and a Lewis base wherein n is equal to one or two, T is equal to R.sub.3 DCH.sub.2, and wherein D is selected from the group consisting of Si, Ge or Sn, R is methyl or ethyl, and R' is selected from the group consisting of C.sub.1 to C.sub.8 primary alkyl or aralkyl groups including unhindered branched groups and M is selected from the group consisting of aluminum, gallium, or indium. The improved catalyst system provides both increased polymerization activity and polymers having a high degree of isotactic stereoregularity as well as lower catalyst residue.
    Type: Grant
    Filed: June 18, 1979
    Date of Patent: July 29, 1980
    Assignee: Exxon Research & Engineering Co.
    Inventor: Arthur W. Langer, Jr.
  • Patent number: 4145497
    Abstract: Uranium-containing mixed catalysts containing uranium in the formal oxidation state +4 as uranium salts of carboxylic acids, a Lewis acid, and an organometallic aluminum compound are prepared and can be used for stereospecific polymerization of diolefins or mixtures of diolefins and monoolefins.
    Type: Grant
    Filed: May 31, 1977
    Date of Patent: March 20, 1979
    Assignee: Bayer Aktiengesellschaft
    Inventors: Gerd Sylvester, Josef Witte, Gunter Marwede
  • Patent number: 4056668
    Abstract: Olefins are polymerized and copolymerized in the presence of a solid catalyst which contains an organometallic compound and a solid material having at the surface thereof catalytic complexes containing a divalent metal, halogen, oxygen and a transition metal having halogenated substituents. The solid material of the catalyst is obtained by reacting a liquid halogenated derivative of a transition metal, such as TiCl.sub.4 or VOCl.sub.3 with a solid support which is a oxygenated compound of a divalent metal and which is substantially anhydrous and also substantially free of hydroxyl groups; examples of such a solid support include calcium, magnesium and zinc oxides and oxygenated salts such as nitrates, sulfates and silicates and organic carboxylate salts including salts of mono- and acetates polycarboxylic acids.
    Type: Grant
    Filed: April 29, 1976
    Date of Patent: November 1, 1977
    Assignee: Solvay & Cie
    Inventors: Eugene Berger, Pol Gerard, Andre Delbouille, Jean-Louis Deroitte