Inorganic Oxygen Containing Aluminum Compound Patents (Class 526/156)
  • Patent number: 10494464
    Abstract: A process for polymerizing propylene in the presence of a polymerization catalyst by copolymerizing propylene with a comonomer selected from the group of ethylene and C4-C10 alpha-olefins in two polymerization stages. The first polymerization stage is conducted in a loop reactor and the second polymerization stage in a gas phase reactor. The polymer produced in first polymerization stage has a higher melt flow rate and a lower content of comonomer units than the final polymer mixture. The process can be operated with a high throughput and catalyst productivity.
    Type: Grant
    Filed: April 22, 2014
    Date of Patent: December 3, 2019
    Assignees: BOREALIS AG, ABU DHABI POLYMERS CO. LTD. (BOROUGE) L.L.C.
    Inventors: Kauno Alastalo, Pauli Leskinen, Johanna Lilja, Cristian Hedesiu
  • Patent number: 9348196
    Abstract: A seamless lens cover, and methods of forming such a seamless lens cover. The cap structure that covers a camera of a rotating panoramic camera system includes a seamless lens cover through which images are obtained by the camera. The cap structure may be injection molded at an initial lens cover thickness, and then a portion of the as molded initial lens cover thickness may be removed (e.g., by machining away) to achieve the final desired thickness. By such a method, the lens cover may be injection molded at thicknesses suitable for injection molding (e.g., about 0.06 to about 0.1 inch), after which most of the thickness may be machined away, to provide a seamless lens cover having a thickness of less than about 0.015 inch, exhibiting at least 60% transmittance to the thermal spectrum, no lensing characteristics, and no curvature effect.
    Type: Grant
    Filed: August 11, 2014
    Date of Patent: May 24, 2016
    Assignee: THERMAL IMAGING RADAR, LLC
    Inventor: Michael D. Dortch
  • Publication number: 20150045521
    Abstract: Methods for controlling properties of an olefin polymer using an alcohol compound are disclosed. The MI and the HLMI of the polymer can be decreased, and the Mw and the Mz of the polymer can be increased, via the addition of the alcohol compound.
    Type: Application
    Filed: August 9, 2013
    Publication date: February 12, 2015
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Qing Yang, Max P. McDaniel, Tony R. Crain, Albert P. Masino, Ted H. Cymbaluk, John D. Stewart
  • Patent number: 8735519
    Abstract: The invention is directed to a metallocene catalyst system and a process for preparing the system. The metallocene catalyst system comprises a support and metallocene bound substantially throughout the support. The selection of certain supports facilitates the production of metallocene catalyst systems having increased catalytic activity than previously recognized.
    Type: Grant
    Filed: April 9, 2013
    Date of Patent: May 27, 2014
    Assignee: Fina Technology, Inc.
    Inventors: Jun Tian, William Gauthier, David Rauscher, Shady Henry
  • Patent number: 8703886
    Abstract: Disclosed herein are polymerization processes for the production of olefin polymers. These polymerization processes use a catalyst system containing at least two activator-supports. One activator-support is a halided solid oxide, and the other activator-support is a sulfated solid oxide and/or phosphated solid oxide.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: April 22, 2014
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Qing Yang, Max P. McDaniel, Tony R. Crain, Kathy S. Collins
  • Patent number: 8623973
    Abstract: Methods for controlling properties of an olefin polymer using a Group VIII transition metal-modified activator-support are disclosed. The melt index of the polymer can be decreased and the molecular weight of the polymer can be increased via the addition of the transition metal-modified activator-support to the polymerization reactor system.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: January 7, 2014
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Qing Yang, Tony R. Crain, Kathy S. Collins
  • Patent number: 8436112
    Abstract: The invention is directed to a metallocene catalyst system comprising an inert silica support having pores with a peak pore volume of greater than about 0.115 mL/g at a pore diameter between about 250 Angstroms and about 350 Angstroms, and an alumoxane activator, with the metallocene being bound substantially throughout the support. The activator is grafted to the support in a solvent at a reflux temperature of toluene to obtain an aluminoxane on silica, and a metallocene component is added to make a MCS having a metallocene loading of about 2 wt %. This facilitates the production of metallocene catalyst systems having increased catalytic activity than previously recognized that is at least about 20 percent higher than the catalytic activity for a metallocene loading of about 1 wt % where the activator is grafted to the support at room temperature.
    Type: Grant
    Filed: January 14, 2008
    Date of Patent: May 7, 2013
    Assignee: Fina Technology, Inc.
    Inventors: Jun Tian, William Gauthier, David Rauscher, Shady Henry
  • Publication number: 20120108764
    Abstract: The present invention provides polymerization catalyst compositions employing half-metallocene compounds with a heteroatom-containing ligand bound to the transition metal. Methods for making these hybrid metallocene compounds and for using such compounds in catalyst compositions for the polymerization and copolymerization of olefins are also provided.
    Type: Application
    Filed: January 5, 2012
    Publication date: May 3, 2012
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Max P. McDaniel, Matthew G. Thorn, Elizabeth A. Benham
  • Publication number: 20110319575
    Abstract: This invention relates to the field of olefin polymerization catalyst compositions, and methods for the polymerization and copolymerization of olefins, including polymerization methods using a supported catalyst composition. In one aspect, the present invention encompasses a catalyst composition comprising the contact product of a first metallocene compound, a second metallocene compound, at least one chemically-treated solid oxide, and at least one organoaluminum compound. The new resins were characterized by useful properties in impact, tear, adhesion, sealing, extruder motor loads and pressures at comparable melt index values, and neck-in and draw-down.
    Type: Application
    Filed: September 8, 2011
    Publication date: December 29, 2011
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Michael D. Jensen, Max P. McDaniel, Joel L. Martin, Elizabeth A. Benham, Randy L. Muninger, Gary Jerdee, Ashish M. Sukhadia, Qing Yáng, Matthew G. Thorn
  • Patent number: 7863210
    Abstract: The present invention provides polymerization catalyst compositions employing novel dinuclear metallocene compounds. Methods for making these new dinuclear metallocene compounds and for using such compounds in catalyst compositions for the polymerization and copolymerization of olefins are also provided.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: January 4, 2011
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Rex E. Murray, Kumudini C. Jayaratne, Qing Yang, Joel L. Martin
  • Publication number: 20100280199
    Abstract: This invention provides a compositions that are useful for polymerizing at least one monomer into at least one polymer.
    Type: Application
    Filed: June 14, 2010
    Publication date: November 4, 2010
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: MAX P. MCDANIEL, ELIZABETH A. BENHAM, SHIRLEY J. MARTIN, KATHY S. COLLINS, JAMES L. SMITH, GIL R. HAWLEY, CHRISTOPHER E. WITTNER, MICHAEL D. JENSEN
  • Patent number: 7649063
    Abstract: Pulverulent solid which consists essentially of at least one metal alkyl compound bound chemically and/or physically to a finely divided, porous, mechanically stable and chemically inert support, has a proportion by weight of metal alkyl compound of at least 5% by weight, based on the support, and has an angle of repose, determined in accordance with ISO 4324, of up to 48°. The solid allows trouble-free metering as active component into a reactor.
    Type: Grant
    Filed: October 9, 2004
    Date of Patent: January 19, 2010
    Assignee: Basell Polyolefine GmbH
    Inventors: Shahram Mihan, Rosendorfer Philipp, Rainer Karer, Martin Schneider, Peter Eck
  • Publication number: 20090198027
    Abstract: A polymerization process comprising contacting under polymerization conditions ethylene and at least propylene to obtain a copolymer containing from 96% by mol to 71% by mol of ethylene derived units, in the presence of a catalyst system obtainable by contacting: b) at least a metallocene compound of formula (I), b) alumoxane or a compound capable of forming an alkyl metallocene cation; and optionally c) an organo aluminum compound; wherein the groups R1-R4, L, M and W are described in the text.
    Type: Application
    Filed: April 6, 2007
    Publication date: August 6, 2009
    Applicant: Basell Polylolefine GmbH
    Inventors: Luigi Resconi, Francesca Focante
  • Publication number: 20090156762
    Abstract: A method comprising contacting a support with one or more chromium-containing compounds and one or more boria precursors to provide a catalyst precursor, and activating the catalyst precursor to provide a polymerization catalyst.
    Type: Application
    Filed: December 18, 2007
    Publication date: June 18, 2009
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Max P. McDaniel, Kathy S. Collins
  • Patent number: 7547751
    Abstract: The invention related to a process for the polymerization of at least one aliphatic C2-20 or aromatic C4-20 hydrocarbyl mono- or multiolefin in the presence of a catalyst and an aluminum comprising co-catalyst, wherein the catalyst comprises a composition of a metal-organic reagent, a spectator ligand and optionally at least one equivalent of a hydrocarbylating agent. The invention further relates to a polymer obtainable by the process of the invention.
    Type: Grant
    Filed: August 3, 2004
    Date of Patent: June 16, 2009
    Assignee: DSM IP Assets B.V.
    Inventors: Edwin IJpeij, Henricus Arts, Gerardus van Doremaele, Felix Beijer, Francis van der Burgt, Martin Zuideveld
  • Patent number: 7534842
    Abstract: This invention relates to the field of olefin polymerization catalyst compositions, and methods for the polymerization and copolymerization of olefins, including polymerization methods using a catalyst composition. One aspect of this invention is the formation and use of a catalyst composition comprising a transition metal compound and an activator for olefin polymerization processes.
    Type: Grant
    Filed: November 16, 2005
    Date of Patent: May 19, 2009
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Kumudini C. Jayaratne, Michael D. Jensen, Matthew G. Thorn, Max P. McDaniel, Qing Yang
  • Publication number: 20090005523
    Abstract: A process for obtaining atactic 1-butene polymer optionally containing at least one comonomer selected from ethylene, propylene or an alpha-olefin of formula CH2?CHRo, wherein Ro is a linear or branched C3-C20 alkyl group, comprising the step of polymerizing 1-butene and optionally ethylene, propylene or said alpha-olefin, in the presence of a catalyst system obtainable by contacting: a) at least one metallocene compound of formula (I) in its meso or meso-like form wherein M is an atom of a transition metal; p is an integer from 0 to 3; X, same or different, is a hydrogen atom, a halogen atom, or a hydrocarbon group; L is a divalent C1-C40 hydrocarbon radical optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements; R1 and R2, are C1-C40 hydrocarbon radicals; T, equal to or different from each other, is a moiety of formula (IIa) or (IIb): wherein R3 is a C1-C40 hydrocarbon radical; R4 and R6, are hydrogen atoms or C1-C40 hydrocarbon radicals; R5 is a C1
    Type: Application
    Filed: April 25, 2005
    Publication date: January 1, 2009
    Applicant: Basell Polyefine GmbH
    Inventors: Luigi Resconi, Simona Guidotti
  • Patent number: 7009012
    Abstract: The present invention provides a supported catalyst comprising (A) a polymer (B) a supporter, (C) a transition metal compound, and optionally (D) (a) a compound which can form an ionic complex by the reaction with the transition metal compound or (b) a specific oxygen-containing compound, and (E) an alkylaluminum compound. The supported catalyst according to present invention, which has a high activity, can be used for preparing a styrenic polymer with a high syndiotacticity. The supported catalyst can be used in combination with a cocatalyst, preferably an alkyl aluminoxane.
    Type: Grant
    Filed: December 18, 2000
    Date of Patent: March 7, 2006
    Assignee: Samsung Atofina Co. Ltd.
    Inventors: Sung Cheol Yoon, Xuequan Zhang, Jae Gon Lim, Hyun Joon Kim, Young Sub Lee
  • Patent number: 7001968
    Abstract: A novel loop/slurry olefin polymerization process is provided which produces ultra-high molecular weight ethylene homopolymer.
    Type: Grant
    Filed: June 16, 2003
    Date of Patent: February 21, 2006
    Assignee: Phillips Petroleum Company
    Inventors: Max P. McDaniel, Elizabeth A. Benham
  • Patent number: 6900277
    Abstract: Novel catalyst systems which comprise one or more diimine nickel(II) or palladium (II) complexes, one or more cocatalysts, and aluminophosphate are disclosed. Olefin polymerization processes using those catalyst systems are also disclosed. The inclusion of aluminophosphate can improve the activity or productivity of such catalyst systems, making such catalyst systems active or more active in olefin polymerization under conditions in which they had previously been inactive or insufficiently active.
    Type: Grant
    Filed: May 23, 2003
    Date of Patent: May 31, 2005
    Assignee: Phillips Petroleum Company Washington County
    Inventors: Nancy W. Eilerts, Max P. McDaniel, Lloyd W. Guatney, Kathy S. Collins
  • Patent number: 6878779
    Abstract: A highly uniform vinyl compound polymer-cross-copolymerized olefin/styrene/diene copolymer excellent in processability, mechanical properties, high temperature properties, compatibility and transparency, and its composition and a process for its production, are provided. This copolymer is a crossed polymer obtained by cross-copolymerizing an olefin/styrene/diene copolymer having a styrene content of from 0.03 mol % to 96 mol %, a diene content of from 0.0001 mol % to 3 mol % and the rest being an olefin, with an olefin/aromatic vinyl compound copolymer.
    Type: Grant
    Filed: January 20, 2004
    Date of Patent: April 12, 2005
    Assignee: Denki Kagaku Kogyo Kabushiki Kaisha
    Inventors: Toru Arai, Toshiaki Otsu, Masataka Nakajima
  • Patent number: 6878785
    Abstract: This invention provides catalyst compositions that are useful for polymerizing at least one monomer to produce a polymer. This invention also provides catalyst compositions that are useful for polymerizing at least one monomer to produce a polymer, wherein said catalyst composition comprises a post-contacted organometal compound, a post-contacted organoaluminum compound, and a post-contacted treated solid oxide compound.
    Type: Grant
    Filed: March 17, 2003
    Date of Patent: April 12, 2005
    Assignee: Phillips Petroleum Company
    Inventors: Max P. McDaniel, Kathy S. Collins, Gil R. Hawley, Michael D. Jensen, Elizabeth A. Benham, Anthony P. Eaton, Joel L. Martin, Christopher E. Wittner
  • Patent number: 6809163
    Abstract: The present invention provides a process for preparing bead polymers having an average particle size of 1 to 40 &mgr;m, which includes: contacting: at least one polymerizable mix which includes at least 50% by weight of at least one (meth)acrylate monomer, at least one aluminum compound, and an aqueous phase, to prepare a mixture; dispersing the mixture at a shear rate≧103 s−1 to form a dispersion, wherein the dispersion is stabilized by the aluminum compound; and polymerizing to produce bead polymers having an average particle size of 1 to 40 &mgr;m.
    Type: Grant
    Filed: December 28, 2001
    Date of Patent: October 26, 2004
    Assignee: Roehm GmbH & Co KG
    Inventors: Klaus Schultes, Thomas Suefke, Markus Parusel, Guenter Schmitt, Winfried Belzner
  • Patent number: 6646072
    Abstract: A clay-filled polyolefin composition and process for making it are disclosed. The process involves treatment of a non-acid-treated smectite clay with a Ziegler-Natta catalyst in the presence of a hydrocarbon and subsequent polymerization of an olefin in the presence of the treated clay and an organoaluminum cocatalyst. Results indicate that filled compositions produced by this process contain exfoliated clay.
    Type: Grant
    Filed: January 23, 2002
    Date of Patent: November 11, 2003
    Assignee: Equistar Chemicals, LP
    Inventors: Douglas D. Klendworth, Mark K. Reinking
  • Patent number: 6617277
    Abstract: A catalyst composition has a catalyst component which includes a metallocene transition metal compound, a magnesium compound, a hydroxyl containing compound, and a polymeric material. The catalyst component may also include asilicon compound and an aluminum compound. The catalyst component is combined with a cocatalyst and used in olefin polymerization.
    Type: Grant
    Filed: September 10, 2001
    Date of Patent: September 9, 2003
    Assignee: Saudi Basic Industries Corporation
    Inventors: Orass Hamed, Akhlaq Moman, Atieh Abu-Raqabah
  • Publication number: 20030162915
    Abstract: A process to produce ethylene polymers is provided.
    Type: Application
    Filed: December 13, 2002
    Publication date: August 28, 2003
    Inventors: Max P. McDaniel, Elizabeth A. Benham, Al R. Wolfe
  • Patent number: 6608152
    Abstract: A novel process for the polymerization of olefins is provided. The process involves contacting at least one olefin with a Ziegler-Natta type catalyst in the presence of a specified compound that results in the production of polymeric products having a narrower molecular weight distribution. Also provide is a process for narrowing the molecular weight distribution of a polyolefin comprising contacting an olefin, a Ziegler-Natta catalyst and a compound specified herein. Further provided are novel polyethylenes, and films and articles produced therefrom.
    Type: Grant
    Filed: July 27, 2001
    Date of Patent: August 19, 2003
    Assignee: Eastman Chemical Company
    Inventors: Randal Ray Ford, Richard Kingsley Stuart, Jr.
  • Publication number: 20030139545
    Abstract: A clay-filled polyolefin composition and process for making it are disclosed. The process involves treatment of a non-acid-treated smectite clay with a Ziegler-Natta catalyst in the presence of a hydrocarbon and subsequent polymerization of an olefin in the presence of the treated clay and an organoaluminum cocatalyst. Results indicate that filled compositions produced by this process contain exfoliated clay.
    Type: Application
    Filed: January 23, 2002
    Publication date: July 24, 2003
    Inventors: Douglas D. Klendworth, Mark K. Reinking
  • Patent number: 6583235
    Abstract: Novel catalyst systems which comprise one or more diimine nickel (II) or palladium (II) complexes, one or more cocatalysts, and aluminophosphate are disclosed. Olefin polymerization processes using those catalyst systems are also disclosed. The inclusion of aluminophosphate can improve the activity or productivity of such catalyst systems, making such catalyst systems active or more active in olefin polymerization under conditions in which they had previously been inactive or insufficiently active.
    Type: Grant
    Filed: December 29, 1999
    Date of Patent: June 24, 2003
    Assignee: Phillips Petroleum Company
    Inventors: Nancy W. Eilerts, Max P. McDaniel, Lloyd W. Guatney, Kathy S. Collins
  • Patent number: 6573344
    Abstract: A process to produce a propylene polymer is provided. The process comprising contacting at least one organometal compound, at least one organoaluminum compound, at least one treated solid oxide compound, propylene, and ethylene in a polymerization zone under polymerization conditions to produce the propylene polymer.
    Type: Grant
    Filed: June 22, 2000
    Date of Patent: June 3, 2003
    Assignee: Phillips Petroleum Company
    Inventors: Gil R. Hawley, Max P. McDaniel, Michael D. Jensen, Christopher E. Wittner
  • Patent number: 6559087
    Abstract: A method for the treatment of catalyst or catalyst support material in an apparatus in which the treatment is carried out continuously in such a way that the physical and/or chemical conditions change during entry of the catalyst or catalyst support material into the apparatus and/or during exit thereof from the apparatus and/or the catalyst or catalyst support material is transported in the apparatus through zones (5, 6, 7) having different physical and/or chemical conditions.
    Type: Grant
    Filed: March 27, 2000
    Date of Patent: May 6, 2003
    Assignee: Basell Polyolefins GmbH
    Inventors: Paulus De Lange, Rainer Karer, Philipp Rosendorfer, Kaspar Evertz, Wolfgang Micklitz, Hans-Jacob Feindt
  • Patent number: 6548442
    Abstract: This invention is directed to an organometal compound catalyst that is useful for polymerizing at least one monomer to produce a polymer. The catalyst is produced by combining a titanium, zirconium or hafnium organometal compound, preferably a metallocene, at least one organoaluminum compound, and a treated solid oxide. The treated solid oxide compound contains at least one halogen, zirconium and a solid oxide compound.
    Type: Grant
    Filed: December 3, 1999
    Date of Patent: April 15, 2003
    Assignee: Phillips Petroleum Company
    Inventors: Max P. McDaniel, Kathy S. Collins, Gil R. Hawley, Michael D. Jensen, Elizabeth A. Benham, Anthony P. Eaton, Joel L. Martin, Christopher E. Wittner
  • Patent number: 6495638
    Abstract: A process is provided to produce a catalyst system. The process comprises blending a first component and a second component. The first component of the catalyst system comprises chromium on a support. The amount of chromium on the support is from about 0.05 to about 5 weight percent based on the weight of the support. The support comprises fluorided alumina. The support has a surface area from about 200 to about 550 square meters per gram and a pore volume from about 0.7 to about 2.5 cubic centimeters per gram. The first component is activated at a temperature in the range of about 500° C. to about 900° C. The second component is a transition metal halide catalyst. A process comprising polymerizing ethylene or copolymerizing ethylene and at least one other monomer using the catalyst system to produce ethylene polymers is also provided.
    Type: Grant
    Filed: December 30, 1998
    Date of Patent: December 17, 2002
    Assignee: Phillips Petroleum Company
    Inventors: Max P. McDaniel, Elizabeth A. Benham, Al R. Wolfe
  • Patent number: 6476165
    Abstract: An olefin polymerization process is described. The process comprises polymerizing an olefin in the presence of a support, a single-site catalyst, an optional activator, and a fatty amine. The support is chemically treated with an organoboron compound. The single-site catalyst contains a polymerization-stable, heteroatomic ligand. The fatty amine is added directly to the reactor. The combination of pre-treating the support with an organoboron compound and the addition of fatty amine to the process unexpectedly increases catalyst activity.
    Type: Grant
    Filed: March 8, 2000
    Date of Patent: November 5, 2002
    Assignee: Equistar Chemicals, LP
    Inventor: Shaotian Wang
  • Patent number: 6465543
    Abstract: The present invention is a nanocomposite which is a dispersion of nanofiller particles derived from layered metal oxides or metal oxide salts. The nanocomposite is advantageously prepared by first swelling an untreated clay in water, then removing the water to form an organophilic clay that is dispersible in non-polar organic solvents. The organophilic clay can then be treated with an alkyl aluminoxane and subsequently a catalyst to form a complex that promotes olefin or styrenic polymerization and platelet dispersion. The nanocomposite can be prepared directly by in situ polymerization of the olefin or the styrene at the nanofiller particles without shear, without an ion exchange step, and without the need to incorporate polar substituents into the polyolefin or polystyrene.
    Type: Grant
    Filed: December 21, 2000
    Date of Patent: October 15, 2002
    Assignee: The Dow Chemical Company
    Inventors: Michael Alexandre, Philippe G. Dubois, Robert J. E. G. Jerome, Miguel Garcia-Marti, Tao Sun, Juan M. Garces, Dean M. Millar, Alexander Kuperman
  • Patent number: 6433083
    Abstract: The present invention provides resin materials for producing molded products endowed with excellent heat resistance, solvent resistance, toughness, tensile elongation, and transparency. Specifically, there are provided aromatic vinyl resin materials which have the following properties: Storage elasticity values G′(1.0) and G′(0.1) as measured at 300° C., a strain &ggr; of 20%, and a frequency of 1.0 Hz or 0.1 Hz satisfy the expression, log[G′(1.0)/G′(0.1)]≦0.6, the heat of fusion &Dgr;H as measured over the range 200-295° C. is 8 to 50 (J/g), and the 1H-NMR peak integrated values for the fraction corresponding to the temperature range of not lower than 50° C., as collected from temperature rising election fraction on the Soxhlet extraction residue by use of cyclohexane or o-dichlorobenzene, satisfy the relation [1.8-2.1 (ppm)]/[1.0-1.7(ppm))<0.49.
    Type: Grant
    Filed: February 2, 2001
    Date of Patent: August 13, 2002
    Assignee: Idemitsu Petrochemical Co., Ltd.
    Inventors: Hideo Teshima, Tomoaki Takebe, Masanori Sera
  • Publication number: 20020099154
    Abstract: A catalyst composition has a catalyst component which includes a metallocene transition metal compound, a magnesium compound, a hydroxyl containing compound, and a polymeric material. The catalyst component may also include asilicon compound and an aluminum compound. The catalyst component is combined with a cocatalyst and used in olefin polymerization.
    Type: Application
    Filed: September 10, 2001
    Publication date: July 25, 2002
    Applicant: Saudi Basic Industries Corporation.
    Inventors: Orass Hamed, Akhlaq Moman, Atieh Abu-Raqabah
  • Patent number: 6395668
    Abstract: It is disclosed a new catalyst system for the polymerization of olefins comprising the product obtainable by contacting the following components: (A) one or more compounds of a late transition metal belonging to Group 8-11 of the Periodic Table; and (B) the reaction product of water with one or more organometallic aluminum compounds of formula (IV): Al(CH2—CR3R4R5)xR6yHz, wherein R3 is a C1-C20 alkyl, C3-C20 cycloalkyl or C7-C20 alkylaryl radical; R4 is different from a straight alkyl and is a C3-C20 alkyl, C3-C20 cycloalkyl, C6-C20 aryl, C7-C20 alkylaryl or C7-C20 arylalkyl radical; or R3 and R4 form together a C4-C6 ring; R5 is hydrogen or a C1-C20 alkyl, C6-C20 aryl, C7-C20 alkylaryl or arylalkyl radical; R6 is a C1-C20 alkyl, C3-C20 cycloalkyl, C6-C20 aryl, C7-C20 alkylaryl or C7-C20 arylalkyl radical; x is 1-3; z is 0-1; and y is 3−x−z; the molar ratio between said organometallic aluminum compound and water being comprised between 0.5:1 and 100:1.
    Type: Grant
    Filed: June 13, 2001
    Date of Patent: May 28, 2002
    Assignee: Basell Technology Company BV
    Inventors: Jan F. van Baar, Peter A. Schut, Andrew D. Horton, Tiziano Dall'Occo
  • Patent number: 6384163
    Abstract: A process for preparing a spherical polyethylene of ultra-high molecular weight. A process for preparing a spherical support for the polymerization of alpha-olefins from an ammonium dawsonite which is spray-dried and formed into spherical particles which are then calcined and impregnated with titanium to produce a spherical catalyst of good mechanical strength is described. Also described is the polymerization process which, in the presence of the spherical catalyst, yields polyolefin particles which preserve the spherical characteristics of the support, with low flow angle and good bulk density, as well as the product polyethylene obtained from the process.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: May 7, 2002
    Assignee: Petroleo Brasileiro S. A.-Petrobras
    Inventors: Jaime Correia da Silva, Cecilia Maria Ooelho de Figueiredo
  • Patent number: 6369173
    Abstract: The present invention relates to a process of preparing syndiotactic styrenic polymers with a high conversion rate in the form of fine powder, which comprises (a) preparing styrenic polymers in a solid state by reacting a mixture consisting of styrenic monomers, a metallocene catalyst, a cocatalyst and inert organic solvent in a polymerization reactor, (b) separating a portion of the styrenic polymers from the reactor, (c) recycling the portion of the styrenic polymers in the reactor, and (d) reacting the recycled styrenic polymers with styrenic monomers. The styrenic monomers may include olefinic monomers. The monomers can be introduced to a single inlet or multiple inlets of the reactor. A single reactor or a plural number of reactors can be operated in the present invention. The plural numbers of reactors are arranged in series or in parallel. In the present invention, a self-cleaning mono- or twin-axis reactor can be employed to prevent the polymers from agglomerating on the inner wall or the axis.
    Type: Grant
    Filed: September 15, 2000
    Date of Patent: April 9, 2002
    Assignee: Samsung General Chemicals Co., Ltd.
    Inventors: Hyun-Joon Kim, Jae-Gon Lim, Sung-Cheol Yoon
  • Patent number: 6359086
    Abstract: A free-flowing solid which does not self-ignite, comprising: a) at least one support component, b) at least one chemical compound which per se is self-igniting, c) at least one inert liquid and d) further components.
    Type: Grant
    Filed: July 13, 1999
    Date of Patent: March 19, 2002
    Assignee: Basell Polyolefine GmbH
    Inventors: Marc Oliver Kristen, Patrik Müller, Ulrich Moll, Peter Kölle
  • Patent number: 6288182
    Abstract: A catalyst composition has a catalyst component which includes a metallocene transition metal compound, a magnesium compound, a hydroxyl containing compound, and a polymeric material. The catalyst component may also include asilicon compound and an aluminum compound. The catalyst component is combined with a cocatalyst and used in olefin polymerization.
    Type: Grant
    Filed: October 12, 1999
    Date of Patent: September 11, 2001
    Assignee: Saudi Basic Industries Corporation
    Inventors: Orass Hamed, Akhlaq Moman, Atieh Abu-Raqabah
  • Publication number: 20010001795
    Abstract: A process to produce ethylene polymers is provided.
    Type: Application
    Filed: December 30, 1998
    Publication date: May 24, 2001
    Inventors: MAX P. MCDANIEL, ELIZABETH A. BENHAM, AL R. WOLFE
  • Patent number: 6228792
    Abstract: Supported Ziegler-Natta catalyst component adapted for the polymerization of ethylene is provided. More specifically, certain organomagnesium compounds (e.g., dibutylmagnesium) which do not contain an oxygen linkage between the organo moiety and the magnesium are impregnated into a porous inorganic oxide support (e.g., agglomerated silica particles) to form a first reaction product. The first reaction product is halogenated, e.g., with HCl, to convert the organomagnesium derived component to MgCl2 thereby forming a second reaction product. The second reaction product is then treated with a transition metal compound (e.g., TiCl4), a particular type of electron donor (e.g., 2,6-dimethyl pyridine) and optionally at least one Group 2 or 13 organo metal compound (e.g., diethylaluminum chloride). The combination of the particular organomagnesium compounds and electron donor impart a low melt flow ratio and enhanced activity to resulting catalyst component.
    Type: Grant
    Filed: February 27, 1998
    Date of Patent: May 8, 2001
    Assignee: W. R. Grace & Co.-Conn.
    Inventor: Michael John Carney
  • Patent number: 6225427
    Abstract: A polyolefin elastomer possessing a unique combination of properties, i.e., high molecular weight (Mw), high Mooney viscosity (ML1+4 at 125° C.), low polydispersity index (Mw/Mn) and low glass transition temperature (Tg), is obtained by a polymerization process employing a particular type of a metallocene catalyst. The polyolefin elastomer is useful for manufacturing a variety of products including rubber articles such as hoses, belts and moldings, polymer blends containing one or more other hydrocarbon polymers and lubricating oils in which the elastomer functions as a viscosity modifier. Also disclosed is a cocatalyst for activating the metallocene procatalyst employing a specific molar ratio of the components of the cocatalyst to the transition metal of the procatalyst.
    Type: Grant
    Filed: October 15, 1998
    Date of Patent: May 1, 2001
    Assignee: Uniroyal Chemical Company, Inc.
    Inventors: Willie C. Burton, Xu Wu Feng, Daniel Gillis
  • Patent number: 6201076
    Abstract: An olefin polymerization process is described. The process comprises polymerizing an olefin in the presence of a supported single-site catalyst, an optional activator, and a fatty amine. The fatty amine is added at a concentration in the range from about 10 to about 75 weight percent based on the weight of the supported catalyst. The fatty amine helps to reduce fouling and sheeting during the polymerization process and enhances catalyst activity.
    Type: Grant
    Filed: April 29, 1999
    Date of Patent: March 13, 2001
    Assignee: Equistar Chemicals, L.P.
    Inventors: Bradley P. Etherton, Gregory G. Hlatky, James H. Meas, Jr.
  • Patent number: 6121394
    Abstract: The present invention is directed to a method for polymerizing an .alpha.-olefin characterized by using a catalyst system which is obtained by reacting a halogenated metallocene compound with an organometallic compound, and then bringing the resultant reaction product into contact with a compound which will be a stable anion by reaction with the reaction product of the halogenated metallocene compound and the organometallic compound.When the method of the present invention is carried out, a polyolefin can be obtained by the use of the inexpensive catalyst in a high activity per unit amount of the catalyst.
    Type: Grant
    Filed: May 25, 1995
    Date of Patent: September 19, 2000
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Ryuichi Sugimoto, Tadashi Asanuma, Tutomu Iwatani, Katsumi Takeuchi, Osamu Uchida
  • Patent number: 6121182
    Abstract: A catalyst component for polyolefin production catalysts comprising a metallocene compound represented by general formula (1) (symbols have the meanings as described in the specification), polyolefin production catalyst containing the component, and method for producing polyolefin with the catalyst are provided. Use of a catalyst containing the novel metallocene compound as a catalyst component of the invention in polymerization of .alpha.-olefin, particularly propylene, enables one to prepare high rigid, high melting point isotactic polypropylene useful as an industrial material for automobiles and the like, more specifically isotactic polypropylene having highly controlled stereoregulartity and regioregularity, particularly the one having a high regioregularity that has been difficult to achieve with conventional metallocene catalysts.
    Type: Grant
    Filed: December 11, 1997
    Date of Patent: September 19, 2000
    Assignee: Japan Polyolafins Co., Ltd.
    Inventors: Yoshikuni Okumura, Tsutomu Sakuragi, Michio Ono, Shintaro Inazawa
  • Patent number: 6031055
    Abstract: A method of controlling the molecular weight distribution of a polyalpha-olefin during polymerization, comprising changing the aluminoxane to chromium ratio of a polymerization catalyst comprising chromium and at least one aluminoxane to thereby adjust the molecular weight distribution.
    Type: Grant
    Filed: January 25, 1993
    Date of Patent: February 29, 2000
    Assignee: Chevron Chemical Company
    Inventors: Pamela R. Auburn, David L. Beach
  • Patent number: 5936051
    Abstract: Metallocene complexes of a metal M selected from titanium, zirconium and hafnium, comprising at least one anionic group A containing an .eta..sup.5 -cyclopentadienyl ring co-ordinated with the metal M, wherein the anionic group is substituted in at least one position of the cyclopentadienyl ring with a radical having the formula:Ph*--(CR.sup.6 R.sup.7).sub.nwherein: R.sup.6 and R.sup.7 are independently hydrogen, halogen or a C.sub.1 -C.sub.4 alkyl group, preferably hydrogen, "n" is 0 or 1, preferably 1, Ph* is a C.sub.6 -C.sub.14 group comprising an aromatic ring linked to --CR.sup.6 R.sup.7 -- or to A and substituted with at least one and up to a maximum of three electron-attractor groups, on the condition that, when A is an .eta..sup.5 -indenyl group and "n" is 0, at least one Ph group is linked to A in position 1 or 3 of indenyl.These complexes can be used in (co)polymerization processes of .alpha.
    Type: Grant
    Filed: February 19, 1997
    Date of Patent: August 10, 1999
    Assignee: Enichem S.p.A.
    Inventors: Roberto Santi, Giampiero Borsotti, Cecilia Querci, Liliana Gila, Antonio Proto