Transition Metal Compound Contains P, S, Or N Atom Patents (Class 526/161)
  • Patent number: 11365270
    Abstract: The invention relates to polybutadiene, which contains the monomer units derived from 1,3-butadiene having a vinyl double bond in a proportion of 25 to 75 mole percent, having a trans-double bond in a proportion of 0 to 10 mole percent and a cis-double bond in a proportion of 25 to 75 mole percent, wherein the totality of the monomer units (A), (B) and (C) is supplemented to 100 mole percent, and which is characterized in that it has a number-average mole mass of 1,000 to 3,000 g/mole. The invention further relates to a method for producing polybutadienes, the use of the polybutadiene according to the invention and compositions containing polybutadiene according to the invention.
    Type: Grant
    Filed: October 9, 2020
    Date of Patent: June 21, 2022
    Assignee: Evonik Operations GmbH
    Inventors: Kai-Steffen Krannig, Jürgen Herwig, Andreas Berlineanu, Miriam Ammer, Philip Kemper, Alexander Pschantka, Yvonne Groß-Onnebrink, Gudula Beuers, Margit Bukohl, Kirsten Luce, Siegfried Jittenmeier
  • Patent number: 11352453
    Abstract: A catalyst for olefin polymerization that contains a metal complex represented by general formula (C1) and a method for producing polyethylene, a copolymer of ethylene and an olefin having a polar group represented by general formula (1), or a copolymer of ethylene, an olefin having a polar group represented by general formula (1) and another monomer, using the aforementioned metal complex as a polymerization catalyst, wherein the symbols in formula (C1) and formula (1) are as defined in the specification.
    Type: Grant
    Filed: November 7, 2018
    Date of Patent: June 7, 2022
    Assignees: THE UNIVERSITY OF TOKYO, SHOWA DENKO K.K., JAPAN POLYETHYLENE CORPORATION
    Inventors: Kyoko Nozaki, Shingo Ito, Junichi Kuroda, Yoshikuni Okumura, Shinya Hayashi, Yumiko Minami, Minoru Kobayashi, Yuichiro Yasukawa
  • Patent number: 11254763
    Abstract: This invention relates to transition metal complexes of a dianionic, tridentate ligand that features a central neutral heterocyclic Lewis base and two phenolate donors, where the tridentate ligand coordinates to the metal center to form two eight-membered rings. Preferably the bis(phenolate) complexes are represented by Formula (I): where M, L, X, m, n, E, E?, Q, R1, R2, R3, R4, R1?, R2?, R3?, R4?, A1, A1?, are as defined herein, where A1QA1? are part of a heterocyclic Lewis base containing 4 to 40 non-hydrogen atoms that links A2 to A2? via a 3-atom bridge with Q being the central atom of the 3-atom bridge.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: February 22, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Georgy P. Goryunov, Mikhail I. Sharikov, Vladislav A. Popov, Dmitry V. Uborsky, Alexander Z. Voskoboynikov, John R. Hagadorn, Michelle E. Titone, Alex E. Carpenter, Catherine A. Faler, Jo Ann M. Canich
  • Patent number: 11111318
    Abstract: Embodiments are directed to a metal complex formed, wherein the metal complexes are used as pro-catalyst in polyolefin polymerization and comprise the following structure (Formula (I)).
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: September 7, 2021
    Assignee: Dow Global Technologies LLC
    Inventors: Hien Q. Do, Philip P. Fontaine, Andrew J. Young, Susan G. Brown, Johnathan E. DeLorbe, Tulaza Vaidya, Zach T. Rickaway, Amy E. Floeck (nee Duchnowski), Chunming Zhang, Ruth Figueroa, Jerzy Klosin
  • Patent number: 11041035
    Abstract: The present disclosure provides methods for producing an olefin polymer including: i) contacting alpha-olefin with a first catalyst system comprising a first non-metallocene catalyst, a first activator, and a reversible chain transfer agent to form a first polymer; ii) contacting the first polymer with a coupling agent in the presence of a catalyst, an activator; and iii) obtaining a second polymer. The present disclosure further provides polymers having a g?vis value from about 0.4 to about 0.8 and a vinyl unsaturation content of 0.8 or greater vinyls/1000 carbons, and preferably low gel content.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: June 22, 2021
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John R. Hagadorn, Jo Ann M. Canich, Jingwen Zhang, Peijun Jiang, Britni J. Brobey
  • Patent number: 10647786
    Abstract: This invention relates to a supported catalyst system and process for use thereof. In particular, the catalyst system includes a pyridyldiamido transition metal complex, an activator and a support material. The catalyst system may be used for preparing ultrahigh molecular weight polyolefins.
    Type: Grant
    Filed: March 10, 2016
    Date of Patent: May 12, 2020
    Assignee: ExxonMobil Chemical Patents, Inc.
    Inventors: Xuan Ye, John R. Hagadorn, Matthew W. Holtcamp, Gregory S. Day, David F. Sanders
  • Patent number: 10421064
    Abstract: The present invention relates to a catalyst composition and a process for the oligomerization of ethylene to produce 1-hexene or 1-octene, wherein the catalyst composition comprises a chromium compound; an NPNPN ligand of the formula (R1) (R2)N—P(R3)—N(R4)—P(R5)—N(R6)(R7), wherein R1, R2, R3, R4, R5, R6 and R7 are each independently hydrogen, halogen, amino, trimethylsilyl or C1-C20 hydrocarbyl, preferably straight-chain or branched C1-C10 alkyl, phenyl, C6-C20 aryl or C6-C20 alkyl-substituted phenyl.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: September 24, 2019
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Mohammed H. Al-Hazmi, Abdullah Alqahtani, Uwe Rosenthal, Bernd H. Muller, Normen Peulecke, Marco Harff, Anina Wohl, Andreas Meiswinkel, Heinz Bolt, Wolfgang Muller
  • Patent number: 10071529
    Abstract: This invention relates to methods of fabricating components of a pressure vessel using a dicyclopentadiene prepolymer formulation in which the purity of the dicyclopentadiene is at least 92% wherein the formulation further comprises a reactive ethylene monomer that renders the prepolymer formulation flowable at ambient temperatures and to pressure vessels that are fabricated by said methods.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: September 11, 2018
    Assignee: BLUE WAVE CO S.A.
    Inventors: Francesco Nettis, Brian Spencer, Zachary Spencer
  • Patent number: 9963522
    Abstract: The present invention provides a metallocene complex capable of producing a homopolypropylene having a high melting point in the homopolymerization of propylene, and a production method of an olefin polymer using the same. The metallocene complex of the present invention is represented by formula [I].
    Type: Grant
    Filed: March 17, 2015
    Date of Patent: May 8, 2018
    Assignee: JAPAN POLYPROPYLENE CORPORATION
    Inventors: Toshinori Suzuki, Masami Kashimoto, Masato Nakano, Hideshi Uchino, Takao Tayano
  • Patent number: 9573125
    Abstract: An efficient method for the preparation of backbone-substituted imidazolinium salts for use as N-heterocyclic carbene ligands, e.g., for organometallic catalysts is provided. These functionalized N-heterocyclic carbene ligands are used to prepare solid-supported catalysts, e.g., for olefin metathesis.
    Type: Grant
    Filed: June 26, 2013
    Date of Patent: February 21, 2017
    Assignee: California Institute of Technology
    Inventors: Raymond Weitekamp, Robert H. Grubbs
  • Patent number: 9546230
    Abstract: The present invention provides a method of producing a polyolefin composition comprising contacting a binuclear metallocene pre-catalyst and a co-catalyst, adding a excess of a metal alkyl, then adding a first olefin monomer. The method allows for the production of polyolefins with a highly stereoregular stereochemical microstructure through living coordination polymerization in which rapid reversible chain transfer between a racemic mixture of a chiral active transition metal propagating center and multiple equivalents of inert main group metal alkyl is competitive with chain-growth propagation at the active center.
    Type: Grant
    Filed: January 13, 2014
    Date of Patent: January 17, 2017
    Assignee: University of Maryland, College Park
    Inventor: Lawrence R. Sita
  • Patent number: 9441063
    Abstract: Catalyst compositions containing activator-supports and half-metallocene titanium phosphinimide complexes or half-metallocene titanium iminoimidazolidide complexes are disclosed. These catalyst compositions can be used to produce olefin polymers having relatively broad molecular weight distributions and low levels of long chain branching.
    Type: Grant
    Filed: October 9, 2014
    Date of Patent: September 13, 2016
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Carlos A. Cruz, Jared L. Barr, Jeremy M. Praetorius
  • Patent number: 9334349
    Abstract: A polymerization process comprising (A) polymerizing ethylene in the presence of a catalyst to form a semi-crystalline ethylene-based polymer in at least one reactor; the catalyst comprising an organometallic catalyst thereby forming an ethylene-based polymer composition in the at least one reactor, wherein the catalyst is a metal complex of a polyvalent aryloxyether corresponding to the formula: wherein step (A) is conducted in the presence of from 5 to 20 mmol/m3 triethylaluminum; and wherein step (A) is conducted in the presence of one or both of the following conditions: (i) from greater than 0:1 to 65:1 molar ratio of triethylaluminum to the catalyst; and (ii) from 0.1:0 to 5:1 molar ratio of triethylaluminum to modified methylalumoxane is provided.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: May 10, 2016
    Assignee: Dow Global Technologies LLC
    Inventors: Ludovicus J C Sluijts, Armanda Van Putten, Ian M. Munro
  • Patent number: 9315594
    Abstract: The invention relates to a catalyst system for the polymerization of olefins comprising a metal complex of formula CyLMD and an activating cocatalyst, wherein M is titanium, Cy is a cyclopentadienyl-type ligand, D is a diene, L is a guanidinate-containing ligand of the formula (I) wherein each A is independently selected from nitrogen or phosphorous and R, R1, R2 and R3 are independently selected from the group consisting of hydrogen, hydrocarbyl, silyl and germyl residues, substituted or not with one or more halogen, amido, phosphido, alkoxy, or aryloxy radicals, and Cy is a mono- or polysubstituted cyclopentadienyl-type ligand, wherein the one or more substituents of Cy are selected from the group consisting of halogen, hydrocarbyl, silyl and germyl residues, optionally substituted with one or more halogen, amido, phosphido, alkoxy, or aryloxy residues.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: April 19, 2016
    Assignee: LANXESS Elastomers B.V.
    Inventors: Van Gerardus Henricus Josephus Doremaele, Martin Alexander Zuideveld, Victor Fidel Quiroga Norambuena, Philip Mountford, Richard Scott
  • Patent number: 9284384
    Abstract: A method for producing a polymer containing silica that does not involve long kneading time, and a polymer composition having an intended low heat generation property. A polymerization catalyst composition is produced by mixing and aging a second element and a third element, and then adding a first element to the mixture to react the first element with the mixture. The first element contains a compound that contains a rare earth metal element, the second element contains a compound represented by the following formula (X), and the third element contains silica. YR1aR2bR3c (X) (In the formula, Y is a metal; R1 and R2 are hydrogen atoms or hydrocarbon groups; and R3 is a hydrocarbon group, and R1, R2, and R3 are the same as or different from each other, a, b, and c are 0 or 1.).
    Type: Grant
    Filed: April 18, 2013
    Date of Patent: March 15, 2016
    Assignee: BRIDGESTONE CORPORATION
    Inventors: Junko Matsushita, Shojiro Kaita
  • Patent number: 9243988
    Abstract: Bubble formation is monitored in a reactor such as a loop polymerization reactor which effectively operates at pressures above or near the vapor pressure of a circulating slurry liquid. The method measures a property of the reactor composition at a first location within the reactor, and then at a second location within the reactor. The process is repeated, followed by determining if the difference in measured property varies from a reference difference, derived under bubble-free conditions. When the difference in measured physical property has changed relative to the reference difference, an effect may be implemented, e.g., increase of reactor pressure, decrease of composition vapor pressure, and decrease of reactor temperature, to an extent sufficient to reduce or eliminate bubbling.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: January 26, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Kevin W. Lawson, Lawrence C. Smith
  • Patent number: 9212234
    Abstract: In a process for producing high molecular weight polyethylene, ethylene is contacted with a slurry of a catalyst composition comprising a Group 4 metal complex of a phenolate ether ligand under polymerization conditions comprising a temperature of about 20° C. to less than 90° C. and a pressure of about 4 bar to about 40 bar.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: December 15, 2015
    Assignee: TICONA GMBH
    Inventors: Dominique Robert, Julia Hufen, Kerstin Lüdtke, Bjorn Rinker, Jens Ehlers
  • Patent number: 9180443
    Abstract: In the present disclosure, imidazole-derived materials including M-N-C catalysts, imidazole-derived MOFs and MOF-based M-N-C catalysts as well as methods for preparing the same utilizing mechanosynthesis and/or a sacrificial support-based methods are described.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: November 10, 2015
    Assignee: STC.UNM
    Inventors: Alexey Serov, Plamen B Atanassov
  • Patent number: 9175106
    Abstract: Activating supports are prepared by (a) combining (i) fluorine-containing compounds having a reactive group and (ii) an organometallic compound, (b) contacting a porous mineral oxide support material with the mixture from step (a), (c) heating the functionalized support from step (b) under an inert gas and then under an atmosphere comprising oxygen, and (d) recovering the activating support. The fluorine-containing compounds may have the formula R(Fn)-X wherein R is hydrocarbyl, substituted hydrocarbyl, heterohydrocarbyl or substituted heterohydrocarbyl with up to 20 non-hydrogen atoms, n is 1-41, X is OH, SH or NR?2, R? is hydrogen or hydrocarbyl. The activating supports are useful in combination with transition metal catalysts for polymerization of olefins, e.g., with metallocene complexes. Preparation of the activating supports is easier and more economic than prior methods and provides for supported polymerization catalyst systems having excellent activities.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: November 3, 2015
    Assignee: INEOS EUROPE AG
    Inventors: Michel Clarembeau, Gaelle Pannier, Stephane Paye
  • Patent number: 9120879
    Abstract: Supported Salan catalysts, a process comprising contacting one or more olefins with a catalyst system comprising an activator and a Salan catalyst disposed on a support, and polymers produced by the process.
    Type: Grant
    Filed: October 21, 2013
    Date of Patent: September 1, 2015
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Garth R. Giesbrecht, Matthew W. Holtcamp, Gregory S. Day, John R. Hagadorn
  • Patent number: 9120836
    Abstract: The present invention provides a novel transition metal complex where a monocy-clopentadienyl ligand to which an amido group is introduced is coordinated, a method for synthesizing the complex, and olefin polymerization using the same. The method for preparing a transition metal complex according to the present invention comprises a step of blocking a by-reaction of a nitrogen atom using a compound containing a protecting group, and thus it is possible to prepare a transition metal complex in a simpler manner in a high yield. Further, the transition metal complex according to the present invention has a pentagon ring structure having an amido group connected by a phenylene bridge in which a stable bond is formed in the vicinity of a metal site, and thus, sterically monomers can easily approach the transition metal complex.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: September 1, 2015
    Assignee: LG Chem, Ltd.
    Inventors: Choong-Hoon Lee, Eun-Jung Lee, Seung-Whan Jung, Jung-A Lee, Bo-Ram Lee, Bun-Yeoul Lee
  • Patent number: 9056930
    Abstract: The present invention discloses catalyst compositions employing transition metal complexes with a thiolate ligand. Methods for making these transition metal complexes and for using such compounds in catalyst compositions for the polymerization of olefins also are provided.
    Type: Grant
    Filed: December 2, 2013
    Date of Patent: June 16, 2015
    Assignee: Chevron Phillips Chemical Company LP
    Inventor: Mark L. Hlavinka
  • Patent number: 9012347
    Abstract: The present invention relates to a preparation method of a metallocene catalyst. More particularly, the present invention relates to a preparation method of a supported hybrid metallocene catalyst, including the steps of treating a support having a water content of 4 to 7% by weight with trialkyl aluminum at a predetermined temperature; supporting alkyl aluminoxane on the support; and supporting a metallocene compound on the alkyl aluminoxane-supported support. According to the present invention, it is possible to prepare a supported hybrid metallocene catalyst which shows a high activity in the polymerization of olefins and enables the preparation of polyolefins having a high bulk density, by a simple process.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: April 21, 2015
    Assignee: LG Chem, Ltd.
    Inventors: Hyeon-Gook Kim, Ki-Soo Lee, Dae-Sik Hong, Eun-Kyoung Song, Man-Seong Jeon
  • Patent number: 9000108
    Abstract: The present invention generally relates to a process that selectively polymerizes ethylene in the presence of an alpha-olefin, and to a metal-ligand complex (precatalyst) and catalyst useful in such processes, and to related compositions. The present invention also generally relates to ligands and intermediates useful for preparing the metal-ligand complex and to processes of their preparation.
    Type: Grant
    Filed: November 11, 2013
    Date of Patent: April 7, 2015
    Assignee: Dow Global Technologies LLC
    Inventors: Jerzy Klosin, Pulikkottil J. Thomas, Robert D. Froese, Xiuhua Cui
  • Patent number: 8993694
    Abstract: Provided is a homogeneous catalytic system for use in preparing an ethylene homopolymer or a copolymer of ethylene and ?-olefin, and more particularly a Group 4 transition metal compound in which a cyclopentadienyl derivative 3,4-positions of which are substituted with alkyls and an electron-donating substituent are crosslinked around a Group 4 transition metal. Also provided is a method of preparing an ethylene homopolymer or a copolymer of ethylene and ?-olefin, having high molecular weight, under high-temperature solution polymerization conditions using the catalytic system including such a transition metal compound and a co-catalyst composed of an aluminum compound, a boron compound or a mixture thereof. The catalyst according to present invention has high thermal stability and enables the incorporation of ?-olefin, and is thus effective in preparing an ethylene homopolymer or a copolymer of ethylene and ?-olefin, having various properties, in industrial polymerization processes.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: March 31, 2015
    Assignee: SK Innovation Co., Ltd.
    Inventors: Hoseong Lee, Jongsok Hahn, Dongcheol Shin, Hyosun Lee, Chunji Wu
  • Patent number: 8987395
    Abstract: A process for preparing a polydiene, the process comprising the step of polymerizing conjugated diene monomer with a nickel-based catalyst system, where said step of polymerizing takes place within a polymerization mixture that includes less than 20% by weight of organic solvent based on the total weight of the polymerization mixture, where the temperature of the polymerization mixture is maintained below 34° C. during said step of polymerizing, and where the conversion of the conjugated diene monomer is maintained below 30%.
    Type: Grant
    Filed: December 30, 2011
    Date of Patent: March 24, 2015
    Assignee: Bridgestone Corporation
    Inventors: Kevin M. McCauley, Steven Luo
  • Patent number: 8987394
    Abstract: Catalyst compositions containing N,N-bis[2-hydroxidebenzyl]amine transition metal compounds are disclosed. Methods for making these transition metal compounds and for using such compounds in catalyst compositions for the polymerization of olefins also are provided.
    Type: Grant
    Filed: June 17, 2014
    Date of Patent: March 24, 2015
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Mark L. Hlavinka, Qing Yang, Youlu Yu
  • Patent number: 8987393
    Abstract: The invention relates to a new catalyst component for the polymerization of olefins comprising a compound of formula CyLMZp, wherein M is a Group 4-6 metal, Z is an anionic ligand, p is the number of anionic ligands, Cy is a mono- or poly-substituted cyclopentadienyl-type ligand and L is a guanidinate ligand of the formula wherein: each A is independently selected from nitrogen or phosphorus and R, R1, R2 and R3 are independently selected from the group consisting of hydrogen, hydrocarbyl, silyl and germyl residues, substituted or not with one or more halogen, amido, phosphido, alkoxy, or aryloxy radicals. The invention also relates to a catalyst system for the polymerization of olefins and a process for the polymerization of at least one olefin having 2 to 20 carbon atoms.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: March 24, 2015
    Assignee: LANXESS Elastomers B.V.
    Inventors: Gerardus Henricus Josephus Van Doremaele, Martin Alexander Zuideveld, Victor Fidel Quiroga Norambuena, Alexandra LeBlanc
  • Patent number: 8981026
    Abstract: This invention relates to a cycloolefin copolymer, which is prepared via ring-opening metathesis polymerization using, as monomers, dicyclopentadiene obtained by chemically bonding two cyclopentadiene molecules using a Diels-Alder reaction and tricyclopentadiene obtained by chemically bonding three cyclopentadiene molecules using a Diels-Alder reaction, in which the cyclopentadiene is a C5-fraction of naphtha cracking, and to a method of preparing the same. This copolymer is a non-crystalline transparent resin and is useful for a variety of end uses.
    Type: Grant
    Filed: August 6, 2012
    Date of Patent: March 17, 2015
    Assignee: Kolon Industries, Inc.
    Inventors: Woon Sung Hwang, Jong Un Sung, Woon Jin Park, Sung Rak Joo, Bun Yeoul Lee, Eun Seok Park
  • Patent number: 8981023
    Abstract: This invention relates to a supported nonmetallocene catalyst and preparation thereof. The supported nonmetallocene catalyst can be produced with a simple and feasible process and is characterized by an easily controllable polymerization activity. This invention further relates to use of the supported nonmetallocene catalyst in olefin homopolymerization/copolymerization, which is characterized by a lowered assumption of the co-catalyst as compared with the prior art.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: March 17, 2015
    Assignees: China Petroleum & Chemical Corp., Sinopec Yangzi Petrochemical Co. Ltd.
    Inventors: Hongping Ren, Chuanfeng Li, Xiaoli Yao, Feng Guo, Zhonglin Ma, Haibin Chen, Kaixiu Wang, Jingwei Liu, Yaming Wang
  • Patent number: 8969495
    Abstract: The present invention relates to compositions and processes of making ethylene/?-olefins. More particularly, the invention relates to processes of producing ethylene/?-olefin compositions having a controlled molecular weight distribution. The molecular weight distribution is controlled, for example, by controlling the relative monomer concentrations during contact with a pre-catalyst and/or using a catalyst comprising a catalytic amount of a molecule having the structure: wherein M=group 2-8 metal, preferably group 4 as a neutral or charged moiety; Y=any substituent including fused rings; L=any ligating group, especially a pyridyl or pyridylamide; X=alkyl, aryl, substituted alkyl, H or hydride, halide, or other anionic moiety; y=an integer from 0 to the complete valence of M; R=alkyl, aryl, haloalkyl, haloaryl, hydrogen, etc; x=1-6, especially 2; Dashed line=optional bond, especially a weak bond; and X and (CR2)x may be tethered or part of a ring.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: March 3, 2015
    Assignee: Dow Global Technologies LLC
    Inventors: Phillip D. Hustad, Roger L. Kuhlman, Robert D. J. Froese, Timothy T. Wenzel, Joseph N. Coalter, III
  • Patent number: 8962775
    Abstract: A highly active, supported phosphinimine catalyst is fed to a gas phase reactor as a slurry in a liquid hydrocarbon. Feeding the catalyst to a gas phase reactor in a viscous liquid hydrocarbon modifies catalyst initiation kinetics.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: February 24, 2015
    Assignee: Nova Chemicals (International) S.A
    Inventors: Peter Phung Minh Hoang, Cliff Robert Baar, P. Scott Chisholm, Rajesh Dahyabhai Patel
  • Patent number: 8957171
    Abstract: Catalysts comprising salan ligands with carbazole moieties. Also, catalyst systems comprising the catalyst and an activator; methods to prepare the ligands, catalysts and catalyst systems; processes to polymerize olefins using the catalysts and/or catalyst systems; and the olefin polymers prepared according to the processes.
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: February 17, 2015
    Assignees: ExxonMobil Chemical Patents Inc., Ramot at Tel-Aviv University Ltd.
    Inventors: Garth R. Giesbrecht, Gregory S. Day, Matthew W. Holtcamp, Moshe Kol, David A. Cano, Eric D. Whetmore, Konstantin Press
  • Patent number: 8957169
    Abstract: This invention relates to a supported nonmetallocene catalyst and preparation thereof. The supported nonmetallocene catalyst can be produced with a simple and feasible process and is characterized by an easily controllable polymerization activity. This invention further relates to use of the supported nonmetallocene catalyst in olefin homopolymerization/copolymerization, which is characterized by a lowered assumption of the co-catalyst as compared with the prior art.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: February 17, 2015
    Assignees: China Petroleum & Chemical Corp., Sinopec Yangzi Petrochemical Co. Ltd.
    Inventors: Xiaoli Yao, Chuanfeng Li, Hongping Ren, Zhonglin Ma, Feng Guo, Kaixiu Wang, Jingwei Liu, Yaming Wang
  • Patent number: 8957170
    Abstract: The invention relates to a catalyst system for the polymerization of olefins comprising a metal complex of formula CyLMD and an activating cocatalyst, wherein M is titanium, Cy is a cyclopentadienyl-type ligand, D is a diene, L is an amidinate-containing ligand of formula (1), wherein the amidinate-containing ligand is covalently bonded to the titanium via the imine nitrogen atom, Sub1 is a substituent, which comprises a group 14 atom through which Sub1 is bonded to the imine carbon atom, Sub2 is a substituent, which comprises a nitrogen atom, through which Sub2 is bonded to the imine carbon atom, and Cy is a mono- or polysubstituted cyclopentadienyl-type ligand, wherein the one or more substituents of Cy are selected from the group consisting of halogen, hydrocarbyl, silyl and germyl residues, optionally substituted with one or more halogen, amido, phosphido, alkoxy, or aryloxy residues.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: February 17, 2015
    Assignee: LANXESS Deutschland GmbH
    Inventors: Gerardus Henricus Josephus Van Doremaele, Martin Alexander Zuideveld, Philip Mountford, Alex Heath, Richard T. W Scott
  • Patent number: 8957172
    Abstract: Catalysts comprising a non-symmetrical Salan ligand with a carbazole moiety. Also disclosed are catalyst systems comprising the catalyst and an activator; methods to prepare the ligands, catalysts and catalyst systems; processes to polymerize olefins using the catalysts and/or catalyst systems; and the olefin polymers prepared according to the processes.
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: February 17, 2015
    Assignees: ExxonMobil Chemical Patents Inc., Ramot at Tel-Aviv University Ltd.
    Inventors: Garth R. Giesbrecht, Matthew W. Holtcamp, Moshe Kol, Gregory S. Day, David A. Cano
  • Patent number: 8952112
    Abstract: This invention relates to a supported nonmetallocene catalyst and preparation thereof. The supported nonmetallocene catalyst can be produced with a simple and feasible process and is characterized by an easily controllable polymerization activity. This invention further relates to use of the supported nonmetallocene catalyst in olefin homopolymerization/copolymerization, which is characterized by a lowered assumption of the co-catalyst as compared with the prior art.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: February 10, 2015
    Assignees: China Petroleum & Chemical Corp., Sinopec Yangzi Petrochemical Company Ltd.
    Inventors: Chuanfeng Li, Hongping Ren, Xiaoli Yao, Zhonglin Ma, Feng Guo, Kaixiu Wang, Jingwei Liu, Yaming Wang, Lijuan Yang
  • Patent number: 8952111
    Abstract: Olefin polymerization is carried out with a supported phosphinimine catalyst which has been treated with a long chain substituted amine compound.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: February 10, 2015
    Assignee: Nova Chemicals (International) S.A.
    Inventors: Peter Phung Minh Hoang, Benjamin Milton Shaw, Patrick Lam, Victoria Ker, Cliff Robert Baar, Lee Douglas Henderson, Charles Ashton Garret Carter, Yan Jiang
  • Patent number: 8952113
    Abstract: This invention relates to a supported nonmetallocene catalyst and preparation thereof. The supported nonmetallocene catalyst can be produced with a simple and feasible process and is characterized by an easily controllable polymerization activity. This invention further relates to use of the supported nonmetallocene catalyst in olefin homopolymerization/copolymerization, which is characterized by a lowered assumption of the co-catalyst as compared with the prior art.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: February 10, 2015
    Assignees: China Petroleum & Chemical Corp., Sinopec Yangzi Petrochemical Company Ltd.
    Inventors: Chuanfeng Li, Hongping Ren, Xiaoli Yao, Lin Kan, Bo Liu, Zhonglin Ma, Feng Guo, Kaixiu Wang, Yaming Wang, Lijuan Yang
  • Patent number: 8952114
    Abstract: Catalysts comprising a halogenated Salan ligand. Also disclosed are catalyst systems comprising the catalyst and an activator; methods to prepare the ligands, catalysts and catalyst systems; processes to polymerize olefins using the catalysts and/or catalyst systems; and the olefin polymers prepared according to the processes.
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: February 10, 2015
    Assignees: ExxonMobil Chemical Patents Inc., Ramot at Tel-Aviv University Ltd.
    Inventors: Garth R. Giesbrecht, Matthew W. Holtcamp, Moshe Kol, Gregory S. Day, Konstantin Press
  • Patent number: 8946362
    Abstract: The present invention relates to a preparation method of olefin polymers using a catalyst composition containing a transition metal compound. In detail, the present invention provides a preparation method of olefin polymer using a catalyst composition comprising a transition metal compound, wherein the preparation method comprises introducing a scavenger to a continuous solution polymerization reactor in a specific range of amount to give the olefin polymer with good productivity.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: February 3, 2015
    Assignee: LG Chem, Ltd.
    Inventors: Don-Ho Kum, Eun-Jung Lee, Dong-Kyu Park, Choong-Hoon Lee, Jong-Joo Ha, Seung-Whan Jung, Jung-A Lee, Seong-Jin Kim
  • Patent number: 8937137
    Abstract: Catalysts comprising Salan ligands with bridged or unbridged diphenyl amine moieties. Also, catalyst systems comprising the catalyst and an activator; methods to prepare the ligands, catalysts and catalyst systems; processes to polymerize olefins using the catalysts and/or catalyst systems; and the olefin polymers prepared according to the processes.
    Type: Grant
    Filed: November 11, 2013
    Date of Patent: January 20, 2015
    Assignees: ExxonMobil Chemical Patents Inc., Ramot at Tel-Aviv University Ltd.
    Inventors: Matthew W. Holtcamp, Meagan E. Evans, David A. Cano, Eric D. Whetmore, Gregory S. Day, Moshe Kol
  • Patent number: 8932975
    Abstract: A catalyst composition comprising (a) a first metallocene complex represented by the general formula: where M1 is Ti, Zr or Hf, X1 and X2 are each independently F, Cl, Br, I, methyl, benzyl, phenyl, H, BH4, a hydrocarbyloxide group having up to 20 carbon atoms, a hydrocarbylamino group having up to 20 carbon atoms, a trihydrocarbylsilyl group having up to 20 carbon atoms, OBR?2 wherein R? may be an alkyl group having up to 12 carbon atoms or an aryl group having up to 12 carbon atoms, and SO3R? wherein R? may be an alkyl group having up to 12 carbon atoms or an aryl group having up to 12 carbon atoms, and Cp1 and Cp2 are each independently a substituted or unsubstituted cyclopentadienyl group, or a substituted or unsubstituted indenyl group, where any substituent on Cp1 and Cp2 is H, a hydrocarbyl group having up to 18 carbon atoms or a hydrocarbylsilyl group having up to 18 carbon atoms, (b) a second metallocene complex, (c) a non-group 4 metallocene transition-metal complex, (d) an activator or activato
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: January 13, 2015
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Qing Yang, Max P. McDaniel, Joel L. Martin, Errun Ding, David C. Rohlfing, Tony R. Crain
  • Patent number: 8921499
    Abstract: The present invention relates to a method of preparing an ethylene-?-olefin-diene copolymer and an ethylene-?-olefin-diene copolymer prepared thereby, by using a transition metal compound based on a cyclopenta[b]fluorenyl group as a catalyst.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: December 30, 2014
    Assignees: SK Innovation Co., Ltd., SK Global Chemical Co., Ltd.
    Inventors: Dong Cheol Shin, Ho Seong Lee, Seong Kyun Kim, Sang Ick Lee, Sun Young Kim, Jong Sok Hahn, Chan Woong Jeon, Jeong Hwan Kim
  • Publication number: 20140378633
    Abstract: Catalysts comprising long-bridged salen ligands comprising an imino-phenylene-alkylene-imino or an imino-napthalenylene-alkylene-imino bridged salen compound. Also, catalyst systems comprising the catalyst and an activator; methods to prepare the ligands, catalysts and catalyst systems; processes to polymerize olefins using the catalysts and/or catalyst systems; and the olefin polymers prepared according to the processes.
    Type: Application
    Filed: June 6, 2014
    Publication date: December 25, 2014
    Inventors: Moshe Kol, Matthew W. Holtcamp, Garth R. Giesbrecht, Gregory S. Day, Konstantin Press
  • Patent number: 8916664
    Abstract: An ethylene oligomerization catalyst that oligmerizes ethylene to a series of ?-olefins and that has a Schulz-Flory constant of about 0.75 to 0.995 produces a stream of ?-olefins. This stream is then added to a vessel containing ethylene and a copolymerization catalyst that copolymerizes ethylene and ?-olefins. The resulting branched polyethylene often has good processing properties. The good processing is presumably due to the presence of “long chain branching”. Such polymers are useful for films and other packaging materials, and for molding resins for molding parts such as industrial, automotive or electrical parts.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: December 23, 2014
    Assignee: E I Du Pont de Nemours and Company
    Inventors: Joel David Citron, Alex Sergey Ionkin
  • Patent number: 8916662
    Abstract: The present invention relates to a preparation method for olefin-diene copolymer that comprises polymerizing at least one olefin-based monomer and at least one diene-based monomer in the presence of a catalyst comprising a novel transition metal compound. Using the novel transition metal compound as a catalyst, the preparation method for olefin-diene copolymer according to the present invention can not only acquire high catalytic activity for copolymerization of the olefin and diene monomers to achieve high process efficiency but allow it to easily control the fine-structure characteristics of the copolymer, thereby providing an olefin-diene copolymer having desired properties with ease.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: December 23, 2014
    Assignee: Lotte Chemical Corporation
    Inventors: Bun-Yeoul Lee, Ji-Hae Park, Seung-Hyun Do, Hwa-Kyu Kim, Jae-Young Park, Seung-Woong Yoon
  • Patent number: 8916663
    Abstract: The present invention relates to a method for producing a high-molecular-weight copolymer of polar group-containing allyl monomers including monomer units represented by formulae (3) and (4) (in the formulae, R1 represents a hydrogen atom (H) or hydrocarbon group having 1 to 6 carbon atoms; R2 represents —OH, —OCOR3 (R3 represents hydrocarbon group having 1 to 5 carbon atoms), —N(R4)2 (R4 represents a hydrogen atom or hydrocarbon group having 1 to 5 carbon atoms); and n and m are a value representing the molar ratio of each of the monomer units), which has few branches and unsaturated group at the molecular end, by copolymerizing olefin and a polar group-containing allyl compound using a metal complex of group 10 elements in the periodic system represented by formula (I) as a catalyst.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: December 23, 2014
    Assignees: The University of Tokyo, Showa Denko K.K.
    Inventors: Kyoko Nozaki, Shingo Ito, Yoshikuni Okumura, Junichi Kuroda
  • Patent number: 8912352
    Abstract: The present invention relates to a novel ligand derived from a tetrahydroquinoline derivative, and a transition metal compound prepared using the ligand, where an amido ligand is linked to an ortho-phenylene ligand to form a condensed ring and a 5-membered cyclic pi-ligand linked to the ortho-phenylene ligand is fused with a heterocyclic thiophene ligand. Compared with the catalysts not fused with a heterocyclic thiophene ligand, the transition metal compound of the present invention as activated with a co-catalyst has higher catalytic activity in olefin polymerization and provides a polymer with higher molecular weight.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: December 16, 2014
    Assignee: Lotte Chemical Corporation
    Inventors: Bun-Yeoul Lee, Ji-Hae Park, Seung-Hyun Do
  • Patent number: 8907031
    Abstract: The present invention provides imino carbene compounds and their derivatives, catalyst compositions containing these compounds in combination with an activator, and polymerization processes using these catalyst compositions to polymerize one or more olefins.
    Type: Grant
    Filed: April 10, 2012
    Date of Patent: December 9, 2014
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Rex E. Murray, LeGrande Mancel Slaughter, Dipesh Prema, Jinhui Chen