Transition Metal Compound Contains P, S, Or N Atom Patents (Class 526/161)
  • Patent number: 8017541
    Abstract: The present invention discloses catalyst components based on ferrocenyl ligands, their method of preparation and their use in the polymerization of olefins.
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: September 13, 2011
    Assignees: Total Petrochemicals Research Feluy, Centre National de al Recherche Scientifiqaue (CNRS)
    Inventors: Cyril Revault, Olivier Lavastre, Sabine Sirol
  • Patent number: 8017706
    Abstract: The present invention relates to a novel iron complex having a cyclic amine compound as a ligand and a method for producing polymers by polymerizing a radical polymerizable monomer in the presence of the iron complex and a radical generator. The problem for the present invention is providing a method capable of producing a polymer or block copolymer having a chemically convertible functional group at the end from a radical polymerizable monomer and providing a method for recovering the iron complex in a solvent with a high recovery rate after the polymerization reaction. This problem is solved by providing a novel iron complex, a method for producing a polymer in the presence of a radical polymerization initiator that uses the iron complex as a polymerization catalyst and a method for simply and easily recovering the iron complex.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: September 13, 2011
    Assignee: DIC Corporation
    Inventors: Hidetomo Kai, Akane Sasamoto, Hitoshi Hayakawa
  • Patent number: 8012900
    Abstract: The present invention provides polymerization catalyst compositions employing novel dinuclear metallocene compounds. Methods for making these new dinuclear metallocene compounds and for using such compounds in catalyst compositions for the polymerization and copolymerization of olefins are also provided.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: September 6, 2011
    Assignee: Chevron Phillips Chemical Company, L.P.
    Inventors: Rex E. Murray, Kumudini C. Jayaratne, Qing Yang, Joel L. Martin
  • Publication number: 20110213109
    Abstract: This invention relates to transition metal compounds, catalyst systems comprising said compounds and polymerization processes using such catalyst systems, where the transition metal compound is represented by the formula: This invention also relates to process to produce such compounds.
    Type: Application
    Filed: March 1, 2010
    Publication date: September 1, 2011
    Inventors: Alexander Z. Voskoboynikov, Mikhail V. Nikulin, Aleksey A. Tsarev, Andrey F. Asachenko, Alexander V. Babkin, Garth R. Giesbrecht, Jo Ann M. Canich
  • Patent number: 8008412
    Abstract: This invention relates to a process to polymerize olefins comprising contacting propylene, at a temperature of 65° C. to 150° C. and a pressure of 1.72 to 34.
    Type: Grant
    Filed: December 12, 2007
    Date of Patent: August 30, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Patrick Brant, Kiss Gabor, Chris B. Friedersdorf, James R. Lattner, Gary L. Casty
  • Patent number: 8008413
    Abstract: A method for the preparation of copolymers of ethylene and ?-olefins having a fraction (%) of the molecular weight component of >1,000,000 of less than 6% comprises polymerising ethylene and an ?-olefin in the presence of a supported polymerisation catalyst system comprising (a) a transition metal compound (b) a porous support material, and (c) an activator characterized in that the support material has been (i) dried at a temperature in the range 0° C. to 195° C. in an inert atmosphere, and (ii) treated with an organometallic compound. The resultant supported catalyst systems show improved productivity and allow for control of the resultant polymer properties. Particularly preferred supported catalyst systems are those comprising metallocene complexes.
    Type: Grant
    Filed: November 23, 2007
    Date of Patent: August 30, 2011
    Assignee: Ineos Europe Limited
    Inventors: Sergio Mastroianni, Stefan Klaus Spitzmesser
  • Patent number: 8003740
    Abstract: Method of preparing olefin polymers, which comprises the polymerization of at least one ?-olefin in the presence of a hybrid catalyst to produce a polymer comprising at least a higher molecular weight polymer component and a lower molecular weight polymer component in the presence of water in an amount of from 2 to 100 mol ppm and/or carbon dioxide in an amount of from 2 to 100 mol ppm, in each case based on the total reaction mixture, in order to alter the ratio of the higher molecular weight polymer component to the lower molecular weight polymer component. This enables the ratio of the higher molecular weight component to the lower molecular weight component to be controlled selectively.
    Type: Grant
    Filed: July 13, 2006
    Date of Patent: August 23, 2011
    Assignee: Basell Polyolefine GmbH
    Inventors: Shahram Mihan, Rainer Karer, Harald Schmitz, Dieter Lilge
  • Patent number: 7998895
    Abstract: Transition metal complexes of selected monoanionic phosphine ligands, which also contain a selected Group 15 or 16 (IUPAC) element and which are coordinated to a Group 3 to 11 (IUPAC) transition metal or a lanthanide metal, are polymerization catalysts for the (co)polymerization of olefins such as ethylene and ?-olefins, and the copolymerization of such olefins with polar group-containing olefins. These and other nickel complexes of neutral and monoanionic bidentate ligands copolymerize ethylene and polar comonomers, especially acrylates, at relatively high ethylene pressures and surprisingly high temperatures, and give good incorporation of the polar comonomers and good polymer productivity. These copolymers are often unique structures, which are described.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: August 16, 2011
    Assignee: E.I. du Pont de Nemours and Company
    Inventors: Lin Wang, Elisabeth M. Hauptman, Lynda Kaye Johnson, Elizabeth Forrester McCord, Stephan J. McLain, Ying Wang
  • Patent number: 7989565
    Abstract: Process for making a copolymer by copolymerising (1) ethylene with (2) at least one comonomer selected from aliphatic C3-C20 alpha-olefins and (3) 5-ethylidene-2-norbornene, including contacting the monomer with a catalyst comprising a transition metal compound having the following Formula A, and an activating quantity of a suitable activator of the formula shown herein, wherein Z comprises a five-membered heterocyclic group, the five membered heterocyclic group containing at least one carbon atom, at least one nitrogen atom and at least one other hetero atom selected from nitrogen, sulphur and oxygen, the remaining atoms in the ring being selected from nitrogen and carbon; M is a metal from Group 3 to 11 of the Periodic Table or a lanthanide metal; E1 and E2 are divalent groups independently selected from (i) aliphatic, hydrocarbon, (ii) alicyclic hydrocarbon, (iii) aromatic hydrocarbon, (iv) alkyl substituted aromatic hydrocarbon, (v) heterocyclic groups and (vi) heterosubstituted derivatives of said groups
    Type: Grant
    Filed: September 13, 2005
    Date of Patent: August 2, 2011
    Assignee: Ineos Europe Limited
    Inventors: Vernon Charles Gibson, David John Jones, Grant Berent Jacobsen, Richard James Long
  • Patent number: 7989543
    Abstract: An adhesive composition comprises: (i) at least one ethylene/?-olefin interpolymer, (ii) at least one tackifÊer; and (iii) optionally at least one additive, such as a plasticizer, wax and antioxidant. Preferably, the ethylene/?-olefin interpolymer has a Mw/Mn from about 1.7 to about 3.5, at least one melting point, Tm, in degrees Celsius, and a density, d, in grams/cubic centimeter, wherein the numerical values of Tm and d correspond to the relationship: Tm?858.91?1825.3(d)+1112.8(d)2. The composition has relatively higher SAFT temperature and can be used in hot melt adhesives pressure-sensitive adhesives, and thermoplastic marking paints.
    Type: Grant
    Filed: March 15, 2006
    Date of Patent: August 2, 2011
    Assignee: Dow Global Technologies LLC
    Inventors: Teresa P. Karjala, Selim Yalvac, Charles F. Diehl, Yunwa W. Cheung, Cynthia L. Rickey
  • Patent number: 7985817
    Abstract: Disclosed is a homogeneous catalyst system for producing an ethylene homopolymer or an ethylene copolymer with ?-olefin. Specifically, this invention pertains to a transition metal catalyst which has stability under high temperature solution polymerization at 120˜250° C., in which a cyclopentadiene derivative and an electron donating substituent, both of which are bonded to a Group IV transition metal acting as a central metal, are crosslinked through a silyl derivative substituted with a cyclohexyl, to a catalyst system including such a transition metal catalyst and an aluminoxane cocatalyst or a boron compound cocatalyst, and to a method of producing an ethylene homopolymer or an ethylene copolymer with ?-olefin, having high molecular weight, using the catalyst system under conditions of high-temperature solution polymerization.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: July 26, 2011
    Assignee: SK Energy Co., Ltd.
    Inventors: Tae Woo Woo, Myung Ahn Ok, Jong Sok Hahn, Sang Ook Kang, Jae Ho Jung
  • Patent number: 7981993
    Abstract: A 1-butene ethylene copolymer having an ethylene derived units content ranging from 15.10% by molto 18.00% by mol having the following properties: a) distribution of molecular weight lower than 3; preferably b) hardness shore A (measured according to ISO 868) lower than 65; c) tension set lower than 30% at 100% of deformation (ISO 2285) d) no melting pointdetectable at the DSC; e) Melting enthalpy measured after 10 days of aging at room temperature comprised between 4 and 15 J/g.
    Type: Grant
    Filed: June 9, 2008
    Date of Patent: July 19, 2011
    Assignee: Basell Polyolefine GmbH
    Inventors: Giampaolo Pellegatti, Stefano Spataro, Roberta Marchini, Simona Guidotti, Simona Esposito
  • Patent number: 7977444
    Abstract: A process for preparing a polymer containing derived units of one or more alpha olefins of formula CH2?CHW wherein W is a C3-C10 hydrocarbon radical and optionally from 0 to 81% by mol of derived units of propylene or 1-butene, comprising contacting under polymerization conditions one or more alpha olefins of formula CH2?CHW and optionally propylene or 1-butene in the presence of a catalyst system obtainable by contacting: a) a metallocene compound of formula (I) wherein M, X, L, T, R1, R2, R7 and R8 are described in the text; and (b) an alumoxane or a compound capable of forming an alkyl metallocene cation.
    Type: Grant
    Filed: March 8, 2005
    Date of Patent: July 12, 2011
    Assignee: Basell Polyolefine GmbH
    Inventors: Luigi Resconi, Eleonora Ciaccia, Friederike Morhard, Giampaolo Pellegatti
  • Patent number: 7972987
    Abstract: The present invention relates to a novel cyclopentadienyl compound, a fourth group transition metal compound having the cyclopentadienyl compound, a method of preparing the fourth group transition metal compound, a method of preparing an olefin polymer by using the fourth group transition metal compound, and an olefin polymer prepared by using the method.
    Type: Grant
    Filed: February 13, 2008
    Date of Patent: July 5, 2011
    Assignee: LG Chem, Ltd.
    Inventors: Jung-A Lee, Bo-Ram Lee, Eun-Jung Lee, Seung-Whan Jung, Choong-Hoon Lee
  • Patent number: 7973115
    Abstract: The present invention discloses the use of rotoxane ligands to prepare catalyst systems suitable for the oligomerization or polymerization of ethylene and alpha-olefins.
    Type: Grant
    Filed: July 3, 2006
    Date of Patent: July 5, 2011
    Assignee: Total Petrochemicals Research Feluy
    Inventors: Caroline Hillairet, Guillaume Michaud, Sirol Sabine
  • Patent number: 7973114
    Abstract: Monocyclopentadienyl complexes in which the cyclopentadienyl system bears at least one unsubstituted, substituted or fused, heteroaromatic ring system bound via a specific bridge, a catalyst system comprising at least one of the monocyclopentadienyl complexes, the use of the catalyst system for the polymerization or copolymerization of olefins and a process for preparing polyolefins by polymerization or copolymerization of olefins in the presence of the catalyst system and polymers obtainable in this way.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: July 5, 2011
    Assignee: Basell Polyolefine GmbH
    Inventors: Shahram Mihan, Ilya Nifant'ev
  • Patent number: 7968665
    Abstract: A 1-butene polymer satisfying the following (1), (2) and either (3) or (3?): a process for producing the polymer; a resin modifier comprising the polymer; and a hot-melt adhesive containing the polymer. (1) The intrinsic viscosity [?] as measured in tetralin solvent at 135° C. is 0.01 to 0.5 dL/g. (2) The polymer is a crystalline resin having a melting point (Tm-D) of 0 to 100° C., the melting point being defined as the top of the peak observed on the highest-temperature side in a melting endothermic curve obtained with a differential scanning calorimeter (DSC) in a test in which a sample is held in a nitrogen atmosphere at ?10° C. for 5 min and then heated at a rate of 10° C./min. (3) The stereoregularity index {(mmmm)/(mmrr+rmmr)} is 30 or lower. (3?) The mesopentad content (mmmm) determined from a nuclear magnetic resonance (NMR) spectrum is 68 to 73%.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: June 28, 2011
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Yutaka Minami, Masami Kanamaru, Toyozo Fujioka, Tomoaki Takebe, Masao Inoue
  • Patent number: 7968660
    Abstract: This invention relates to a method for producing carbon nanotubes in a dispersed state. The method comprises a stage whereby polymerization is carried out from at least one so-called monomer of interest, in the presence of a catalytic system. The catalytic system comprises a co-catalyst/catalyst catalytic couple that is supported by a catalyst carrier, which corresponds to said carbon nanotubes. The invention also relates to composite materials obtained by said method, and to a catalytic system for implementing said method. The invention further relates to the use of the inventive method and products in a field of polymers, especially that of nanotechnologies.
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: June 28, 2011
    Assignee: Nanocyl S.A.
    Inventors: Philippe Dubois, Michael Alexandre, Daniel Bonduel, Michael Mainil
  • Patent number: 7968659
    Abstract: Copolymers of ethylene and an alpha-olefin having (a) a density in the range 0.900-0.940 g/cm3, (b) a molecular weight distribution (Mw/Mn) in the range 3.5 to 4.5, (c) a melt elastic modulus G? (G?=500 Pa) in the range 40 to 150 Pa, (d) an activation energy of flow (Ea) in the range 28-45 kJ/mol, and (e) a melt index (g/10 ml) in the range 1.0-3.5. The copolymers are suitably prepared in the gas phase by use of a supported metallocene catalyst system. The copolymers show improved processability and are particular suitable for use in blown film applications.
    Type: Grant
    Filed: January 27, 2006
    Date of Patent: June 28, 2011
    Assignee: Ineos Europe Limited
    Inventor: Choon Kooi Chai
  • Patent number: 7968487
    Abstract: Novel phosphine-free non-ionic single catalysts, and method for making such catalysts, for the homo-polymerization and copolymerization of olefins such as ethylene, ?-olefins and functionalized olefins without the use of additional co-activators, are disclosed. These phosphine-free non-ionic single catalysts are also active for co-polymerization of olefins with monomers with polar functionalities. The catalyst of this invention comprise of a late transition metal with a chelating monoanionic ligand, an R group and a neutral 2 electron donor ligand. Catalysts are prepared by the oxidative addition of benzylhalide (halide=Cl, Br or I) to an appropriate metal source in the presence of a stabilizing agent, such as nitrogen based ligands, followed by the addition of the deprotonated form of the chelating ligand.
    Type: Grant
    Filed: January 5, 2007
    Date of Patent: June 28, 2011
    Assignee: The Regents of the University of California
    Inventors: Guillermo C. Bazan, Rene' Rojas
  • Publication number: 20110152485
    Abstract: The present invention discloses metallic complexes based on oxime-ether ligand and their use in oligomerisation and in polymerisation of ethylene and alpha-olefins.
    Type: Application
    Filed: July 26, 2007
    Publication date: June 23, 2011
    Applicants: TOTAL PETROCHEMICALS RESEARCH FELUY, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
    Inventors: Loise Boulanger, Olivier Lavastre
  • Patent number: 7964691
    Abstract: A copolymer containing units represented by the defined formula (1) and olefin units; and a process for producing the copolymer, which comprises the step of copolymerizing a compound represented by the defined formula (3) with an olefin, the units represented by the formula (1) being polymerized units of the compound represented by the formula (3) such as 5,5-diallyl-2,2-dimethyl-1,3-dioxane.
    Type: Grant
    Filed: February 23, 2008
    Date of Patent: June 21, 2011
    Assignees: Sumitomo Chemical Company, Limited, Tokyo Institute of Technology
    Inventors: Kohtaro Osakada, Daisuke Takeuchi, Sehoon Park, Makoto Uemura
  • Patent number: 7964681
    Abstract: A process is disclosed for the preparation of zinc alkyl chain growth products via a catalysed chain growth reaction of an alpha-olefin on a zinc alkyl, wherein the chain growth catalyst system employs a group 3-10 transition metal, or a group 3 main group metal, or a lanthanide or actinide complex, and optionally a suitable activator. The products can be further converted into alpha-olefins by olefin displacement of the grown alkyls as alpha-olefins from the zinc alkyl chain growth product, or into primary alcohols, by oxidation of the resulting zinc alkyl chain growth product to form alkoxide compounds, followed by hydrolysis of the alkoxides.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: June 21, 2011
    Assignee: Ineos Europe Limited
    Inventors: George Johan Peter Britovsek, Steven Alan Cohen, Vernon Charles Gibson
  • Patent number: 7964679
    Abstract: A process for preparing 1-butene polymers, comprising polymerizing 1-butene or copolymerizing 1-butene with ethylene, propylene or an alpha-olefin of formula CH2?CHT wherein T is a C3-C10 alkyl group, in the presence of a catalyst system obtainable by contacting: A) a metallocene compound belonging to formula (I): wherein M is zirconium titanium or hafnium; X, equal to or different from each other, is a hydrogen atom, a halogen atom, a hydrocarbon radical, optionally containing heteroatoms; R4, R5, R6, R7, R8, R9, R10, R11, R12 and R13 are hydrogen atoms, or C1-C4O hydrocarbon radicals optionally containing heteroatoms; R1, R2 and R3, are linear or branched, C1-C20-alkyl radicals, optionally containing heteroatoms: B) a lumoxane or a compound capable of forming an alkyl metallocene cation; and optionally C) organo aluminum compound.
    Type: Grant
    Filed: April 12, 2006
    Date of Patent: June 21, 2011
    Assignee: Basell Poliolefine Italia s.r.l.
    Inventors: Luigi Resconi, Simona Guidotti, Iolanda Santoriello
  • Patent number: 7956148
    Abstract: The present invention relates to a process for the preparation of polypropylene using a catalyst system of low porosity, the catalyst system comprising an asymmetric catalyst, wherein the catalyst system has a porosity of less than 1.40 ml/g.
    Type: Grant
    Filed: April 16, 2007
    Date of Patent: June 7, 2011
    Assignee: Borealis Technology Oy
    Inventors: Eberhard Ernst, Manfred Stadlbauer
  • Patent number: 7956145
    Abstract: A polymer containing units represented by the defined formula (1); and a process for producing the polymer, which comprises the step of polymerizing a compound represented by the defined formula (3), the units represented by the formula (1) being polymerized units of the compound represented by the formula (3) such as 9,9-diallylfluorene.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: June 7, 2011
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Kohtaro Osakada, Daisuke Takeuchi, Sehoon Park, Makoto Uemura, Masayuki Fujita
  • Patent number: 7951743
    Abstract: Disclosed is a method of preparing an ultra-high molecular weight, linear low density polyethylene with a catalyst system that comprises a bridged indenoindolyl transition metal complex, a non-bridged indenoindolyl transition metal complex, an alumoxane activator and a boron-containing activator. The ultra-high molecular weight, linear low density polyethylene has a weight average molecular weight greater than 1,000,000 and a density less than 0.940 g/cm3.
    Type: Grant
    Filed: July 29, 2008
    Date of Patent: May 31, 2011
    Assignee: Equistar Chemicals, LP
    Inventor: Shaotian Wang
  • Patent number: 7947787
    Abstract: A process for the polymerization of one or more addition polymerizable monomers and the resulting polymer composition, said process comprising contacting an addition polymerizable monomer or mixture of monomers in a reactor or reactor zone with a composition comprising at least one polymerization catalyst and a cocatalyst under polymerization conditions, characterized in that at least a portion of said polymerization is conducted in the presence of a multi-centered shuttling agent thereby causing the composition to have a bimodal molecular weight distribution.
    Type: Grant
    Filed: September 14, 2006
    Date of Patent: May 24, 2011
    Assignee: Dow Global Technologies LLC
    Inventors: Edmund M. Carnahan, Phillip D. Hustad, Brian A. Jazdzewski, Roger L. Kuhlman, Timothy T. Wenzel
  • Patent number: 7943546
    Abstract: A combinatorial method for identifying a catalyst composition for use in the homogeneous addition polymerization of an olefin monomers, said catalyst composition comprising a transition metal compound, a cocatalyst and a polymerization modifier, as well as catalyst compositions and improved olefin polymerization processes resulting therefrom.
    Type: Grant
    Filed: May 1, 2009
    Date of Patent: May 17, 2011
    Assignee: Dow Global Technologies LLC
    Inventors: Daryoosh Beigzadeh, Richard E. Campbell, Jr., David D. Devore, Duane R. Romer, James C. Stevens, Francis J. Timmers, Hendrik E. Tuinstra, Paul C. Vosejpka
  • Patent number: 7943715
    Abstract: A polymer containing units represented by the defined formula (1); and a process for producing the polymer, which comprises the step of polymerizing a compound represented by the defined formula (3), the units represented by the formula (1) being polymerized units of the compound represented by the formula (3) such as 1,6-heptadiene.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: May 17, 2011
    Assignees: Sumitomo Chemical Company, Limited, Tokyo Institute of Technology
    Inventors: Kohtaro Osakada, Daisuke Takeuchi, Sehoon Park, Ryuichi Matsuura, Makoto Uemura, Masayuki Fujita
  • Patent number: 7943716
    Abstract: A process for preparing a polymer containing derived units of one or more alpha olefins of formula CH2?CHW wherein W is a C3-C10 hydrocarbon radical and optionally from 0 to 81% by mol of derived units of propylene or 1-butene, comprising contacting under polymerization conditions one or more alpha olefins of formula CH2?CHW and optionally propylene or 1-butene in the presence of a catalyst system obtainable by contacting: a) a metallocene compound of formula (I) wherein M, X, L, T1, T2, T3 and R1 are described in the text; and (b) an alumoxane or a compound capable of forming an alkyl metallocene cation.
    Type: Grant
    Filed: March 8, 2005
    Date of Patent: May 17, 2011
    Assignee: Basell Polyolefine GmbH
    Inventors: Luigi Resconi, Eleonora Ciaccia, Friederike Morhard, Giampaolo Pellegatti
  • Patent number: 7932331
    Abstract: The present invention discloses active oligomerization or polymerization catalyst systems based on imino-quinolinol complexes.
    Type: Grant
    Filed: March 7, 2007
    Date of Patent: April 26, 2011
    Assignee: Total Petrochemicals Research Feluy
    Inventors: Caroline Hillairet, Guillaume Michaud, Sabine Sirol
  • Patent number: 7928256
    Abstract: Provided are a novel transition metal complex where a monocyclopentadienyl ligand to which an amido group is introduced is coordinated, a catalyst composition including the same, and an olefin polymer using the catalyst composition. The transition metal complex has a pentagon ring structure having an amido group connected by a phenylene bridge in which a stable bond is formed in the vicinity of a metal site, and thus, a sterically hindered monomer can easily approach the transition metal complex. By using a catalyst composition including the transition metal complex, a linear low density polyolefin copolymer having a high molecular weight and a very low density polyolefin copolymer having a density of 0.910 g/cc or less can be produced in a polymerization of monomers having large steric hindrance. Further, the reactivity for the olefin monomer having large steric hindrance is excellent.
    Type: Grant
    Filed: March 22, 2007
    Date of Patent: April 19, 2011
    Assignee: LG Chem, Ltd.
    Inventors: Choong Hoon Lee, Eun Jung Lee, Seungwhan Jung, Boram Lee, Jung A. Lee, Bun Yeoul Lee
  • Patent number: 7918976
    Abstract: Novel transition metal complexes of iron, cobalt, ruthenium, osmium, and vanadium are described. The transition metal complexes can be used as redox mediators in enzyme based electrochemical sensors. In such instances, transition metal complexes accept electrons from, or transfer electrons to, enzymes at a high rate and also exchange electrons rapidly with the sensor. The transition metal complexes include at least one substituted or unsubstituted biimidazole ligand and may further include a second substituted or unsubstituted biimidazole ligand or a substituted or unsubstituted bipyridine or pyridylimidazole ligand. Transition metal complexes attached to polymeric backbones are also described.
    Type: Grant
    Filed: August 10, 2006
    Date of Patent: April 5, 2011
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Fei Mao, Adam Heller
  • Patent number: 7915192
    Abstract: A composition for use in forming a multi-block copolymer from a single polymerizable monomer, said copolymer containing therein two or more segments or blocks differing in branching index, a polymerization process using the same, and the resulting polymers, wherein the composition comprises the admixture or reaction product resulting from combining: (A) a first olefin polymerization catalyst, (B) a second olefin polymerization catalyst capable of preparing polymers differing in chemical or physical properties from the polymer prepared by catalyst (A) under equivalent polymerization conditions, at least one of catalyst (A) or catalyst (B) being capable of forming a branched polymer by means of chain walking or reincorporation of in situ formed olefinic polymer chains, and (C) a chain shuttling agent.
    Type: Grant
    Filed: March 17, 2005
    Date of Patent: March 29, 2011
    Assignee: Dow Global Technologies LLC
    Inventors: Daniel J. Arriola, David D. Devore, Edmund M. Carnahan, Phillip D. Hustad, Roger L. Kuhlman, Timothy T. Wenzel
  • Patent number: 7915360
    Abstract: The present invention provides a new supported catalyst for olefin polymerization prepared by reacting a novel transition metal compound on a cocatalyst-supported support, in which the transition metal compound is coordinated with a monocyclopentadienyl ligand to which an amido-quinoline group is introduced, a method for preparing the same, and a method for preparing a polyolefin using the same. The transition metal catalyst compound used in the present invention is configured such that an amido group is linked in a cyclic form via a phenylene bridge. Thus, a pentagon ring structure of the transition metal compound is stably maintained, so that monomers easily approach the transition metal compound and the reactivity is also high.
    Type: Grant
    Filed: November 15, 2007
    Date of Patent: March 29, 2011
    Assignee: LG Chem, Ltd.
    Inventors: Dae-Sik Hong, Ki-Soo Lee, Yong-Gyu Han, Heon-Yong Kwon, Jong-Sang Park, Joon-Hee Cho, Seon-Kyoung Kim, Choong-Hoon Lee, Eun-Jung Lee, Seung-Whan Jung, Ki-Su Ro
  • Patent number: 7915194
    Abstract: Metal complexes, catalyst compositions containing the metal complexes, and processes for making the metal complexes and the catalyst compositions are described for the manufacture of polymers from ethylenically unsaturated addition polymerizable monomers. The metal complexes have chemical structures corresponding to one of the following formulae: wherein MI and MII are metals; T is nitrogen or phosphorus; P is a carbon, nitrogen or phosphorus atom; groups R1, R2 and R3 may be linked to each other; Y is a divalent bridging group; X, X1, and X2 are anionic ligand groups with certain exceptions; D is a neutral Lewis base ligand; and s, o, k, i, ii, p, m, a, b, c, d, e, t, and y are numbers as further described in the claims.
    Type: Grant
    Filed: September 10, 2009
    Date of Patent: March 29, 2011
    Assignee: Styron Europe GmbH
    Inventor: Sven K. H. Thiele
  • Patent number: 7910670
    Abstract: A method of making an olefin oligomerization catalyst, comprising contacting a chromium-containing compound, a heteroatomic ligand, and a metal alkyl, wherein the chromium-containing compound comprises less than about 5 weight percent chromium oligomers. A method of making an olefin oligomerization catalyst comprising a chromium-containing compound, a nitrogen-containing compound, and a metal alkyl, the method comprising adding a composition comprising the chromium-containing compound to a composition comprising the metal alkyl. A method of making an olefin oligomerization catalyst comprising a chromium-containing compound, a nitrogen-containing compound, and a metal alkyl, the method comprising abating all or a portion of water, acidic protons, or both from a composition comprising the chromium-containing compound, a composition comprising the nitrogen-containing compound, or combinations thereof prior to or during the preparation of the catalyst.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: March 22, 2011
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Ronald D. Knudsen, Ronald G. Abbott, Bruce E. Kreischer, Eduardo J. Baralt, Brooke L. Small
  • Patent number: 7902308
    Abstract: A complex compound comprising the skeletal unit of Formula A, wherein the ring represented by C(R1)-A1-A2-(A3)x-C(R2)—C— has delocalised unsaturation and is optionally substituted via one or more of A1, A2 and A3 with atoms or groups selected from hydrogen, alkyl, aryl, halogen, or heterocyclic groups containing at least one N, S or O in a carbon ring; A1, A2 and A3 are selected from carbon, nitrogen or oxygen, R1 and R2 are each selected from chlorine, bromine or iodine; x is zero or 1, O is oxygen, E is nitrogen, phosphorus or arsenic, Q represents a divalent bridging group comprising one or more Group 14 atoms; M is a metal selected from Groups 3 to 7; X represents a monovalent atom or group covalently or ionically bonded to M; L is a mono- or bidentate molecule datively bound to M, y satisfies the valency of M and z is from 0 to 5. The complex can be used to polymerise olefins optionally with organo-A1 or -B compounds as activator.
    Type: Grant
    Filed: September 15, 2006
    Date of Patent: March 8, 2011
    Assignee: Ineos Europe Limited
    Inventors: Vernon Charles Gibson, Daniel Charles Howard Oakes
  • Patent number: 7897709
    Abstract: A single-chain-end functionalized polyolefin and method of producing the same. The polyolefin is represented by the following general formula (I): P—X??(I) wherein X is a group containing at least one element selected from oxygen, sulfur, nitrogen, phosphorus and halogens, P represents a polymer chain made mainly of an olefin composed only of carbon and hydrogen atoms, and X is bonded to a terminal of P, wherein the molecular weight distribution (Mw/Mn) obtained by gel permeation chromatography (GPC) is from 1.0 to 1.5.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: March 1, 2011
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Haruyuki Makio, Terunori Fujita
  • Patent number: 7884165
    Abstract: The present invention provides polymerization catalyst compositions employing half-metallocene compounds with a heteroatom-containing ligand bound to the transition metal. Methods for making these hybrid metallocene compounds and for using such compounds in catalyst compositions for the polymerization and copolymerization of olefins are also provided.
    Type: Grant
    Filed: July 14, 2008
    Date of Patent: February 8, 2011
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Matthew G. Thorn, Elizabeth A. Benham
  • Patent number: 7879950
    Abstract: A solvent dispersion of a composite resin which comprises a solvent and a composite resin comprising a thermoplastic elastomer (A) and a polymer of copolymerizable monomers (B) comprising a monomer having an ?,?-monoethylenically unsaturated group and other copolymerizable monomer(s), wherein the thermoplastic elastomer (A) is a propylene-based elastomer having a molecular weight distribution (Mw/Mn) of not more than 3 as measured by gel permeation chromatography (GPC), and the copolymerizable monomers (B) include at least one monomer containing no functional groups; and uses of the dispersion. The dispersion can be used to provide a coating material, primer, adhesive, additive, binder, film, and primer for strippable paints and traffic paints, which have excellent adhesiveness to various materials.
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: February 1, 2011
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Keiichi Asami, Kunihiko Takeuchi
  • Patent number: 7875568
    Abstract: The present invention provides a method for supporting a nonmetallocene olefin polymerization catalyst, comprising the following steps: a carrier reacts with a chemical activator to obtain a modified carrier; a magnesium compound is dissolved in a tetrahydrofuran-alcohol mixed solvent to form a solution, then the modified carrier is added to the solution to perform a reaction, then filtered and washed, dried and suction dried to prepare a composite carrier; a nonmetallocene olefin polymerization catalyst is dissolved in a solvent, and then reacts with said composite carrier, then is washed and filtered, dried and suction dried, to prepare a supported nonmetallocene olefin polymerization catalyst. The present invention further relates to a supported nonmetallocene olefin polymerization catalyst as prepared by this method.
    Type: Grant
    Filed: October 21, 2005
    Date of Patent: January 25, 2011
    Assignee: Yangzi Petrochemical Company Co., Ltd.
    Inventors: Houliang Dai, Houping You, Chuanfeng Li, Xiaoli Yao, Lijin Zhou, Xiaoqiang Li, Yarning Wang, Zhonglin Ma, Jiye Bai
  • Patent number: 7868197
    Abstract: Halogen substituted metallocene compounds are described and comprise one or more monocyclic or polycyclic ligands that are pi-bonded to the metal atom and include at least one halogen substituent directly bonded to an sp2 carbon atom at a bondable ring position of the ligand, wherein the or at least one ligand has one or more ring heteroatoms in its cyclic structure. When combined with a suitable activator, these compounds show activity in the polymerization of olefins, such as ethylene and propylene.
    Type: Grant
    Filed: December 14, 2005
    Date of Patent: January 11, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Alexander Z. Voskoboynikov, Alexey N. Ryabov, Mikhail V. Nikulin, Alexander V. Lygin, Dmitry V. Uborsky, Catalina L. Coker, Jo Ann M. Canich
  • Patent number: 7868108
    Abstract: The present invention relates to transition metal compounds of the formula (I), a process for preparing polyolefins by polymerization or copolymerization of at least one olefin in the presence of at least one olefin in the presence of at least one of the catalyst systems according to the invention and the use of the ligand systems according to the invention for preparing transition metal compounds.
    Type: Grant
    Filed: November 27, 2006
    Date of Patent: January 11, 2011
    Assignee: Basell Polyolefine GmbH
    Inventors: Shahram Mihan, Benno Bildstein, Alexander Solchinger, Lars Kölling
  • Patent number: 7868107
    Abstract: A process for producing a cycloolefin addition polymer comprising addition-polymerizing a cycloolefin in the presence of a catalyst comprising a combination of a specific transition metal compound of Group 4 of the Periodic Table, with an organoaluminum oxy compound, and/or a compound capable of reacting with the Group 4 transition metal compound to form an ion pair. The specific group 4 transition metal compound preferably has a structure such that the group 4 transition metal is bonded to a cyclopentadienyl ring in an ?1 mode. The above-mentioned catalyst exhibits high activity for both of addition homopolymerization of a cycloolefin and addition copolymerization of a cycloolefin with an ?-olefin.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: January 11, 2011
    Assignee: Zeon Corporation
    Inventors: Kei Nishii, Sigetaka Hayano, Yasuo Tsunogae
  • Patent number: 7863213
    Abstract: A supported catalyst for olefin polymerization comprises a selected ionic activator, a selected organometallic catalyst and a support material. The selected activator must contain an active hydrogen moeity. The organometallic catalyst is characterized by having a phosphinimine ligand and a substituted cyclopentadienyl ligand (which contains from 7 to 30 carbon atoms). The supported catalyst exhibits excellent activity in gas phase olefin polymerizations and may be used under substantially “non-fouling” polymerization conditions.
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: January 4, 2011
    Assignee: Nova Chemicals (International) S.A.
    Inventors: Ian McKay, Dusan Jeremic, Grant Berent Jacobsen, Sergio Mastroianni
  • Patent number: 7858718
    Abstract: Catalysts useful for polymerizing olefins are disclosed. The catalysts comprise an activator and a Group 4 metal complex that incorporates a dianionic, tridentate 2-aryl-8-anilinoquinoline ligand. In one aspect, supported catalysts are prepared by first combining a boron compound having Lewis acidity with excess alumoxane to produce an activator mixture, followed by combining the activator mixture with a support and the tridentate, dianionic Group 4 metal complex. The catalysts are easy to synthesize, support, and activate, and they enable facile production of high-molecular-weight polyolefins.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: December 28, 2010
    Assignee: Equistar Chemicals, LP
    Inventors: Sandor Nagy, Linda N. Winslow, Shahram Mihan, Reynald Chevalier, Lenka Lukesova, Ilya E. Nifant'ev, Pavel V. Ivchenko, Michael W. Lynch
  • Patent number: 7858729
    Abstract: A catalyst, co-catalyst, and/or chain transfer agent is added at a time after initiation of an addition polymerization reaction to produce a polymer product with a widened molecular weight distribution relative to having all of the components in the original reaction mixture. The catalyst, co-catalyst, or chain transfer agent may be added discretely or continuously to the reaction to produce a product with a bimodal, trimodal, or other broadened molecular weight distribution.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: December 28, 2010
    Assignee: Novomer, Inc.
    Inventor: Scott D. Allen
  • Patent number: 7851570
    Abstract: Compounds are provided that are useful as precatlysts in the polymerization of olefins such as ethylene and propylene. Other compounds are useful as intermediates in the production of such precatalysts.
    Type: Grant
    Filed: February 23, 2007
    Date of Patent: December 14, 2010
    Assignee: The University of Kentucky Research Foundation
    Inventors: Omofolami Tesileem Ladipo, Richard Eaves, Alexey Zazybin, Sean Parkin