Transition Metal Is Ib, Iiib, Viib Or Atomic Number 58-71, 88, 90 Or Higher Patents (Class 526/164)
  • Patent number: 11970616
    Abstract: A modified conjugated diene-based polymer having high linearity and improved compounding properties is provided. The modified conjugated diene-based polymer includes phosphor, sulfur and chlorine in specific amount ranges, and the degree of branching is controlled, and accordingly, if applied to a rubber composition, tensile strength and viscoelasticity may be excellent, and processability may be markedly improved.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: April 30, 2024
    Assignee: LG Chem, Ltd.
    Inventors: Kyoung Hwan Oh, Hyo Jin Bae, Hyun Woong Park, Jeong Heon Ahn, Jae Hyeong Park
  • Patent number: 11312796
    Abstract: Disclosed are a novel metallocene catalyst and a method for preparing a polyolefin having a high molecular weight and a low melt index by using the same. The present invention provides a transition metal compound represented by formula 1.
    Type: Grant
    Filed: April 9, 2020
    Date of Patent: April 26, 2022
    Assignee: LOTTE CHEMICAL CORPORATION
    Inventors: Joon Keun Min, Su Jeong Jeong, Hyun Yul Woo, Rai Ha Lee, Eun Hye Shin, Byung Hun Chae
  • Patent number: 11059920
    Abstract: A method for producing a polydiene, the method comprising the step of: polymerizing conjugated diene monomer with a lanthanide-based catalyst system in the presence of a hydrocarbyloxysilane.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: July 13, 2021
    Assignee: Bridgestone Corporation
    Inventor: Zengquan Qin
  • Patent number: 9890270
    Abstract: The invention relates to a phased rubber composition and tire tread thereof intended for heavy duty service such as for example a truck tire. The phased rubber composition is comprised of the product of blending a first rubber phase comprised of cis 1,4-polybutadiene rubber and reinforcing filler comprised of rubber reinforcing carbon black and a second rubber phase comprised of natural cis 1,4-polyisoprene rubber and reinforcing filler comprised of precipitated silica.
    Type: Grant
    Filed: September 6, 2016
    Date of Patent: February 13, 2018
    Assignee: The Goodyear Tire & Rubber Company
    Inventors: Leandro Forciniti, Roberto Cerrato Meza, Junling Zhao, Warren James Busch, Paul Harry Sandstrom, Gregory Daniel Zartman
  • Patent number: 9822198
    Abstract: A process for the preparation of branched polybutadiene having a high content of 1,4-cis units which comprises polymerizing butadiene in the presence of at least one organic solvent, and in the presence of: a) a catalytic system prepared in situ including: (a1) at least one neodymium carboxylate, (a2) at least one alkyl compound of aluminum, (A3) at least one alkyl compound of aluminum containing at least one halogen atom, and b) at least one organic ester containing at least one halogen atom. Said branched polybutadiene having a high content of 1,4-cis units, depending on the branching degree and molecular weight distribution, can be advantageously used in various applications ranging from the modification of plastic materials [production, for example, of high impact polystyrene (HIPS)] to the production of tires, in particular the production of treads and/or of sidewalls of tires.
    Type: Grant
    Filed: April 24, 2013
    Date of Patent: November 21, 2017
    Assignee: Versalis S.p.A.
    Inventors: Andrea Vallieri, Marianna Zinna, Costantino Perretta
  • Patent number: 9000107
    Abstract: A process for preparing a polydiene, the process comprising the step of: polymerizing conjugated diene monomer in the presence of a (hydrocarbyloxyhydrocarbyl)amine, where said step of polymerizing employs a lanthanide-based catalyst system.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: April 7, 2015
    Assignee: Bridgestone Corporation
    Inventors: Zengquan Qin, Jason T. Poulton
  • Patent number: 8969496
    Abstract: The present invention provides a method for controlling the chain structure of a copolymer. The disclosed method is capable of controlling the arrangement of monomeric units in a copolymer, and of selectively forming a random copolymer, tapered copolymer, multiblock copolymer and block copolymer. In the method for controlling the chain structure of a copolymer of a conjugated diene compound and a non-conjugated olefin, the introduction of the conjugated diene compound is controlled in the presence of the non-conjugated olefin so as to control the chain structure of the copolymer.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: March 3, 2015
    Assignee: Bridgestone Corporation
    Inventor: Shojiro Kaita
  • Patent number: 8946368
    Abstract: The present invention relates to a multi-component catalytic system that can be used for the cis-1,4 stereospecific polymerization of conjugated dienes. The system is based on: (i) a rare-earth complex of Formula (II) Ln(A)3(B)n, Ln being a rare-earth metal, A a ligand, B a Lewis base or a solvent molecule and n a number from 0 to 3; (ii) an alkylating agent; (iii) a compound based on an aromatic ring and having at least two heteroatoms chosen from the elements O, N, S, P, and corresponding to the Formula (III): in which the R groups each denote hydrogen, an alkyl radical optionally comprising one or more heteroatoms (N, O, P, S, Si) or one or more halogen atoms, a halogen atom, a group based on one or more heteroatoms (N, O, P, S, Si); x and y are integers from 0 to 6; D is a group having a chemical function, one of the atoms of which has a non-bonding pair; L being an atom from column 1 of the Periodic Table.
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: February 3, 2015
    Assignees: Compagnie Generale des Etablissements, Michelin Recherche et Technique S.A.
    Inventors: Christophe Boisson, Olivier Rolland, Julien Thuilliez
  • Patent number: 8871878
    Abstract: The present invention generally relates to a new method of polymerizing ethylene. In one embodiment, the present invention relates to compounds utilized in the polymerization of ethylene and to a synthesis/polymerization method that uses same. In another embodiment, branched polyethylene is synthesized from an ethylene monomer using, in this embodiment, at least one nickel iminophosphonamide (PN2) complex. In still another embodiment, the reaction of (phenyl)(triphenylphosphine)(diphenyl-bis(trimethylsilylimino)phosphorato)-nickel, with Rh(acac) (C2H4)2 and ethylene yield a branched polyethylene. In an alternative of this embodiment, the reaction of (phenyl)(triphenylphosphine)(methyl-cis(trimethylsilyl)amino-bis(trimethylsilylimino)phosphorato)-nickel and ethylene, with or without Ni(COD)2, yields a branched polyethylene.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: October 28, 2014
    Assignee: The University of Akron
    Inventors: Scott Collins, Russell A Stapleton
  • Patent number: 8853339
    Abstract: This invention relates to a method for producing a copolymer of a conjugated diene compound and an unconjugated olefin other than the conjugated diene compound having a high cis-1,4 bond content of a conjugated diene compound portion, and more particularly to a method for producing a copolymer characterized by comprising a step of polymerizing a conjugated diene compound and an unconjugated olefin other than the conjugated diene compound in the presence of a polymerization catalyst composition including at least one complex selected from a metallocene complex represented by the following general formula (I): (wherein M is a lanthanoid element, scandium or yttrium, and CpR is independently a non-substituted or substituted indenyl, and Ra-Rf are independently an alkyl group having a carbon number of 1-3 or a hydrogen atom, and L is a neutral Lewis base, and w is an integer of 0-3) and so on.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: October 7, 2014
    Assignee: Bridgestone Corporation
    Inventors: Shojiro Kaita, Olivier Tardif, Yasuo Horikawa
  • Patent number: 8846837
    Abstract: The invention relates to a high-molecular-weight, linear, neodymium-catalysed polybutadiene having a high proportion, >95%, of cis-1,4 units having a low proportion, <1%, of 1,2-vinyl content, and also having a small molar-mass-polydispersity index (MPI), characterized in that Mooney viscosity (ML1+4 100° C.) of the polybutadiene is from 70 to 90 and The molar-mass-polydispersity index of the polybutadiene is smaller than 10.
    Type: Grant
    Filed: April 11, 2013
    Date of Patent: September 30, 2014
    Assignee: LANXESS Deutschland GmbH
    Inventors: Heike Kloppenburg, Norbert Steinhauser
  • Patent number: 8816032
    Abstract: The present invention is directed to a copolymer derived from an acyclic conjugated diene monomer and a 1-vinylcycloalkene monomer of formula I where n is an integer ranging from 0 to 4, R is hydrogen or a linear or branched alkyl group of one to four carbon atoms, with the proviso that R may be appended at the 3 to (n+5) positions on the carbon ring.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: August 26, 2014
    Assignee: The Goodyear Tire & Rubber Company
    Inventor: Margaret McGuigan Flook
  • Patent number: 8765887
    Abstract: A process for preparing a polydiene, the process comprising the step of polymerizing conjugated diene monomer with a lanthanide-based catalyst system in the presence of a vinylsilane, an allylsilane, or an allylvinylsilane.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: July 1, 2014
    Assignee: Bridgestone Corporation
    Inventor: Steven Luo
  • Patent number: 8748531
    Abstract: A method for preparing a functionalized polymer, the method comprising the steps of polymerizing monomer to form a reactive polymer; and reacting the reactive polymer with a protected oxime compound containing an acyl group.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: June 10, 2014
    Assignee: Bridgestone Corporation
    Inventor: Steven Luo
  • Patent number: 8701728
    Abstract: A process for preparing a copolymer of an acyclic conjugated diene and a cyclic conjugated diene using a polymerization catalyst system comprising a transition metal compound or a lanthanide metal compound, an alkylating agent, and an inorganic halide alcoholate, and rubber compositions and tires comprising the same. The copolymer contains at least 90% acyclic conjugated diene monomer, has a number average molecular weight of between 40,000 and 300,000, and has a cis-bond content of at least 92%.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: April 22, 2014
    Assignee: Bridgestone Corporation
    Inventors: Zengquan Qin, Eiju Suzuki
  • Patent number: 8664344
    Abstract: Process for the preparation of polybutadiene effected by the polymerization of butadiene in an aliphatic and/or cyclo-aliphatic solvent in the presence of a catalytic system prepared in situ which comprises: (i) a carboxylate of neodymium soluble in the process solvent containing a variable quantity of water, the H2O/Nd molar ratio ranging from 0.001/1 to 0.50/1; (ii) an alkyl compound of aluminum; (iii) an alkyl compound of aluminum in which at least one bond of Al consists of an Al—Cl bond; The total Al/Nd molar ratio ranging from 4/1 to 12/1, and the Cl/Nd molar ratio ranging from 2/1 to 6/1.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: March 4, 2014
    Assignee: Polimeri Europa S.p.A.
    Inventors: Gian Tommaso Viola, Marianna Zinna
  • Patent number: 8623975
    Abstract: A process for preparing a polydiene, the process comprising the step of polymerizing conjugated diene monomer in the presence of a dihydrocarbyl ether, where said step of polymerizing takes place within a polymerization mixture that includes less than 20% by weight of organic solvent based on the total weight of the polymerization mixture, and where said step of polymerizing employs a lanthanide-based catalyst system that includes the combination of or reaction product of ingredients including (a) a lanthanide compound, (b) an aluminoxane, (c) an organoaluminum compound other than an aluminoxane, and (d) a bromine-containing compound selected from the group consisting of elemental bromine, bromine-containing mixed halogens, and organic bromides.
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: January 7, 2014
    Assignee: Bridgestone Corporation
    Inventors: Steven Luo, Kevin M. McCauley, Jason T. Poulton
  • Patent number: 8623976
    Abstract: The present invention provides a novel catalyst composition comprising a metallocene complex, and a novel producing method for various polymer compounds. Preferably, the invention provides a novel polymer compound, and a producing method thereof. Specifically, the invention provides a polymerization catalyst composition, comprising: (1) a metallocene complex represented by the general formula (I), including: a central metal M which is a group III metal atom or a lanthanoid metal atom; a ligand Cp* bound to the central metal and including a substituted or unsubstituted cyclopentadienyl derivative; monoanionic ligands Q1 and Q2; and w neutral Lewis base L; and (2) an ionic compound composed of a non-ligand anion and a cation: where w represents an integer of 0 to 3.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: January 7, 2014
    Assignee: RIKEN
    Inventors: Zhaomin Hou, Yunjie Luo, Xiaofang Li, Jens Baldamus
  • Patent number: 8618229
    Abstract: The present invention discloses catalyst compositions employing transition metal complexes with a thiolate ligand. Methods for making these transition metal complexes and for using such compounds in catalyst compositions for the polymerization of olefins also are provided.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: December 31, 2013
    Assignee: Chevron Phillips Chemical Company LP
    Inventor: Mark L. Hlavinka
  • Patent number: 8598286
    Abstract: The present invention is directed to a polymer comprising repeat units derived from 1,3-butadiene and a substituted butadiene of formula I or II wherein R is hydrogen, an alkyl group, aryl group, or a fused cyclic group; and wherein at least 95 percent by weight of the repeat units have a cis-1, 4 microstructure. The invention is further directed to a rubber composition and pneumatic tire comprising the polymer, and a method for making the polymer using a neodymium catalyst system.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: December 3, 2013
    Assignee: The Goodyear Tire & Rubber Company
    Inventors: Margaret McGuigan Flook, Stephan Rodewald
  • Patent number: 8541509
    Abstract: A method for preparing a functionalized polymer, the method comprising the steps of (i) polymerizing conjugated diene monomer by employing a lanthanide-based catalyst to form a reactive polymer, and (ii) reacting the reactive polymer with a protected oxime compound.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: September 24, 2013
    Assignee: Bridgestone Corporation
    Inventors: Steven Luo, Yuan-Yong Yan, Jason T. Poulton, Eiju Suzuki
  • Patent number: 8530592
    Abstract: The present invention discloses metallic complexes based on hydroxyl-carbonyl fulvene ligands, their method of preparation and their use in the oligomerization or polymerization of ethylene and alpha-olefins.
    Type: Grant
    Filed: July 16, 2008
    Date of Patent: September 10, 2013
    Assignee: Total Research & Technology Feluy
    Inventors: Clément Lansalot-MaTras, Olivier Lavastre, Sabine Sirol
  • Patent number: 8507627
    Abstract: This invention relates to an aromatic vinyl compound-conjugated diene compound copolymer capable of giving excellent wear resistance and resistance to wet skid to a tire, and more particularly to an aromatic vinyl compound-conjugated diene compound copolymer obtained by an addition polymerization of an aromatic vinyl compound and a conjugated diene compound in the presence of a polymerization catalyst composition comprising at least one specified metallocene complex selected from the group consisting of a metallocene complex represented by the following general formula (I): (wherein M is a lanthanoid element, scandium or yttrium, and CpR is independently a non-substituted or substituted indenyl, and Ra to Rf are independently an alkyl group having a carbon number of 1-3 or a hydrogen atom, and L is a neutral Lewis base, and w is an integer of 0-3) and so on, wherein a content of cis-1,4 bond in a conjugated diene compound portion is not less than 80%.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: August 13, 2013
    Assignees: Bridgestone Corporation, Riken
    Inventors: Ryuji Nakagawa, Junko Matsushita, Yoichi Ozawa, Shojiro Kaita, Olivier Tardif
  • Patent number: 8492573
    Abstract: Borohydride metallocene complex of lanthanide, preparation process, catalytic system incorporating borohydride metallocene complex, process for copolymerization of olefins employing catalytic system. The complex corresponds to one or other of formulae A and B: where, in A, two ligands Cp1, Cp2, each composed of a cyclopentadienyl group, are connected to the lanthanide Ln, such as Nd, and where, in B, a ligand molecule, composed of two cyclopentadienyl groups Cp1, Cp2 connected to one another via a bridge P of formula MR1R2, M is an element from group IVa, and R1 and R2, which are identical or different, represent an alkyl group comprising from 1 to 20 carbon atoms, is connected to the lanthanide Ln, L is alkali metal, N is molecule of a complexing solvent, x is integral or non-integral number?0, p is integer?than 1 and y is integer?0.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: July 23, 2013
    Assignees: Michelin Recherche et Technique S.A., Total Petrochemicals France, Centre National de la Recherche Scientifique Ecole Superieure de Chimie-Physique-Electronique
    Inventors: Julien Thuilliez, Christophe Boisson, Roger Spitz
  • Publication number: 20130172489
    Abstract: The invention relates to a high molecular weight bimodal neodymium-catalysed polybutadiene having a high proportion, >95%, of cis-1,4 units and a low proportion, <1%, of 1,2-vinyl content, wherein the polybutadiene has a linear polymeric main fraction and a long chain branched polymeric fraction, wherein the slope in the RGM relationship is >0.5 for the polymeric main fraction and <0.3 for the long chain branched polymeric fraction.
    Type: Application
    Filed: February 17, 2011
    Publication date: July 4, 2013
    Applicant: LANXESS DEUTSCHLAND GMBH
    Inventors: Heike Kloppenburg, Thomas Gross
  • Patent number: 8394901
    Abstract: An isoprene or butadiene cis 1,4-selective polymerization catalyst system together with its polymerization method is provided. This catalyst system is composed of NCN-imine pincer type rare earth metal complex of formula [2,6-(CH?N—R1)2-4-R2-1-C6H2]LnX2(THF)n and alkylating reagent. In an hydrocarbon solvent or under bulk conditions, at a polymerization temperature in a range of ?20-120° C., the conjugated diene is polymerized by using the catalyst system, to produce polyisoprene and polybutadiene having controllable number-average molecular weight, molecular weight distribution of 3.0 or less than, and cis 1,4-content of 95% or more, even 99% or more. The crude rubber and vulcanized rubber of the polyisoprene have high strength, stretching crystallization capability and transparency.
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: March 12, 2013
    Assignee: Changchun Institute of Applied Chemistry Chinese Academy of Sciences
    Inventors: Dongmei Cui, Xinli Liu, Dongtao Liu, Wei Gao, Shihui Li, Lingfang Wang, Zhichao Zhang
  • Patent number: 8304503
    Abstract: Disclosed is a process for producing a conjugated diene polymer having a very high content of cis-1,4 structures by using an yttrium compound-containing catalyst that is relatively easy to handle and has a high activity. Specifically disclosed is a process for producing a conjugated diene polymer containing cis-1,4 structures at a ratio of 99% or higher, which is characterized by polymerizing a conjugated diene in the presence of a catalyst produced from (A) a specific yttrium compound, (B) an ionic compound consisting of a non-coordinating anion and a cation, and (C) an organoaluminum compound.
    Type: Grant
    Filed: December 25, 2009
    Date of Patent: November 6, 2012
    Assignee: Ube Industries, Ltd.
    Inventors: Michinori Suzuki, Koji Shiba, Masato Murakami
  • Patent number: 8268949
    Abstract: Borohydride metallocene complex of lanthanide, preparation process, catalytic system incorporating it, copolymerization of olefins employing catalytic system and ethylene/butadiene copolymer, the butadiene units comprise 1,2-cyclohexane or 1,2- and 1,4-cyclohexane links. The complex corresponds to of formulae A and/or B: where, in A two ligands Cp1 and Cp2, each of a fluorenyl group, are connected to the lanthanide Ln, where, in B, a ligand molecule, composed of two fluorenyl groups Cp1 and Cp2 are connected via bridge P of formula MR1R2, is an element from group IVa, R1 and R2, which are identical or different, represent an alkyl group comprising from 1 to 20 carbon atoms, connected to lanthanide Ln, L is alkali metal, N is molecule of a complexing solvent, x is integral or non-integral number ?0 and p is integer ?1.
    Type: Grant
    Filed: November 7, 2011
    Date of Patent: September 18, 2012
    Assignees: Michelin Recherche et Technique S.A., Total Petrochemicals France, Centre National de la Recherche Scientifique, Ecole Superieure de Chimie-Physique-Electronique de Lyon
    Inventors: Julien Thuilliez, Christophe Boisson, Roger Spitz
  • Patent number: 8258332
    Abstract: A method for preparing a functionalized polymer, the method comprising the steps of preparing a reactive polymer, and reacting the reactive polymer with a halosilane compound containing an amino group.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: September 4, 2012
    Assignee: Bridgestone Corporation
    Inventors: Terrence E. Hogan, Steven Luo, Yoichi Ozawa, Junko Matsushita, Ryuji Nakagawa, Eiju Suzuki, Ken Tanaka
  • Patent number: 8188201
    Abstract: A process for preparing a polydiene, the process comprising the step of polymerizing conjugated diene monomer with a lanthanide-based catalyst system including the combination or reaction product of: (a) a lanthanide compound selected from the group consisting of lanthanide organophosphates, lanthanide organophosphonates, and lanthanide organophosphinates, (b) an alkylating agent, and (c) a chlorine-containing compound, where said step of polymerizing takes place within a polymerization mixture that includes less than 20% by weight of solvent based on the total weight of the polymerization mixture.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: May 29, 2012
    Assignee: Bridgestone Corporation
    Inventors: Steven Luo, Kevin McCauley, Jason T. Poulton
  • Patent number: 8163855
    Abstract: A method for polymerizing conjugated diene monomer into polydienes, the method comprising: polymerizing conjugated diene monomer within a liquid-phase polymerization mixture that includes conjugated diene monomer, a lanthanide-based catalyst system, dicyclopentadiene or substituted dicyclopentadiene, and optionally organic solvent, with the proviso that the organic solvent, if present, is less than about 20% by weight based on the total weight of the polymerization mixture.
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: April 24, 2012
    Assignee: Bridgestone Corporation
    Inventors: Steven Luo, Mark W. Smale, Kevin McCauley, Randhir Shetty
  • Patent number: 8153545
    Abstract: Metal complexes, catalyst compositions containing the metal complexes, and processes for making the metal complexes and the catalyst compositions are described for the manufacture of polymers from ethylenically unsaturated addition polymerizable monomers. The metal complexes have chemical structures corresponding to one of the following formulae: wherein MI and MII are metals; T is nitrogen or phosphorus; P is a carbon, nitrogen or phosphorus atom; groups R1, R2 and R3 may be linked to each other; Y is a divalent bridging group; X, X1, and X2 are anionic ligand groups with certain exceptions; D is a neutral Lewis base ligand; and s, o, k, i, ii, p, m, a, b, c, d, c, t, and y are numbers as further described in the claims.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: April 10, 2012
    Assignee: Styron Europe GmbH
    Inventor: Sven K. H. Thiele
  • Patent number: 8088868
    Abstract: A method for preparing a functionalized polymer, the method comprising the steps of (i) polymerizing conjugated diene monomer by employing a lanthanide-based catalyst to form a reactive polymer, and (ii) reacting the reactive polymer with a protected oxime compound.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: January 3, 2012
    Assignee: Bridgestone Corporation
    Inventors: Steven Luo, Yuan-Yong Yan, Jason T. Poulton, Eiju Suzuki
  • Patent number: 8084565
    Abstract: A catalyst for polymerization of conjugated diene is provided, which facilitates manufacture of a conjugated diene polymer with a high 1,4-cis structure content, leaves less aluminum residue on polymerization, and has high activity. A method of manufacturing conjugated diene polymers using the catalyst is also provided. A catalyst for polymerization of conjugated diene comprises (A) an yttrium compound; (B) an ionic compound including a non-coordinate anion and a cation; and (C) an organometallic compound including an element selected from the groups 2, 12 and 13 of the periodic table.
    Type: Grant
    Filed: January 11, 2010
    Date of Patent: December 27, 2011
    Assignee: Ube Industries, Ltd.
    Inventors: Michinori Suzuki, Masato Murakami, Naomi Okamoto, Mitsuharu Eikyuu, Kouji Ishiguchi
  • Patent number: 8071700
    Abstract: A borohydride metallocene complex of a lanthanide, its process of preparation, a catalytic system incorporating a borohydride metallocene complex and a process for the copolymerization of olefins employing this catalytic system.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: December 6, 2011
    Assignees: Michelin Recherche et Technique S.A, Total Petrochemicals France, Centre National de la Recherche Scientifique, Ecole Superieure de Chimie-Physique-Electronique de Lyon (CPE)
    Inventors: Julien Thuilliez, Christophe Boisson, Roger Spitz
  • Patent number: 8071800
    Abstract: A borohydride metallocene complex of a lanthanide, its process of preparation, a catalytic system incorporating it, a process for the copolymerization of olefins employing this catalytic system and an ethylene/butadiene copolymer obtained by this process, the butadiene units of which comprise 1,2-cyclohexane or 1,2- and 1,4-cyclohexane links.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: December 6, 2011
    Assignees: Michelin Recherche et Technique S.A., Total Petrochemicals France, Centre National de la Recherche Scientifique, Ecole Superieure de Chimie-Physique-Electronique de Lyon (CPE)
    Inventors: Julien Thuilliez, Christophe Boisson, Roger Spitz
  • Publication number: 20110263803
    Abstract: Disclosed is a process for producing a conjugated diene polymer having a very high content of cis-1,4 structures by using an yttrium compound-containing catalyst that is relatively easy to handle and has a high activity. Specifically disclosed is a process for producing a conjugated diene polymer containing cis-1,4 structures at a ratio of 99% or higher, which is characterized by polymerizing a conjugated diene in the presence of a catalyst produced from (A) a specific yttrium compound, (B) an ionic compound consisting of a non-coordinating anion and a cation, and (C) an organoaluminum compound.
    Type: Application
    Filed: December 25, 2009
    Publication date: October 27, 2011
    Applicant: UBE INDUSTRIES, LTD.
    Inventors: Michinori Suzuki, Koji Shiba, Masato Murakami
  • Patent number: 8044225
    Abstract: A zwitterionic Group VIII transition metal complex containing the simple and relatively small 3-(arylimino)-but-1-en-2-olato ligand that catalyzes the formation of polypropylene and high molecular weight polyethylene. A novel feature of this catalyst is that the active species is stabilized by a chelated olefin adduct. The present invention also provides methods of polymerizing olefin monomers using zwitterionic catalysts, particularly polypropylene and high molecular weight polyethylene.
    Type: Grant
    Filed: September 12, 2006
    Date of Patent: October 25, 2011
    Assignee: The Regents of the University of California
    Inventors: Guillermo C. Bazan, Yaofeng Chen
  • Patent number: 8039565
    Abstract: A catalytic system usable for the copolymerization of at least one conjugated diene and at least one monoolefin, a process for preparing this catalytic system, a process for preparing a copolymer of a conjugated diene and at least one monoolefin using said catalytic system, and said copolymer are described.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: October 18, 2011
    Assignees: Michelin Recherche et Technique S.A., Total Petrochemicals Research-Feluy
    Inventors: Christophe Boisson, Vincent Monteil, Roger Spitz
  • Patent number: 7994267
    Abstract: The present invention provides a novel catalyst composition comprising a metallocene complex, and a novel producing method for various polymer compounds. Preferably, the invention provides a novel polymer compound, and a producing method thereof. Specifically, the invention provides a polymerization catalyst composition, comprising: (1) a metallocene complex represented by the general formula (I), including: a central metal M which is a group III metal atom or a lanthanoid metal atom; a ligand Cp* bound to the central metal and including a substituted or unsubstituted cyclopentadienyl derivative; monoanionic ligands Q1 and Q2; and w neutral Lewis base L; and (2) an ionic compound composed of a non-ligand anion and a cation: where w represents an integer of 0 to 3.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: August 9, 2011
    Assignee: Riken
    Inventors: Zhaomin Hou, Yunjie Luo, Xiaofang Li, Jens Baldamus
  • Patent number: 7977437
    Abstract: A process for preparing a polydiene, the process comprising the step of polymerizing conjugated diene monomer in the presence of a dihydrocarbyl ether, where said step of polymerizing employs a lanthanide-based catalyst system.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: July 12, 2011
    Inventors: Steven Luo, Kevin M. McCauley, Jason T. Poulton
  • Patent number: 7915194
    Abstract: Metal complexes, catalyst compositions containing the metal complexes, and processes for making the metal complexes and the catalyst compositions are described for the manufacture of polymers from ethylenically unsaturated addition polymerizable monomers. The metal complexes have chemical structures corresponding to one of the following formulae: wherein MI and MII are metals; T is nitrogen or phosphorus; P is a carbon, nitrogen or phosphorus atom; groups R1, R2 and R3 may be linked to each other; Y is a divalent bridging group; X, X1, and X2 are anionic ligand groups with certain exceptions; D is a neutral Lewis base ligand; and s, o, k, i, ii, p, m, a, b, c, d, e, t, and y are numbers as further described in the claims.
    Type: Grant
    Filed: September 10, 2009
    Date of Patent: March 29, 2011
    Assignee: Styron Europe GmbH
    Inventor: Sven K. H. Thiele
  • Patent number: 7902309
    Abstract: Compositions and polydiene production processes involving catalyst systems comprising at least one lanthanide-containing compound, at least one alkylating agent, at least one halogen source, and at least one N,N-dihydrocarbylhydroxylamine.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: March 8, 2011
    Assignee: Bridgestone Corporation
    Inventors: Steven Luo, Jason T. Poulton, Daniel F. Graves
  • Patent number: 7879958
    Abstract: A method for quenching an active polymerization mixture, the method comprising introducing a polyhydroxy compound to an active polymerization mixture.
    Type: Grant
    Filed: August 7, 2007
    Date of Patent: February 1, 2011
    Assignee: Bridgestone Corporation
    Inventors: Steven Luo, Timothy L. Tartamella, Mark W. Smale, Kevin M. McCauley, Zhong-Ren Chen
  • Patent number: 7868103
    Abstract: A method for producing a polybutadiene, which comprises subjecting 1,3-butadiene to cis-1,4 polymerization, and subsequently subjecting a resultant in the resulting polymerization system to syndiotactic-1,2 polymerization, the method being characterized in that there is added, after the polymerization, a halogen acid or halogen acid salt.
    Type: Grant
    Filed: May 17, 2007
    Date of Patent: January 11, 2011
    Assignee: Ube Industries, Ltd.
    Inventors: Koji Shiba, Michinori Suzuki, Masato Murakami, Yuji Matsudaira
  • Patent number: 7829642
    Abstract: 3,4-isoprene-based polymer having high isotacticity can be produced by polymerizing an isoprene compound using a complex represented by the general formula (A) and a catalyst activator: wherein R1 and R2 independently represent an alkyl group, a cyclohexyl group, an aryl group or an aralkyl group; R3 represents an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an aralkyl group, an aliphatic, aromatic or cyclic amino group, a phosphino group, a boryl group, an alkylthio or arylthio group, or an alkoxy or aryloxy group; M represents a rare earth element selected from Sc, Y, and La to Lu with promethium (Pm) excluded; Q1 and Q2 independently represent a monoanionic ligand; L represents a neutral Lewis base; and w represents an integer of 0 to 3.
    Type: Grant
    Filed: February 5, 2007
    Date of Patent: November 9, 2010
    Assignee: Riken
    Inventors: Zhaomin Hou, Lixin Zhang
  • Patent number: 7825201
    Abstract: A process for preparing a polydiene, the process comprising the step of polymerizing conjugated diene monomer in the presence of a dihydrocarbyl ether, where said step of polymerizing takes place within a polymerization mixture that includes less than 20% by weight of organic solvent based on the total weight of the polymerization mixture, and where said step of polymerizing employs a lanthanide-based catalyst system that includes the combination of or reaction product of ingredients including (a) a lanthanide compound, (b) an aluminoxane, (c) an organoaluminum compound other than an aluminoxane, and (d) a bromine-containing compound selected from the group consisting of elemental bromine, bromine-containing mixed halogens, and organic bromides.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: November 2, 2010
    Assignee: Bridgestone Corporation
    Inventors: Steven Luo, Kevin M. McCauley, Jason T. Poulton
  • Patent number: 7807763
    Abstract: A method for polymerizing conjugated diene monomer into polydienes, the method comprising: polymerizing conjugated diene monomer within a liquid-phase polymerization mixture that includes conjugated diene monomer, a lanthanide-based catalyst system, dicyclopentadiene or substituted dicyclopentadiene, and optionally organic solvent, with the proviso that the organic solvent, if present, is less than about 20% by weight based on the total weight of the polymerization mixture.
    Type: Grant
    Filed: April 7, 2008
    Date of Patent: October 5, 2010
    Assignee: Bridgestone Corporation
    Inventors: Mark W. Smale, Steven Luo, Kevin McCauley, Randhir Shetty
  • Patent number: 7799725
    Abstract: A catalyst for polymerization of conjugated diene comprises (A) an yttrium compound; (B) an ionic compound including a non-coordinate anion and a cation; and (C) an organometallic compound including an element selected from the groups 2, 12 and 13 of the periodic table.
    Type: Grant
    Filed: October 20, 2005
    Date of Patent: September 21, 2010
    Assignee: UBE Industries, Ltd.
    Inventors: Michinori Suzuki, Masato Murakami, Naomi Okamoto, Mitsuharu Eikyuu, Kouji Ishiguchi
  • Patent number: 7741418
    Abstract: A process for preparing a polydiene, the process comprising the step of polymerizing conjugated diene monomer in the presence of a dihydrocarbyl ether, where said step of polymerizing employs a lanthanide-based catalyst system.
    Type: Grant
    Filed: December 31, 2007
    Date of Patent: June 22, 2010
    Assignee: Bridgestone Corporation
    Inventors: Steven Luo, Kevin M. McCauley, Jason T. Poulton