Contains P, N, S, Or O Atom Patents (Class 526/189)
  • Patent number: 11186653
    Abstract: The present invention relates to a process for the continuous production of a polyolefin, preferably polypropylene, in a horizontal stirred bed polymerization reactor by contacting one or more olefins, preferably propylene, with a catalyst system while stirring, said catalyst system comprising: * a procatalyst comprising i) titanium; ii) a magnesium-containing support, preferably a magnesium chloride-containing support, and iii) an internal electron donor; * optionally an external electron donor; and * a co-catalyst, being a alkyl aluminum catalyst having formula AlXnR3-n, wherein each X is independently a halide or a hydride and wherein n is 0, 1 or 2, preferably 0, and wherein R is an C1-C12 alkyl group, preferably ethyl, wherein the molar ratio of aluminum (Al) from the co-catalyst to titanium (Ti) from the procatalyst (Al/Ti) is at least 75. The present invention also relates to polyolefin prepared using said process and a shaped article comprising said polyolefin.
    Type: Grant
    Filed: March 14, 2018
    Date of Patent: November 30, 2021
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Martin Alexander Zuideveld, Bobby Johannes Henricus Hubertus Smeets, Thijs Van Mulken
  • Patent number: 10428183
    Abstract: Provided is a room temperature-curable resin composition containing an aluminum chelate compound. This aluminum chelate compound is an aluminum chelate compound having a ?-dicarbonyl compound represented by the following general formula (1): wherein each of R1 to R3 represents a monovalent hydrocarbon group or a halogen atom; R4 represents a hydrogen atom or a monovalent hydrocarbon group; and A is a group selected from a group represented by the following formula (2) and a group represented by —OR8: wherein each of R5 to R7 represents a monovalent hydrocarbon group or a halogen atom; and R8 represents a monovalent hydrocarbon group.
    Type: Grant
    Filed: February 5, 2019
    Date of Patent: October 1, 2019
    Assignee: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Taiki Katayama, Takahiro Yamaguchi, Takafumi Sakamoto
  • Patent number: 10323047
    Abstract: The present invention relates to a process to prepare alkylaluminoxanes by reaction of alkylaluminium with methacrylic acid or a conjugated unsaturated carbonyl-functional compound of the formula (I) wherein each R1 and R2 independently are an aliphatic hydrocarbon group, and R3 independently is the same hydrocarbon group as R1 and R2 or a hydrogen atom, and R4 isanaliphatic hydrocarbon group, a hydroxyl group or a hydrogen atom in the presence of an inert organic solvent. Additionally, it relates to the alkylaluminoxanes obtainable by the above process and their use.
    Type: Grant
    Filed: April 21, 2016
    Date of Patent: June 18, 2019
    Assignee: AKZO NOBEL CHEMICALS INTERNATIONAL B.V.
    Inventors: Jelle Martin Bergsma, Peter Van Der Kruijs, Richard Herman Woudenberg
  • Publication number: 20150148505
    Abstract: The present invention is concerned with a catalyst composition comprising titanium-, zirconium- and/or hafnium amidinate complexes and/or titanium-, zirconium- and/or hafnium guanidinate complexes and organo aluminium and/or organic zinc compounds, a coordinative chain transfer polymerization (CCTP) process employing the catalyst composition as well as long chain aluminium alkyls and subsequent alcohols obtained by such process.
    Type: Application
    Filed: June 3, 2013
    Publication date: May 28, 2015
    Inventors: Thoralf Gross, Holger Ziehe, Rhett Kempe, Winfried Kretschmer, Christian Hubner
  • Publication number: 20140378620
    Abstract: There is provided a catalyst composition for polymerizing a conjugated diene monomer containing a rare earth complex having a specific structure and a specific compound.
    Type: Application
    Filed: January 30, 2013
    Publication date: December 25, 2014
    Applicant: Asahi Kasei Chemicals Corporation
    Inventors: Katsuhiro Iwase, Yuji Kosugi
  • Patent number: 8722821
    Abstract: The method of making polyolefin with a silicon nitride nano-filler uses silicon nitride (SiN) as a promoter for in situ polymerization with a zirconocene catalyst. The method includes adding the bis(cyclopentadienyl) zirconium dichloride catalyst and nanoparticles of silicon nitride to a reactor. The reactor is then charged with toluene and a methylaluminoxane co-catalyst, and is heated for a period of time sufficient to bring the reactor to a polymerization reaction temperature. Nitrogen gas is removed from the reactor following the heating, and then ethylene monomer is fed into the reactor, initiating polymerization. The polymerization is then quenched, and non-reacted monomer is vented. The polyolefin product is then removed from the reactor, washed and dried.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: May 13, 2014
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Mamdouh Ahmed Al-Harthi, Omer Bin Sohail, Sadhan Kumar De, Masiullah Jabarullah Khan
  • Publication number: 20130289213
    Abstract: This invention relates to a process for polymerizing olefins in which the amount of trimethylaluminum in a methylalumoxane solution is adjusted to be from 1 to 25 mol %, prior to use as an activator, where the mol % trimethylaluminum is determined by 1H NMR of the solution prior to combination with any support. This invention also relates to a process for polymerizing olefins in which the amount of an unknown species present in a methylalumoxane solution is adjusted to be from 0.10 to 0.65 integration units prior to use as an activator, where the amount of the unknown species is determined by the 1H NMR spectra of the solution performed prior to combination with any support. Preferably, the methylalumoxane solution is present in a catalyst system also comprising a metallocene transition metal compound.
    Type: Application
    Filed: April 4, 2013
    Publication date: October 31, 2013
    Inventors: Donna J. Crowther, David M. Fiscus
  • Publication number: 20130260624
    Abstract: The present invention pertains to a polyethylene polymer characterised by the following properties: A number average molecular weight Mn of at least 2.0*105 g/mol, a weight average molecular weight of at least 2.0*106 g/mol, a Mw/Mn ratio of above 6, and a strain hardening slope of below 0.10 N/mm at 135° C. It has been found that a polymer with these properties have be converted through solid state processing into films and fibers with good properties. A solid state processing process, films and fibers, and their use are also claimed.
    Type: Application
    Filed: December 2, 2011
    Publication date: October 3, 2013
    Applicant: TEIJIN ARAMID B.V.
    Inventors: Sanjay Rastogi, Sara Ronca, Giuseppe Forte, Hendrik Jacob Tjaden
  • Patent number: 8283427
    Abstract: A process for cationically polymerizing olefin monomers in a reaction mixture includes the step of contacting olefin monomers and a catalytically effective amount of an initiating composition containing (A) a heterogeneous perfluoroaryl substituted Lewis acid coinitiator selected from the group consisting of open chain and cyclic aluminoxane compounds or Group 13 perfluoroaryl Lewis acid compounds of formula (III) and (B) an initiator selected from the group consisting of (i) organic compounds, (ii) halogens, (iii) interhalogens; (iv) Brönsted acids, (v) boron halides; (vi) silicon compounds; and (vii) germanium compounds. A novel initiator system is further disclosed.
    Type: Grant
    Filed: May 6, 2010
    Date of Patent: October 9, 2012
    Inventor: Stewart P. Lewis
  • Patent number: 8273678
    Abstract: The reaction product of the reaction product of A.) a ligand of the formula (I), wherein R1, R2, R3, and R4 in each occurrence independently are the same or different hydrocarbyl substituents of 1 to 20 carbon atoms, hydrogen, halogen, or alkoxy groups of 1 to 8 carbon atoms; X in each occurrence independently is CR6 with R6 being hydrogen or an alkyl group of 1 to 8 carbon atoms; and R5 is an organic divalent group of 4 to 40 carbon atoms with the proviso that the two nodes X are not bound to the same atom or to vicinal atoms in the group R5; B.) an aluminum compound of the formula AlR7R8R9, wherein R7, R8 and R9 each independently is a C1 to C12 hydrocarbyl group, hydrogen, halogen, or an alkoxy group of 1 to 20 carbon atoms; and C.) a Lewis base selected from the group consisting of amines, phosphines, amides, nitriles, isonitriles, and alcohols is useful as a polymerization catalyst, particularly for the homopolymerization or copolymerization of an alkylene oxide.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: September 25, 2012
    Assignee: Dow Global Technologies LLC
    Inventors: Eric P. Wasserman, Yang Cheng, Lihao Tang
  • Patent number: 8178465
    Abstract: The disclosure provides for a process and polymerization system to produce isoolefin polymers (72) utilizing polymorphogenates (16, 26) in the catalyst system to control polydispersity (MWD). The disclosure also provides a catalyst system (20) comprising a plurality of active catalyst complex species (34) formed by combination of a Lewis acid (24), an initiator (22) and a polymorphogenate (26), as well as polymers made using the catalyst system or process. The polymorphogenate (16, 26) can promote or mimic the formation of different active catalyst complex species (34) having different polymerization rates, i.e. different rates of propagation, chain transfer, or termination, as observed by different polydispersities resulting from the presence of relatively different proportions of the polymorphogenate.
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: May 15, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Timothy D. Shaffer, Michael F. McDonald, David Y. Chung, Robert N. Webb, Deborah J. Davis, Pamela J. Wright
  • Publication number: 20120116034
    Abstract: A procatalyst carrier system which includes one or more paraffinic solvents, one or more paraffin-insoluble procatalysts, and optionally one or more cocatalysts wherein the carrier system is in the form of a slurry is provided. Also provided is a process including selecting one or more paraffin-insoluble organometallic procatalysts; adding the one or more procatalysts to a sufficient quantity of paraffinic solvent to form a slurry of the one or more procatalysts in the paraffinic solvent; introducing one or more first cocatalysts into a polymerization reactor; and introducing the slurry into the polymerization reactor; a reaction product of the process and articles made from the reaction product.
    Type: Application
    Filed: November 8, 2010
    Publication date: May 10, 2012
    Applicant: DOW GLOBAL TECHNOLOGIES, INC.
    Inventors: Thomas Oswald, Ian M. Munro
  • Publication number: 20120101242
    Abstract: This invention relates to a process for polymerizing olefins in which the amount of trimethylaluminum in a methylalumoxane solution is adjusted to be from 6 to 25 mole %, prior to use as an activator, where the mole % trimethylaluminum is determined by 1H NMR of the solution prior to combination with any support. This invention also relates to a process for polymerizing olefins in which the amount of an unknown species present in a methylalumoxane solution is adjusted to be from 0.10 to 0.65 integration units prior to use as an activator, where the unknown species is the peak is identified in the 1H NMR spectra of the solution performed prior to combination with any support. Preferably, the methylalumoxane solution is present in a catalyst system also comprising a metallocene transition metal compound.
    Type: Application
    Filed: October 21, 2010
    Publication date: April 26, 2012
    Inventors: Donna J. Crowther, David M. Fiscus
  • Patent number: 8163856
    Abstract: In an embodiment, a method is disclosed to increase the activity of an ionic liquid catalyst comprising emulsifying the ionic liquid catalyst with one or more liquid components. In an embodiment, a method is disclosed comprising introducing into a reaction zone a monomer feed and a reduced amount of ionic liquid catalyst and controlling an amount of shear present in the reaction zone to maintain a desired conversion reaction of the monomer. In an embodiment, a catalyzed reaction system is disclosed comprising a reactor configured to receive one or more liquid components and ionic liquid catalyst; a device coupled to the reactor for adding high shear to the liquid components and ionic liquid catalyst; and a controller coupled to the device for adding high shear and configured to control the amount of shear added to a catalyzed reaction zone to maintain a conversion reaction.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: April 24, 2012
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Lee H. Bergman, Kenneth D. Hope, Elizabeth A. Benham, Donald A. Stern
  • Publication number: 20120041162
    Abstract: [Object] An object of the present invention is to provide a method for producing an olefin polymer, with which an olefin polymer having good particle properties can be produced in high activity, contamination inside the polymerization vessel, such as a vessel wall or an impeller, can be effectively prevented, and a long-term stable operation is achieved. [Means for Achieving the Object] A method for producing an olefin polymer according to the present invention is characterized by including (co)polymerizing at least one olefin selected from the group consisting of ethylene and ?-olefins having 3 to 20 carbon atoms in a polymerization vessel in the presence of (A) a solid catalyst component for olefin polymerization, (B) an aliphatic amide, and (C) an organoaluminum compound.
    Type: Application
    Filed: April 21, 2010
    Publication date: February 16, 2012
    Inventors: Yasushi Tohi, Ken Yoshitsugu, Naoya Akiyama, Toshio Fujita, Masatoshi Chinaka
  • Publication number: 20110313119
    Abstract: A catalyst composition comprising one or more metal complexes of a multifunctional Lewis base ligand comprising a bulky, planar, aromatic- or substituted aromatic-group and polymerization processes employing the same, especially continuous, solution polymerization of one or more ?-olefins at high catalyst efficiencies are disclosed.
    Type: Application
    Filed: April 24, 2007
    Publication date: December 22, 2011
    Inventors: Wayde V Konze, Daniel D. VanderLende
  • Publication number: 20110237764
    Abstract: The present invention relates to a magnesium compound-supported nonmetallocene catalyst, which is produced by directly contacting a catalytically active metallic compound with a nonmetallocene ligand-containing magnesium compound, or by directly contacting a nonmetallocene ligand with a catalytically active metal-containing magnesium compound, through an in-situ supporting process. The process is simple and flexible. In the process, there are many variables in response for adjusting the polymerization activity of the catalyst, and the margin for adjusting the catalyst load or the catalyst polymerization activity is broad. The magnesium compound-supported nonmetallocene catalyst according to this invention can be used for olefin homopolymerization/copolymerization, in combination with a comparatively less amount of the co-catalyst, to achieve a comparatively high polymerization activity. Further, the polymer product obtained therewith boasts high bulk density and adjustable molecular weight distribution.
    Type: Application
    Filed: October 15, 2008
    Publication date: September 29, 2011
    Inventors: Yuefeng Gu, Xiaoli Yao, Chuanfeng Li, Zhonglin Ma, Feng Guo, Bo Liu, Yaming Wang, Shaohui Chen, Xiaoqiang Li, Jiye Bai
  • Patent number: 7943712
    Abstract: The present invention is directed to a catalyst system for synthesizing rubbery polymers, such as polybutadiene rubber, styrene-butadiene rubber, isoprene-butadiene rubber, or styrene-isoprene-butadiene rubber, that are amine functionalized and have a high trans microstructure. The catalyst system, in one embodiment, includes (a) an organolithium amine compound, (b) a group IIa metal salt of an amino glycol or a glycol ether, (c) an organoaluminum compound, and optionally (d) an amine compound. The amine functionalized rubbery polymers can be utilized in tire tread rubbers where the rubbery polymers may provide desirable wear properties without substantially sacrificing other performance characteristic(s), e.g., traction properties.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: May 17, 2011
    Assignee: The Goodyear Tire & Rubber Company
    Inventors: Adel Farhan Halasa, Wen-Liang Hsu, Laurie Elizabeth Austin, Chad Aaron Jasiunas, Steven Kristofer Henning
  • Publication number: 20110112264
    Abstract: A production process of a polymerization catalyst of an alkylene oxide, comprising a step of contacting an alumoxane compound with a compound having a hydroxyl group; a production process of a pre-polymerized polymerization catalyst thereof, comprising a step of pre-polymerizing an alkylene oxide in the presence of the above polymerization catalyst; and a production process of a poly(alkylene oxide), comprising a step of polymerizing an alkylene oxide in the presence of the above polymerization catalyst or pre-polymerized polymerization catalyst.
    Type: Application
    Filed: October 26, 2010
    Publication date: May 12, 2011
    Applicants: SUMITOMO CHEMICAL COMPANY, LIMITED, National University Corporation Kanazawa University
    Inventors: Shigeyoshi KANOH, Masaaki NABIKA
  • Publication number: 20110054131
    Abstract: A cycloolefin-based copolymer and a hydrogenation process are disclosed, wherein the cycloolefin-based copolymer is prepared by using: a monomer which can be easily and economically obtained by hydrogenating dicyclopentadiene that occupies much of C5 fractions from naphtha cracking; or a monomer which can be obtained by chemically bonding three molecules of cyclopentadiene via Diels-Alder reactions and then hydrogenating the cyclopentadiene. The copolymer can be used in various fields as an amorphous transparent resin.
    Type: Application
    Filed: February 11, 2009
    Publication date: March 3, 2011
    Applicant: KOLON INDUSTRIES, INC.
    Inventors: Ik Kyung Sung, Woon Sung Hwang, Jung Hoon Seo, Bun Yeoul Lee, Sung Jae Na, Seung Taek Yu
  • Patent number: 7893176
    Abstract: The disclosure provides for a process and polymerization system to produce isoolefin polymers (72) utilizing polymorphogenates (16, 26) in the catalyst system to control polydispersity (MWD). The disclosure also provides a catalyst system (20) comprising a plurality of active catalyst complex species (34) formed by combination of a Lewis acid (24), an initiator (22) and a polymorphogenate (26), as well as polymers made using the catalyst system or process. The polymorphogenate (16, 26) can promote or mimic the formation of different active catalyst complex species (34) having different polymerization rates, i.e. different rates of propagation, chain transfer, or termination, as observed by different polydispersities resulting from the presence of relatively different proportions of the polymorphogenate.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: February 22, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Timothy D. Shaffer, Michael F. McDonald, David Y. Chung, Robert N. Webb, Deborah J. Davis, Pamela J. Wright
  • Patent number: 7825203
    Abstract: The present invention is directed to a catalyst system for synthesizing rubbery polymers, such as polybutadiene rubber, styrene-butadiene rubber, isoprene-butadiene rubber, or styrene-isoprene-butadiene rubber, that are amine functionalized and have a high trans or high vinyl microstructure. The catalyst system, in one embodiment, includes an organolithium amine compound, and one or more of (a) a group IIa metal salt of an amino glycol or a glycol ether, (b) an organoaluminum compound, or (c) an amine compound. The amine functionalized rubbery polymers can be utilized in tire tread rubbers where the rubbery polymers may provide desirable wear properties without substantially sacrificing other performance characteristic(s), e.g., traction properties.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: November 2, 2010
    Assignee: The Goodyear Tire & Rubber Company
    Inventors: Adel Farhan Halasa, Wen-Liang Hsu
  • Publication number: 20100273964
    Abstract: A process for cationically polymerizing olefin monomers in a reaction mixture includes the step of contacting olefin monomers and a catalytically effective amount of an initiating composition containing (A) a heterogeneous Lewis acid coinitiator selected from the group consisting of open chain and cyclic aluminoxane compounds and (B) an initiator selected from the group consisting of (i) organic compounds, (ii) halogens, (iii) interhalogens; (iv) Brönsted acids, (v) boron halides; and (vi) silicon compounds. A novel initiator system is further disclosed.
    Type: Application
    Filed: April 22, 2009
    Publication date: October 28, 2010
    Inventor: Stewart Lewis
  • Publication number: 20100261847
    Abstract: Provided are a molecular weight controllable, high 1,4-trans polybutadiene catalyst system, and more particularly, a four-component catalyst for preparing 1,4-trans polybutadiene with high yield, the catalyst comprising a cobalt compound, an organoaluminum compound, a phenol-based compound, and a phosphorus-based compound used to prepare 1,4-trans polybutadiene by polymerizing butadiene or a butadiene derivative, and capable of controlling the molecular weight of 1,4-trans polybutadiene by regulating the amount of the phosphorus-based compound. In particular, 1,4-trans polybutadiene may be efficiently applied to tires, belts, or the like since it has excellent tensile strength, tear strength, and cut & chip properties with increasing processability.
    Type: Application
    Filed: January 12, 2010
    Publication date: October 14, 2010
    Inventors: Hwieon Park, Gwang Hoon Kwag, Hoochae Kim, Seung Hwon Lee
  • Publication number: 20100197873
    Abstract: The reaction product of the reaction product of A.) a ligand of the formula (I), wherein R1, R2, R3, and R4 in each occurrence independently are the same or different hydrocarbyl substituents of 1 to 20 carbon atoms, hydrogen, halogen, or alkoxy groups of 1 to 8 carbon atoms; X in each occurrence independently is CR6 with R6 being hydrogen or an alkyl group of 1 to 8 carbon atoms; and R5 is an organic divalent group of 4 to 40 carbon atoms with the proviso that the two nodes X are not bound to the same atom or to vicinal atoms in the group R5; B.) an aluminum compound of the formula AlR7R8R9, wherein R7, R8 and R9 each independently is a C1 to C12 hydrocarbyl group, hydrogen, halogen, or an alkoxy group of 1 to 20 carbon atoms; and C.) a Lewis base selected from the group consisting of amines, phosphines, amides, nitriles, isonitriles, and alcohols is useful as a polymerization catalyst, particularly for the homopolymerization or copolymerization of an alkylene oxide.
    Type: Application
    Filed: February 28, 2008
    Publication date: August 5, 2010
    Inventors: Eric P. Wasserman, Yang Cheng, Lihao Tang
  • Publication number: 20100036071
    Abstract: A method of copolymerizing cyclic olefins and polar vinyl olefins, a copolymer produced by the method, and an optical anisotropic film including the copolymer are provided. According to the copolymerization method, a cyclic olefin and a polar vinyl olefin can be effectively copolymerized using a catalyst system composed of a compound containing a group 13 element and a radical initiator. The resulting copolymer is transparent, and has high adhesion, thermal stability, optical anisotropy and strength, and a low dielectric constant. The optical film including the copolymer can be used as a plastic lens, a polarizer protective film, an adhesive film, and a compensation film, and in a LCD display.
    Type: Application
    Filed: August 12, 2009
    Publication date: February 11, 2010
    Inventors: Sung Cheol Yoon, Sung Ho Chun, Heon Kim, Tae Sun Lim, Jung Min Lee
  • Patent number: 7595369
    Abstract: A method of copolymerizing cyclic olefins and polar vinyl olefins, a copolymer produced by the method, and an optical anisotropic film including the copolymer are provided. According to the copolymerization method, a cyclic olefin and a polar vinyl olefin can be effectively copolymerized using a catalyst system composed of a compound containing a group 13 element and a radical initiator. The resulting copolymer is transparent, and has high adhesion, thermal stability, optical anisotropy and strength, and a low dielectric constant. The optical film including the copolymer can be used as a plastic lens, a polarizer protective film, an adhesive film, and a compensation film, and in a LCD display.
    Type: Grant
    Filed: November 9, 2005
    Date of Patent: September 29, 2009
    Assignee: LG Chem, Ltd.
    Inventors: Sung Cheol Yoon, Sung Ho Chun, Heon Kim, Tae Sun Lim, Jung Min Lee
  • Publication number: 20090203859
    Abstract: The present invention relates to a process for the polymerization of olefins, comprising the steps of introducing at least one olefin, at least one polymerization catalyst, at least one cocatalyst and at least one cocatalyst aid, and optionally a scavenger, into a polymerization reactor, and polymerizing the olefin, wherein the cocatalyst aid is a reaction product prepared separately prior to the introduction into the reactor by reacting at least one metal alkyl compound of group IIA or IIIA of the periodic system of elements and at least one compound (A) of the formula RmXR?n, wherein R is a branched, straight, or cyclic, substituted or unsubstituted, hydrocarbon group having 1 to 30 carbon atoms, R? is hydrogen or any functional group with at least one active hydrogen, X is at least one heteroatom selected from the group of O, N, P or S or a combination thereof, and wherein n and m are each at least 1 and are such that the formula has no net charge.
    Type: Application
    Filed: May 12, 2006
    Publication date: August 13, 2009
    Inventors: Wei Xu, Vugar O. Aliyev, Sirajudeen Mohamed, Atieh Abu-Raqabah
  • Patent number: 7048023
    Abstract: The invention is directed to a pneumatic tire having at least one component comprising a vulcanizable rubber composition, wherein the vulcanizable rubber composition comprises, based on 100 parts by weight of elastomer (phr), from about 30 to 100 phr of high trans random SBR, and from about zero to about 70 phr of at least one additional elastomer, wherein the high trans random SBR comprises from about 3 to about 30 percent by weight of styrene.
    Type: Grant
    Filed: May 10, 2004
    Date of Patent: May 23, 2006
    Assignee: The Goodyear Tire & Rubber Company
    Inventors: James Robert Herberger, Sr., Kenneth Allen Bates, John Joseph Andre Verthe
  • Patent number: 7001966
    Abstract: The present invention relates to a process for preparing an isobutene polymer using a cyclopentene derivative as initiator and to the isobutene polymer obtainable by means of the process and to particular functionalization products thereof.
    Type: Grant
    Filed: February 27, 2003
    Date of Patent: February 21, 2006
    Assignee: BASF Aktiengesellschaft
    Inventors: Gabriele Lang, Arno Lange, Hans Peter Rath, Helmut Mach
  • Publication number: 20040210005
    Abstract: The invention is directed to a pneumatic tire having at least one component comprising a vulcanizable rubber composition, wherein the vulcanizable rubber composition comprises, based on 100 parts by weight of elastomer (phr), from about 30 to 100 phr of high trans random SBR, and from about zero to about 70 phr of at least one additional elastomer, wherein the high trans random SBR comprises from about 3 to about 30 percent by weight of styrene.
    Type: Application
    Filed: May 10, 2004
    Publication date: October 21, 2004
    Applicant: The Goodyear Tire & Rubber Company
    Inventors: James Robert Herberger, Kenneth Allen Bates, John Joseph Andre Verthe
  • Patent number: 6767976
    Abstract: (1) A methacrylic ester or an acrylic ester is anionically polymerized, using a polymerization initiator compound comprising an addition reaction product of a conjugated diene compound and an organic alkali metal compound, in the presence of a tertiary organoaluminum compound having in the molecule thereof a chemical structure represented by a formula: Al—O—Ar wherein Ar represents an aromatic ring; or (2) a methacrylic ester or an acrylic ester is anionically polymerized, using a polymerization initiator compound comprising an addition reaction product of an organic alkali metal compound and a compound having a 1,1-diaryl-1-alkene structure, by adding the ester in the form of a mixture with the above-mentioned specific tertiary organoaluminum compound to the polymerization system.
    Type: Grant
    Filed: June 3, 2003
    Date of Patent: July 27, 2004
    Assignee: Kuraray Co., Ltd.
    Inventors: Kenichi Hamada, Kazushige Ishiura, Toru Takahashi, Sachie Yaginuma, Makoto Akai, Tomohiro Ono, Kenji Shachi
  • Patent number: 6758251
    Abstract: The invention is directed to a pneumatic tire having at least one component comprising a vulcanizable rubber composition, wherein the vulcanizable rubber composition comprises, based on 100 parts by weight of elastomer (phr), from about 30 to 100 phr of high trans random SBR, and from about zero to about 70 phr of at least one additional elastomer, wherein the high trans random SBR comprises from about 3 to about 30 percent by weight of styrene.
    Type: Grant
    Filed: August 21, 2002
    Date of Patent: July 6, 2004
    Assignee: The Goodyear Tire & Rubber Company
    Inventors: Kenneth Allen Bates, Brian David Holden, John Joseph Andre Verthe
  • Patent number: 6686423
    Abstract: In a process for the anionic polymerization of vinylaromatic monomers or dienes in the presence of a lithium organyl or lithium alcoholate and a magnesium and/or an aluminum compound, a sterically hindered phenol or amine is added.
    Type: Grant
    Filed: May 6, 2002
    Date of Patent: February 3, 2004
    Assignee: BASF Aktiengesellschaft
    Inventors: Philippe Desbois, Volker Warzelhan, Christian Schade, Michel Fontanille, Alain Deffieux, Stephane Menoret
  • Patent number: 6627715
    Abstract: The group IIa metal containing catalyst system of this invention can be utilized to synthesize rubbery polymers having a high trans microstructure by solution polymerization. Such rubbery polymers having a high trans microstructure content, such as polybutadiene rubber, styrene-isoprene-butadiene rubber, styrene-butadiene rubber, can be utilized in tire tread rubbers that exhibit improved wear and tear characteristics. This invention more specifically reveals a catalyst system which is comprised of (a) an organolithium compound, including organolithium functionalized compounds, (b) a group IIa metal salt selected from the group consisting of group IIa metal salts of di(alkylene glycol)alkylethers and group IIa metal salts of tri(alkylene glycol) alkylethers, and (c) an organoaluminum compound, and optionally an organomagnesium compound.
    Type: Grant
    Filed: April 17, 2002
    Date of Patent: September 30, 2003
    Assignee: The Goodyear Tire & Rubber Company
    Inventors: Adel Farhan Halasa, Wen-Liang Hsu, Chad Aaron Jasiunas, John Robert Zuppo, III, Laurie Elizabeth Austin
  • Patent number: 6583247
    Abstract: Process for the copolymerization of free radical polymerizable comonomers such as vinyl acetate with an unsaturated diester such as diakyl fumarate which is carried out in the presence of water to produce copolymers such as fumarate vinyl acetate copolymers useful as lubricating oil and fuel oil additives, for example, as wax crystal modifiers and flow improvers.
    Type: Grant
    Filed: March 16, 1999
    Date of Patent: June 24, 2003
    Assignee: Infineum International Ltd.
    Inventors: Ariel Alvarino, Ricardo A. Bloch, David J. Martella, John V. Redpath, James M. Gardiner, Steven W. McKeown, Arunas T. Lapinas
  • Patent number: 6531556
    Abstract: A radical (co)polymerization of ethylene is carried out under high pressure in the presence of at least one initiating free radical (Z•) and of at least one controlling stable free radical (SFR•) which comprises the indoline nitroxide backbone represented by the formula (I). A is a hydrocarbonaceous chain forming an aromatic ring with the two carbon atoms to which it is attached, this ring being able to carry substituents or being able to carry one or more rings placed side by side, which rings are aromatic or aliphatic and optionally substituted, the carbon atoms forming the nitrogenous ring and in the alpha- and beta-position with respect to the nitrogen atom being able to carry hydrogen atoms or substituents.
    Type: Grant
    Filed: January 23, 2001
    Date of Patent: March 11, 2003
    Assignee: Atofina
    Inventors: Eric Minaux, Lucedio Greci, Michael Buback, Paul Tordo, Thierry Senninger, Pierluigi Stipa, Patricia Carloni, Elisabetta Damiani, Giampaolo Tommasi
  • Patent number: 6515088
    Abstract: A new class of “living” free radical initiators that are based on alkylperoxydiarylborane and its derivatives and that may be represented by the general formula. R—[O—O—B—&phgr;1(—&phgr;2)]n wherein n is from 1 to 4, R is a hydrogen or a linear, branched or cyclic alkyl radical having a molecular weight from 1 to about 500, and &phgr;1 and &phgr;2, independently, are selected from aryl radicals, based on phenyl or substituted phenyl groups, with the proviso that &phgr;1 and &phgr;2 can be the chemically bridged to each other with a linking group or with a direct chemical bond between the two aryl groups to form a cyclic ring structure that includes a boron atom are disclosed.
    Type: Grant
    Filed: May 30, 2002
    Date of Patent: February 4, 2003
    Assignee: The Penn State Research Foundation
    Inventor: Tze-Chiang Chung
  • Patent number: 6495641
    Abstract: Vanadium complex having general formula (I) (RCOO)nVXpLm  (I) wherein R is a monofunctional hydrocarbon radical having from 1 to 20 carbon atoms and from 1 to 6 halogen atoms, selected from chlorine and bromine, preferably chlorine; X is chlorine or bromine, preferably chlorine; L is an electron donor; p+n=3, 4 or 5, preferably=3; n is greater than or equal to 1; m is between 0 and 3. The preparation of the above complex is also described together with its use in the (co)polymerization of &agr;-olefins.
    Type: Grant
    Filed: November 18, 1999
    Date of Patent: December 17, 2002
    Assignee: Enichem S.p.A.
    Inventors: Francesco Masi, Liliana Gila, Roberto Santi, Antonio Proto, Evelina Ballato, Anna Maria Romano
  • Patent number: 6489416
    Abstract: Ethylene and/or propylene are polymerized to form high molecular weight, linear polymers by contacting ethylene and/or propylene monomer, in the presence of an inert reaction medium, with a catalyst system which consists essentially of (1) an aluminum alkyl component, such as trimethylaluminum, triethylaluminum, triisobutylaluminum, tri-n-octylaluminum and diethylaluminum hydride and (2) a Lewis acid or Lewis acid derivative component, such as _B(C6F5)3, {(CH3)2N(H)(C6H5)}+{B(C6F5)4}−, {(C2H5) 3NH}+{B(C6F5)4}−, {(C6F5)3C}+{B(C6F5)4}−, {(C6F5)3C}+{B(C6F5)3(Cl)−}, (C2H5) 2Al(OCH3), (C2H5)2Al(2,6-di-t-butyl-4-methylphenoxide), (C2H5)Al(2,6-di-t-butylphenoxide)2, (C2H5)2Al(2,6-di-t-butylphenoxide), 2,6-di-t butylphenol.methyl-aluminoxane or an alkylaluminoxane, and which may be completely free any transition metal component(s).
    Type: Grant
    Filed: February 7, 2001
    Date of Patent: December 3, 2002
    Assignee: The Penn State Research Foundation
    Inventors: Ayusman Sen, Louis M. Wojcinski, II, Shengsheng Liu
  • Patent number: 6444834
    Abstract: It is known to polymerize olefins using transition metal complexes and/or compounds. There is an ongoing search for catalysts for olefin polymerization which do not rely on transition metals as the active center. The present invention provides novel aluminum phosphinimine complexes, containing additional heteroatoms which are useful in the polymerization of olefins.
    Type: Grant
    Filed: August 9, 2000
    Date of Patent: September 3, 2002
    Assignee: The Governors of the University of Alberta
    Inventors: Ronald G. Cavell, Qinyan Wang, Aparna Kasani
  • Publication number: 20020111265
    Abstract: This description addresses fluorinated amine compounds meeting the general formula R′iArF-ER2, where ArF is a fluoroaryl group, E is nitrogen or phosphorous, each R is independently a C1-C20 hydrocarbyl group, or the two Rs may connect to form an unsubstituted or substituted C2-C20 cycloaliphatic group, R′ is a C1-C20 hydrocarbyl or halogenated hydrocarbyl, and i is 0, 1 or 2. These compounds may be protonated with strong Bronsted acids to form protonated amine compounds that are useful for the preparation of organometallic catalyst-cocatalyst compounds comprising noncoordinating or weakly coordinating anions. The resulting organometallic catalyst-cocatalyst complexes can be effectively used as olefin polymerization catalysts.
    Type: Application
    Filed: December 11, 2000
    Publication date: August 15, 2002
    Inventor: George Rodriguez
  • Patent number: 6420502
    Abstract: A new class of “living” free radical initiators that are based on alkylperoxydiarylborane and its derivatives and that may be represented by the general formula. R—[O—O—B-&phgr;1(-&phgr;2)]n wherein n is from 1 to 4, R is a hydrogen or a linear, branched or cyclic alkyl radical having a molecular weight from 1 to about 500, and &phgr;1 and &phgr;2, independently, are selected from aryl radicals, based on phenyl or substituted phenyl groups, with the proviso that &phgr;1 and &phgr;2 can be the chemically bridged to each other with a linking group or with a direct chemical bond between the two aryl groups to form a cyclic ring structure that includes a boron atom are disclosed.
    Type: Grant
    Filed: June 25, 2001
    Date of Patent: July 16, 2002
    Assignee: The Penn State Research Foundation
    Inventor: Tze-Chiang Chung
  • Publication number: 20020032290
    Abstract: A process for the preparation of an acrylic acid ester polymer, includes carrying out polymerization of an acrylic acid ester or block copolymerization of an acrylic acid ester and another (meth)acrylic monomer in the presence of an organolithium compound and an organoaluminum compound represented by the following formula (I):
    Type: Application
    Filed: September 24, 2001
    Publication date: March 14, 2002
    Applicant: Kuraray Co., Ltd.
    Inventors: Naohiko Uchiumi, Kenichi Hamada, Masaji Kato, Tomohiro Ono, Sachie Yaginuma, Kazushige Ishiura
  • Patent number: 6350834
    Abstract: In a process for the homopolymerization of vinylaromatic monomers or the copolymerization of vinylaromatic monomers and dienes in the presence of at least one alkali metal compound and at least one compound of an element of group 3a of the Periodic Table of the elements, the compounds contain, based on the sum of molar equivalents of alkali metal and elements of group 3a, in each case a) from 0.1 to 3.9 molar equivalents of oxygen, sulfur, nitrogen or phosphorus and b) from 0.1 to 3.9 molar equivalents of an organyl ligand.
    Type: Grant
    Filed: August 14, 2000
    Date of Patent: February 26, 2002
    Assignee: BASF Aktiengesellschaft
    Inventors: Christian Schade, Wolfgang Fischer, Hermann Gausepohl, Konrad Knoll, Volker Warzelhan, Michel Fontanille, Alain Deffieux, Philippe Desbois
  • Publication number: 20020010291
    Abstract: Ionic liquids function as the initiator or as a co-solvent for the production of very high molecular weight polyisobutylenes, e.g., having a weight-average molecular weight over 100,000. These ionic liquids may be characterized by the general formula A+B− where A+ represents any stable inorganic or organic cation and B− represents any stable organic or inorganic anion.
    Type: Application
    Filed: November 30, 1999
    Publication date: January 24, 2002
    Inventor: VINCE MURPHY
  • Patent number: 6284905
    Abstract: A Group 4 transition metal complex containing a boron or aluminum bridging group containing a nitrogen containing electron donating group, especially an amido group.
    Type: Grant
    Filed: March 10, 2000
    Date of Patent: September 4, 2001
    Assignees: The Dow Chemical Company, The Regents of the University of Michigan
    Inventors: Arthur J. Ashe, III, David D. Devore, Xinggao Fang, Kevin A. Frazier, D. Patrick Green, Jasson T. Patton, Francis J. Timmers
  • Patent number: 6271324
    Abstract: Homopolymers, copolymers or block copolymers are prepared by anionic polymerization of acrylates and/or methacrylates in the presence of an initiator composition containing A) an organic alkali metal compound, B) an organic aluminum compound and C) an additive which forms a complex with the alkali metal cation and is selected from the group consisting of open-chain ethers having at least two ether oxygen atoms, macrocyclic ethers and cryptands, or from the group consisting of quaternary cations of the general formula I  where A is N, P, As or Sb and Ra, Rb, Rc and Rd, independently of one another, are each unsubstituted or substituted alkyl, cycloalkyl, aralkyl or aryl, where two neighboring radicals, together with the heteroatom A, may form a 5- or 6-membered heterocyclic structure which may contain one or two further heteroatoms selected from nitrogen, oxygen and sulfur atoms.
    Type: Grant
    Filed: May 12, 1999
    Date of Patent: August 7, 2001
    Assignee: BASF Aktiengesellschaft
    Inventors: Stephan Jüngling, Christof Mehler, Horst Weiss, Susanne Steiger, Axel Müller, Helmut Schlaad, Bardo Schmitt
  • Patent number: 6130299
    Abstract: A method for preparing a conjugated diene polymer characterized by polymerizing a conjugated diene in vapor phase in the presence of an inorganic filler used as a rubber reinforcement agent and a catalyst which comprises (a) a compound containing a rare earth element of an atomic number of from 57 to 71 in the Periodic Table or a compound obtained by the reaction of this rare earth element-containing compound and a Lewis base, (b) an organic aluminum compound of the formula AlR.sup.1 R.sup.2 R.sup.3 or an almoxane, and (c) a halogen-containing compound. The vapor phase polymerization ensures easy control of the molecular weight of the polymer better dispersion of a rubber enforcement agent, and provides a rubber composition with improved rupture characteristics and abrasion resistance.
    Type: Grant
    Filed: November 20, 1997
    Date of Patent: October 10, 2000
    Assignee: JSR Corporation
    Inventors: Takuo Sone, Akio Takashima, Katsutoshi Nonaka, Iwakazu Hattori
  • Patent number: 6117961
    Abstract: The present invention provides a process for producing a crosslinkable styrene or styrene derivative polymer having narrow molecular weight distribution by radical polymerization of a styrene or styrene derivative monomer and other comonomer, wherein the polymerization is conducted in the presence of a catalyst system composed of a free radical compound and a radical polymerization initiator. With the present process, a heat- or photo-crosslinkable styrene or styrene derivative polymer having excellent rheology controlling ability and excellent reaction efficiency of a functional group can be obtained.
    Type: Grant
    Filed: April 25, 1997
    Date of Patent: September 12, 2000
    Assignee: Kansai Paint Co., Ltd.
    Inventor: Tetsuo Ogawa