Contains Specified Ingredient Other Than The N=n Or N-n Group Containing Compound, Or Water, Or Defined Hydrocarbon Or Defined Halogenated Hydrocarbon Patents (Class 526/219.3)
-
Patent number: 9175099Abstract: A highly active and environment-friendly catalyst for use in a living radical polymerization is provided. A catalyst for use in a living radical polymerization method is provided. The catalyst comprises a central element, which is selected from nitrogen and phosphorus, and at least one halogen atom, which is bound to the central element. A monomer having a radical reactive unsaturated bond is subjected to a radical polymerization reaction in the presence of the catalyst, thereby it is possible to obtain a polymer having narrow molecular weight distribution. The present invention has the merits such as low toxicity of the catalyst, a small amount of the catalyst being required, high solubility of the catalyst in the polymerization media, mild reaction conditions, no coloration, no odor (unnecessary post-treatment of molded products). The method of the present invention is more environment-friendly and economical than other living radical polymerization methods.Type: GrantFiled: May 2, 2008Date of Patent: November 3, 2015Assignee: Kyoto UniversityInventors: Atsushi Goto, Takeshi Fukuda, Yoshinobu Tsujii
-
Patent number: 8940845Abstract: The invention provides a novel method for producing a water-absorbent resin comprising: subjecting at least one water-soluble ethylenic unsaturated monomer to reversed-phase suspension polymerization in a petroleum hydrocarbon dispersion medium, the reversed-phase suspension polymerization being conducted using a 0.00005 to 0.00016 mole of water-soluble azo initiator for radical polymerization per mole of the water-soluble ethylenic unsaturated monomer in the presence of 0.000015 to 0.00015 mole of hypophosphorous compound per mole of the water-soluble ethylenic unsaturated monomer. According to the method, the environmental impact can be lessened by reducing the amount of petroleum hydrocarbon dispersion medium released to the outside of the system, and the method makes it possible to obtain a water-absorbent resin having a high water-retention capacity and water-absorption capacity under a load, and a small content of water soluble component at the same time.Type: GrantFiled: April 19, 2012Date of Patent: January 27, 2015Assignee: Sumitomo Seika Chemicals Co., Ltd.Inventors: Shinya Fukudome, Tetsuhiro Hinayama, Noriko Honda, Junichi Takatori
-
Publication number: 20140235744Abstract: A novel and improved process is provided for producing nitrile rubbers through free-radical polymerization in specific solvent mixtures. The resultant nitrile rubbers can then be subjected to hydrogenation. The process features excellent time-conversion curves.Type: ApplicationFiled: August 1, 2012Publication date: August 21, 2014Applicant: LANXESS DEUTSCHLAND GMBHInventors: Sven Brandau, Andreas Kaiser, Michael Klimpel, Christopher Barner-Kowollik, Christoph Duerr, Sebastian Emmerling
-
Publication number: 20140031507Abstract: The invention provides a novel method for producing a water-absorbent resin comprising: subjecting at least one water-soluble ethylenic unsaturated monomer to reversed-phase suspension polymerization in a petroleum hydrocarbon dispersion medium, the reversed-phase suspension polymerization being conducted using a 0.00005 to 0.00016 mol of water-soluble azo initiator for radical polymerization per mol of the water-soluble ethylenic unsaturated monomer in the presence of 0.000015 to 0.00015 mol of hypophosphorous compound per mol of the water-soluble ethylenic unsaturated monomer. According to the method, the environmental impact can be lessened by reducing the amount of petroleum hydrocarbon dispersion medium released to the outside of the system, and the method makes it possible to obtain a water-absorbent resin having a high water-retention capacity and water-absorption capacity under a load, and a small content of water soluble component at the same time.Type: ApplicationFiled: April 19, 2012Publication date: January 30, 2014Applicant: SUMITOMO SEIKA CHEMICALS CO., LTD.Inventors: Shinya Fukudome, Tetsuhiro Hinayama, Noriko Honda, Junichi Takatori
-
Patent number: 8569427Abstract: Methods of forming polymer material from rosin-derived material are provided. For example, a plurality of functionalized resin acids having a polymerizable functional group via controlled living polymerization can be polymerized into the polymeric material such that each polymer defines a functional end group and the polymeric material has a polydispersity index of about 1 to about 1.5. The resulting polymers are also described.Type: GrantFiled: October 8, 2010Date of Patent: October 29, 2013Assignee: University of South CarolinaInventor: Chuanbing Tang
-
Patent number: 8389643Abstract: The invention relates to a method for preparing a copolymer having a backbone based on methacrylate units, comprising a step involving the polymerization of one or more precursor methacrylate monomers of said units in the presence of: a polymerization initiator; at least RAFT-type transfer agent which can generate a primary radical; and at least one comonomer selected from among styrene monomers and acrylate monomers. The invention also relates to the resulting copolymers capable of being obtained according to this process, in particular block copolymers, in particular block copolymers, and to the use thereof as additives for plastic materials.Type: GrantFiled: December 20, 2007Date of Patent: March 5, 2013Assignee: Arkema FranceInventors: Laurence Couvreur, Stephanie Magnet
-
Publication number: 20120248641Abstract: The present invention pertains to a copolymer obtained by reacting a mixture of acrylonitrile or of a mixture of acrylonitrile and an organic molecule that can be copolymerized with acrylonitrile, with which a monomeric, oligomeric and/or polymeric silazane can be obtained, said silazane containing at least one vinylic double bond. The copolymer can be brought into fiber form and/or made infusible. The production of ceramic fibers by pyrolysis is possible with fiber-like copolymers.Type: ApplicationFiled: December 8, 2010Publication date: October 4, 2012Inventors: Monika Bauer, Daniel Decker, Guenther Motz
-
Publication number: 20120226006Abstract: The invention relates to a novel polymerization method for (meth)acrylates, wherein the polymerization is initiated by isocyanates and special bases having an imine structure. By means of said novel method that can be deliberately employed, even high-molecular-weight poly(meth)acrylates having in part a narrow molecular weight distribution can be produced. Furthermore, a wide variety of polymer architectures, such as block, star or comb polymers, are available using said novel polymerization method.Type: ApplicationFiled: November 29, 2010Publication date: September 6, 2012Applicants: Evonik Roehm GmbH, Evonik Degusa GmbHInventors: Friedrich Georg Schmidt, Emmanouil Spyrou, Simon Krause, Stefan Spange, Ingmar Polenz, Katja Hase
-
Patent number: 8168733Abstract: The present invention provides a copolymer that includes at least one alkene monomer, at least one acrylate monomer and at least one the unsaturated acid anhydridge monomer, and a method of preparing the same.Type: GrantFiled: December 30, 2010Date of Patent: May 1, 2012Assignee: LG Chem, Ltd.Inventors: Byoung-Ho Jeon, Yoo-Young Jung, Ki-Su Ro, Kyung-Seop Noh, Bae-Kun Shin
-
Patent number: 8034851Abstract: The present invention relates to new cure accelerator systems for anaerobic curable compositions. These anaerobic cure systems include tetraalkyl ammonium oxidizing salts that are soluble in the (meth)acrylate component of the composition.Type: GrantFiled: November 25, 2008Date of Patent: October 11, 2011Assignee: Henkel CorporationInventor: Philip T. Klemarczyk
-
Patent number: 8008414Abstract: An organoantimony compound represented by the formula (1), processes for producing polymers with use of the compound, and polymers wherein R1 and R2 are C1-C8 alkyl, aryl, substituted aryl or an aromatic heterocyclic group, R3 and R4 are each a hydrogen atom or C1-C8 alkyl, and R5 is aryl, substituted aryl, an aromatic heterocyclic group, oxycarbonyl or cyano.Type: GrantFiled: June 23, 2005Date of Patent: August 30, 2011Assignees: Otsuka Chemical Co., Ltd., Japan Science and Technology AgencyInventors: Shigeru Yamago, Biswajit Ray, Takashi Kameshima, Kazuhiro Kawano
-
Publication number: 20110130526Abstract: The present invention provides a copolymer that includes at least one alkene monomer, at least one acrylate monomer and at least one the unsaturated acid anhydridge monomer, and a method of preparing the same.Type: ApplicationFiled: December 30, 2010Publication date: June 2, 2011Inventors: Byoung-Ho JEON, Yoo-Young JUNG, Ki-Su RO, Kyung-Seop NOH, Bae-Kun SHIN
-
Patent number: 7807764Abstract: The present invention relates to a polymerizable composition comprising a) at least one ethylenically unsaturated monomer and b) at least one hydroxylamine of high molecular weight, preferably a long chain alkyl substituted hydroxylamine. Further aspects of the present invention are a process for polymerizing ethylenically unsaturated monomers, and the use of high molecular weight hydroxylamines for controlled polymerization.Type: GrantFiled: June 25, 2009Date of Patent: October 5, 2010Inventors: Hendrik Wermter, Dirk Simon, Rudolf Pfaendner
-
Publication number: 20100069577Abstract: The invention relates to a method for preparing a copolymer having a backbone based on methacrylate units, comprising a step involving the polymerization of one or more precursor methacrylate monomers of said units in the presence of: a polymerization initiator; at least RAFT-type transfer agent which can generate a primary radical; and at least one comonomer selected from among styrene monomers and acrylate monomers. The invention also relates to the resulting copolymers capable of being obtained according to this process, in particular block copolymers, in particular block copolymers, and to the use thereof as additives for plastic materials.Type: ApplicationFiled: December 20, 2007Publication date: March 18, 2010Applicant: Arkema FranceInventors: Laurence Couvreur, Stephanie Magnet
-
Publication number: 20090306302Abstract: Process of free-radical polymerization in aqueous dispersion for the preparation of polymers, employing (A) at least one ethylenically unsaturated monomer, one of which is employed as the principal monomer and is selected from styrene and its derivatives, acrylic acid and its derivatives, methacrylic acid and its derivatives, dienes, vinyl esters, vinyl ethers, vinylic pyridine derivatives, vinylsulphonic acid and its derivatives, vinylphosphonic acid and its derivatives, and N-vinyl monomers, (B) at least one free-radical initiator selected from diazo compounds, peroxides and dialkyldiphenylalkanes, (C) molecular iodine, and (D) at least one oxidizing agent whose solubility in water is at least 10 g/l, of which at least one may be the one (B); said process comprising the steps whereby (1) at least one fraction of each of compounds (A), (B), (C) and (D) is introduced into a reactor, and (2) the contents of the reactor are reacted while introducing into the reactor the remainder, where appropriate, of each ofType: ApplicationFiled: July 4, 2007Publication date: December 10, 2009Inventors: Patrick Lacroix-Desmazes, Jeff Tonnar
-
Patent number: 7589159Abstract: The present invention provides a process for producing a resin powder containing a radical polymer having a volume-average primary-particle diameter of 1 nm to 300 nm and containing no impurities such as surfactants by a simple procedure without via multistage reactions. The process for producing a resin powder (J) comprising a radical polymer obtained by polymerizing a bifunctional radical-polymerizable monomer (A) with a ter- or higher functional radical-polymerizable monomer (B) in the presence of 15 mol % to 170 mol % polymerization initiator (C), based on the sum of monomers (A) and (B).Type: GrantFiled: May 7, 2004Date of Patent: September 15, 2009Assignee: Techno Network Shikoku Co., Ltd.Inventor: Tsuneyuki Sato
-
Patent number: 7208558Abstract: Radical polymerization process for the preparation of halogenated polymers employing one or more ethylenically unsaturated monomers, at least one of which is chosen from halogenated monomers, molecular iodine and one or more radical-generating agents chosen from diazo compounds, peroxides and dialkyl diphenylalkanes Radical polymerization process for the preparation, starting from the halogenated polymers prepared by the process as described above, of block copolymers, at least one block of which is a halogenated polymer block. Halogenated polymers which have a number-average molecular mass Mn of greater than 1.0×104 and an Mz/Mw ratio of less than 1.65. Block copolymers, at least one block of which is a block of halogenated polymer identical to the halogenated polymers described above. Block copolymers comprising at least one halogenated polymer block which have a number-average molecular mass Mn of greater than 1.5×104 and a polydispersity index Mw/Mn of less than 1.60.Type: GrantFiled: May 11, 2006Date of Patent: April 24, 2007Assignee: Solvay (Societe Anonyme)Inventors: Patrick Lacroix-Desmazes, Romain Severac, Bernard Boutevin, Vincent Bodart, Vincent Kurowski
-
Patent number: 7119155Abstract: Copolymerization of Ni(II) phenol imine complexes containing olefinic substituents on aryl groups with styrene in the presence of a radical initiator results in polymerized late transition metal catalysts which can be used for olefin polymerization or oligomerization. These catalysts have high catalyst activity for olefin polymerization or oligomerization.Type: GrantFiled: October 24, 2003Date of Patent: October 10, 2006Assignee: ExxonMobil Chemical Patents Inc.Inventors: Stanley Wai-Yan Chow, Guo-Xin Jin, Zerong Lin, Robert J. Wittenbrink, Dao Zhang
-
Patent number: 7078473Abstract: Radical polymerization process for the preparation of halogenated polymers and block copolymers. Halogenated polymers and block copolymers.Type: GrantFiled: May 16, 2003Date of Patent: July 18, 2006Assignee: Solvay (Societe Anonyme)Inventors: Patrick Lacroix-Desmazes, Romain Severac, Bernard Boutevin, Vincent Bodart, Vincent Kurowski
-
Publication number: 20030195311Abstract: A free radical polymerization process is provided which comprises polymerizing at least one radically polymerizable monomer in the presence of the multi-component liquid azo-peroxide initiator mixture under polymerization conditions to provide a radically polymerized homopolymer or copolymer, the multi-component liquid azo-peroxide initiator mixture comprising (a) at least 6 different azodinitriles; and (b) one or more liquid organic peroxides. Also provided is the stable multi-component liquid azo-peroxide initiator mixture.Type: ApplicationFiled: April 16, 2002Publication date: October 16, 2003Applicant: CROMPTON CORPORATIONInventors: Elisa Martinez, Peter Frenkel
-
Patent number: 6569968Abstract: A process for producing a polymer of a diallylalkylammonium halide which comprises polymerizing the diallylalkylammonium halide in the presence of a polymerization initiator in an aqueous solution containing a nitroxy radical.Type: GrantFiled: August 4, 2000Date of Patent: May 27, 2003Assignee: Kurita Water Industries Ltd.Inventors: Hidenori Hamabe, Katsutoshi Kubo, Tomoe Ueno
-
Patent number: 6177379Abstract: A method of initiating free-radical addition polymerization, which entails effecting a free-radical addition polymerization in the presence of an initiator, which contains, as a structural feature, a Diels-Alder adduct of an azo group (—N═N—) with a conjugated double bond (diene).Type: GrantFiled: May 18, 1998Date of Patent: January 23, 2001Assignee: BASF AktiengesellschaftInventors: Rainer Königer, Reinhold Schwalm, Roman Benedikt Raether