Contains Only Carbon And Fluorine Atoms Patents (Class 526/254)
  • Patent number: 9566685
    Abstract: This invention provides a polishing composition comprising an abrasive, a water-soluble polymer and water. The water-soluble polymer comprises a polymer A having an adsorption ratio of lower than 5% and a polymer B having an adsorption ratio of 5% or higher, but lower than 95% based on a prescribed adsorption ratio measurement. Herein, the polymer B is selected from polymers excluding hydroxyethyl celluloses.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: February 14, 2017
    Assignee: FUJIMI INCORPORATED
    Inventors: Kohsuke Tsuchiya, Hisanori Tansho
  • Patent number: 9156985
    Abstract: A fluororubber composition comprising 100 parts by weight of a peroxide-crosslinkable tetrafluoroethylene-vinylidene fluoride-hexafluoropropene ternary copolymer rubber having a fluorine content of 64 wt. % or more, (A) 5 to 90 parts by weight of carbon black having a specific surface area of 5 to 20 m2/g, (B) 5 to 40 parts by weight of a fine bituminous powder, (C) at least one of 1 to 20 parts by weight of hydrophilicity-imparted talc and/or 1 to 30 parts by weight of hydrophilicity-imparted clay, and (D) 0.5 to 6 parts by weight of an organic peroxide; the fluororubber composition being used as a molding material for fuel oil sealing materials to be in contact with fuel oil. The fluororubber composition provides a sealing materials having excellent metal corrosion resistance, without compounding an acid acceptor comprising a metal oxide.
    Type: Grant
    Filed: April 2, 2012
    Date of Patent: October 13, 2015
    Assignee: NOK Corporation
    Inventors: Takuya Yamanaka, Kenichi Uchida
  • Patent number: 9012580
    Abstract: A tetrafluoroethylene/hexafluoropropylene copolymer has improved moldability in melt extrusion molding, especially with significant reduction of defects in high-speed extrusion coating of an electrical wire. The tetrafluoroethylene/hexafluoropropylene copolymer is obtained by polymerization of at least tetrafluoroethylene and hexafluoropropylene selected from the group consisting of tetrafluoroethylene, hexafluoropropylene and a third monomer without mixing with the resin which has the melting point with the difference of 20 degree C. and more from the melting point of the tetrafluoroethylene/hexafluoropropylene copolymer; and has a complex viscosity of from 2.0×I03 to 10.0×I03 Pa*s and a storage modulus of from 0.1 to 3.5 Pa*s in melt viscoelasticity measurement under the condition of atmosphere temperature of 310 degree C. and angular frequency of 0.01 radian/second. The tetrafluoroethylene/hexafluoropropylene copolymer can be used in an electrical wire as a coating on a conductive core.
    Type: Grant
    Filed: February 9, 2009
    Date of Patent: April 21, 2015
    Assignees: Daikin Industries, Ltd., Daikin America, Inc.
    Inventors: Takahiro Kitahara, Tadaharu Isaka, Ryouichi Fukagawa, Keizou Shiotsuki
  • Patent number: 8980963
    Abstract: The invention relates to an article that has been obtained by the melt-process recycling of one or more multi-layer articles, where the multi-layer articles are composed of at least one melt-processible polyvinylidene fluoride layer. The composition of the invention is a compatible blend of the different layers from the multi-layer articles. The other layers of the multi-layer articles are also melt-processible, and include one or more layers chosen from: a) a melt-processible fluoropolymer of a different composition, b) a non-fluoropolymer, and c) a barrier layer. The composition is useful for forming an article in a melt-process operation. The composition may be used by itself, may be blended with other virgin or recycled materials, or may be used at low levels with melt-processible polymers as a process aid.
    Type: Grant
    Filed: July 29, 2014
    Date of Patent: March 17, 2015
    Assignee: Arkema Inc.
    Inventors: Saeid Zerafati, Sean M. Stabler, William J. Hartzel
  • Patent number: 8971707
    Abstract: Use in LAN cable applications, as materials for the coating of the primary cable and for the external jacket, of TFE thermoprocessable perfluoropolymers comprising perfluoroalkylvinylethers in the following amounts, expressed as percent by weight on the total of the monomers: a) 0-5.5% of perfluoromethylvinylether (PMVE); b) 0.4-4.5% of perfluoroethylvinylether (PEVE) and/or perfluoropropylvinylether (PPVE); when a) is present, then a)+b) ranges from 1.5% to 5.5% by weight on the total of the monomers; optionally c) 0-6% of hexafluoropropene (HFP); the TFE amount being the complement to 100% by weight.
    Type: Grant
    Filed: February 20, 2007
    Date of Patent: March 3, 2015
    Assignee: Solvay Solexis S.p.A.
    Inventors: Pasqua Colaianna, Giulio Brinati, Aldo Sanguineti
  • Patent number: 8969500
    Abstract: The present disclosure describes fluoropolymers having long chain branches and methods of making these fluoropolymers. These fluoropolymers may have improved melt processing properties. Shaped articles containing these fluoropolymers are also provided.
    Type: Grant
    Filed: April 24, 2008
    Date of Patent: March 3, 2015
    Assignee: 3M Innovative Properties Company
    Inventors: Klaus Hintzer, Harald Kaspar
  • Patent number: 8895681
    Abstract: Amorphous hydrofluoroolefin telomers are prepared by a free-radical polymerization process conducted at high temperature and pressure in the presence of non-monomeric chain transfer agent.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: November 25, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventors: Jon Lee Howell, Clay Woodward Jones, Robert Clayton Wheland
  • Patent number: 8883313
    Abstract: The present invention provides a polytetrafluoroethylene powder having moldability/processability as well as electrical characteristics in microwave bands. The present invention is a modified polytetrafluoroethylene powder which has (1) a dielectric loss tangent at 12 GHz of not higher than 2.0×10?4 and (2) a cylinder extrusion pressure of not higher than 45 MPa at a reduction ratio of 1600.
    Type: Grant
    Filed: April 4, 2005
    Date of Patent: November 11, 2014
    Assignee: Daikin Industries, Ltd.
    Inventors: Yoshinori Nanba, Yasuhiko Sawada, Shunji Kasai, Shuji Tagashira, Makoto Ono, Takahiro Taira, Hiroyuki Yoshimoto
  • Publication number: 20140296438
    Abstract: The invention relates to a polyvinylidene fluoride polymer having an ultra-high molecular weight, and unexpected physical properties. The ultra-high molecular weight polymer is clear, has a lower melting point, reduced crystallinity, excellent impact resistance, and a high elongation at the yield point. The ultra-high molecular weight polyvinylidene fluoride can be alone, or blended with other polymers, in final applications and articles.
    Type: Application
    Filed: June 11, 2014
    Publication date: October 2, 2014
    Inventor: Ramin Amin-Sanayei
  • Patent number: 8835551
    Abstract: Iodine containing amorphous fluoropolymers having at least one fluoropolymer with a cure site, where the fluoropolymer has a Mooney viscosity of 2 or less (ML 1+10) at 100° C. according to ASTM D1646, and a peel strength to a roll mill of 10 dN/cm or less and methods for making such iodine containing amorphous fluoropolymers are described. Articles derived from the cured product of such iodine containing amorphous fluoropolymers are also described. Solutions, dispersions and coatings derived from such iodine containing amorphous fluoropolymers are also described.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: September 16, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Tatsuo Fukushi, Peter J. Scott, Cynthia N. Ferguson, Werner M. A. Grootaert, Denis Duchesne, Yeng Moua, Larry A. Last, Terri A. Shefelbine, Luke M. B. Rodgers
  • Patent number: 8785580
    Abstract: The invention relates to a polyvinylidene fluoride polymer having an ultra-high molecular weight, and unexpected physical properties. The ultra-high molecular weight polymer is clear, has a lower melting point, reduced crystallinity, excellent impact resistance, and a high elongation at the yield point. The ultra-high molecular weight polyvinylidene fluoride can be alone, or blended with other polymers, in final applications and articles.
    Type: Grant
    Filed: June 26, 2007
    Date of Patent: July 22, 2014
    Assignee: Arkema Inc.
    Inventor: Ramin Amin-Sanayei
  • Patent number: 8697822
    Abstract: The present invention relates to a method for the polymerization in an aqueous medium of monomers, and especially of fluoromonomers, using non-fluorinated surfactants; and the fluoropolymers formed therefrom. Specifically, the method of the polymerization uses one or more non-fluorinated surfactants selected from the group consisting of polyvinylphosphonic acid, polyacrylic acids, polyvinyl sulfonic acid, and salts thereof. Additionally, the use of polyvinylphosphonic acid, polyacrylic acids, polyvinyl sulfonic acid as surfactants in aqueous free radical polymerization is also novel.
    Type: Grant
    Filed: June 26, 2006
    Date of Patent: April 15, 2014
    Assignee: Arkema Inc.
    Inventors: Mehdi Durali, Lotfi Hedhli, Ramin Amin-Sanayei
  • Publication number: 20140080987
    Abstract: A fluoroelastomer comprising a copolymer of fluoroolefin monomers selected from one or more of the group consisting of 2,3,3,3-tetrafluoropropene, 1,3,3,3-tetrafluoropropene and 1-chloro-3,3,3-trifluoropropene, and ethylenically unsaturated co-monomers; wherein the fluoroelastomer has a glass transition temperature (Tg) of from about ?60° C. to about 53° C. A process of making the fluoroelastomer.
    Type: Application
    Filed: March 7, 2013
    Publication date: March 20, 2014
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventor: Honeywell International Inc.
  • Patent number: 8674042
    Abstract: The present invention relates to a partially-crystalline copolymer comprising tetrafluoroethylene, hexafluoropropylene in an amount corresponding to HFPI of from about 2.8 to 5.3, and preferably from about 0.2% to 3% by weight of perfluoro(alkyl vinyl ether), said copolymer having less than about 50 ppm alkali metal ion, having a melt flow rate of within the range of about 30±3 g/10 min, and having no more than about 50 unstable endgroups/106 carbon atoms and which can be extruded at high speed onto conductor over a broad polymer melt temperature range to give insulated wire of high quality.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: March 18, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventors: Thomas Robert Earnest, Jr., Daniel A. Favereau, Niall D. McKee, Patricia A. Tooley
  • Patent number: 8658740
    Abstract: The present invention relates to the reduction of oligomer content of melt-processible fluoropolymer so that the fluoropolymer has at least 25 ppm less oligomer than the as-polymerized fluoropolymer.
    Type: Grant
    Filed: May 21, 2008
    Date of Patent: February 25, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventors: Gregory Allen Chapman, David E. Bidstrup
  • Patent number: 8637144
    Abstract: A process for the polymerization of a true tetrafluoroethylene (TFE) copolymer of the fine powder type is provided, wherein the copolymer contains polymerized comonomer units of at least one comonomer other than TFE in concentrations of at least or exceeding 1.0 weight percent, and which can exceed 5.0 weight percent, wherein the copolymer is expandable, that is, the copolymer may be expanded to produce strong, useful, expanded TFE copolymeric articles having a microstructure of nodes interconnected by fibrils.
    Type: Grant
    Filed: October 4, 2007
    Date of Patent: January 28, 2014
    Assignee: W. L. Gore & Associates, Inc.
    Inventor: Lawrence A. Ford
  • Patent number: 8557939
    Abstract: To provide an antifouling composition which is a fluorine-type antifouling composition using a short chain perfluoroalkyl group and which is excellent in antifouling properties and water/oil repellency and presents good durability against washing. An antifouling composition comprising a fluorocopolymer which comprises from 30 to 65 mass % of polymerized units (a) having a C1-6 perfluoroalkyl group, from 1 to 67 mass % of polymerized units (b1) having —(C2H4O)— and from 3 to 34 mass % of polymerized units (b2) having —(C4H8O)—, wherein the content of —(C2H4O)— is from 20 to 65 mass %, and the content of —(C4H8O)— is from 2 to 13 mass %.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: October 15, 2013
    Assignee: Asahi Glass Company, Limited
    Inventors: Hiroyuki Hara, Shuichiro Sugimoto, Takao Hirono, Takashige Maekawa
  • Publication number: 20130230645
    Abstract: A method of producing a fluororesin composition includes copolymerizing at least tetrafluoroethylene with hexafluoropropylene so that a melt flow rate at 372 degree C. of the copolymer formed in the copolymerization changes from 0.05-5.0 grams/10 minutes to 10-60 grams/10 minutes. The tetrafluoroethylene/hexafluoropropylene copolymer can be used as a coating on an electrical wire.
    Type: Application
    Filed: April 3, 2013
    Publication date: September 5, 2013
    Applicants: Daikin Industries, Ltd., Daikin America, Inc.
    Inventors: Takahiro KITAHARA, Tadaharu ISAKA, Ryouichi FUKAGAWA, Keizou SHIOTSUKI
  • Publication number: 20130178593
    Abstract: Disclosed is a melt-flowable fluoropolymer comprising repeating units arising from (a) tetrafluoroethylene and (b) a monomer having at least one functional group and a polymerizable carbon-carbon double bond, wherein the sum of the weight percent of (a) and (b) comprises at least about 99 weight percent of all repeating units comprising the melt-flowable fluoropolymer.
    Type: Application
    Filed: February 28, 2013
    Publication date: July 11, 2013
    Applicant: E I DU PONT DE NEMOURS AND COMPANY
    Inventor: E I DU PONT DE NEMOURS AND COMPANY
  • Patent number: 8415070
    Abstract: Ionic polymers are made from selected partially fluorinated dienes, in which the repeat units are cycloaliphatic. The polymers are formed into membranes.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: April 9, 2013
    Assignee: E I du Pont de Nemours and Company
    Inventor: Amy Qi Han
  • Publication number: 20130079466
    Abstract: Disclosed is a fluorine-containing polymer aqueous dispersion in which a fluorine-containing polymer is dispersed using, as an emulsifier, a polyfluoroalkylphosphonic acid salt represented by the general formula: CnF2n+1(CH2CF2)a(CF2CF2)b(CH2CH2)cP(O)(OM1)(OM2)??[I], wherein M1 is a hydrogen atom, an alkali metal, an ammonium base, or an organic amine base, M2 is an alkali metal, an ammonium base, or an organic amine base, n is an integer of 1 to 6, a is an integer of 1 to 4, b is an integer of 1 to 3, and c is an integer of 1 to 3. This fluorine-containing polymer aqueous dispersion uses a polyfluoroalkylphosphonic acid salt with a low bioaccumulation potential as an emulsifier, and has excellent mechanical stability.
    Type: Application
    Filed: May 13, 2011
    Publication date: March 28, 2013
    Applicant: UNIMATEC CO., LTD.
    Inventors: Yoshiyama Kaneumi, Daisuke Murai
  • Patent number: 8394870
    Abstract: Disclosed herein is a crosslinked fluoropolymer network formed by the free radical initiated crosslinking of a diacrylate fluoropolymer The diacrylate copolymer is of formula CH2?CR?COO—(CH2)n—R—(CH2)n—OOCR??CH2, wherein R is selected from the group consisting of i) an oligomer comprising copolymerized units of vinylidene fluoride and perfluoro(methyl vinyl ether), ii) an oligomer comprising copolymerized units of vinylidene fluoride and hexafluoropropylene, iii) an oligomer comprising copolymerized units of tetrafluoroethylene and perfluoro(methyl vinyl ether), and iv) an oligomer comprising copolymerized units of tetrafluoroethylene and a hydrocarbon olefin, R? is H or —CH3, n is 1-4 and wherein said oligomer has a number average molecular weight of 1000 to 25,000 daltons. The source of the free radicals may be a photoinitiator or an organic peroxide.
    Type: Grant
    Filed: July 16, 2009
    Date of Patent: March 12, 2013
    Assignees: E.I. du Pont de Nemours and Company, Le Centre National de la Recherche Science
    Inventors: Ming-Hong Hung, Bruno Ameduri, Georgi Kostov
  • Patent number: 8394905
    Abstract: Disclosed herein is a telechelic diacrylate fluoropolymer and a process for manufacture of the fluoropolymer. The diacrylate copolymer is of formula CH2?CR?COO—(CH2)n—R—(CH2)n—OOCCR??CH2, wherein R is selected from the group consisting of i) an oligomer comprising copolymerized units of vinylidene fluoride and perfluoro(methyl vinyl ether), ii) an oligomer comprising copolymerized units of vinylidene fluoride and hexafluoropropylene, iii) an oligomer comprising copolymerized units of tetrafluoroethylene and perfluoro(methyl vinyl ether), and iv) an oligomer comprising copolymerized units of tetrafluoroethylene and a hydrocarbon olefin, R? is H or —CH3, n is 1-4 and wherein said oligomer has a number average molecular weight of 1000 to 25,000 daltons.
    Type: Grant
    Filed: July 16, 2009
    Date of Patent: March 12, 2013
    Assignees: E I du Pont de Nemours and Company, Le Centre National de la Recherche Science
    Inventors: Ming-Hong Hung, Bruno Ameduri, Georgi Kostov
  • Publication number: 20130059101
    Abstract: Disclosed is a melt processible semicrystalline fluoropolymer comprising: (a) about 0.001 to about 25 weight percent of repeating units arising from a hydrocarbon monomer having a functional group and a polymerizable carbon-carbon double bond, wherein said functional group is at least one selected from the group consisting of amine, amide, hydroxyl, phosphonate, sulfonate, nitrile, boronate and epoxidehydrocarbon monomer; and (b) the remaining weight percent of repeating units arising from tetrafluoroethylene. This melt processible semicrystalline fluoropolymer is impermeable to fuels and is useful as a lining for petroleum fuel tubing, as well as chemical resistance coating for, or adhesive between, perfluoropolymer and other polymers, metals and inorganics.
    Type: Application
    Filed: October 15, 2012
    Publication date: March 7, 2013
    Applicant: E I DU PONT DE NEMOURS AMD COMPANY
    Inventors: Ralph Munson Aten, Sharon Ann Libert, Craig King Hennessey
  • Patent number: 8378063
    Abstract: A process for producing fluoropolymer particles includes preparing a solution/dispersion containing fluoropolymer dissolved/dispersed in a first solvent such that the swelling of fluoropolymer by the first solvent is from 50 to 1,200%, and mixing the solution/dispersion with a second solvent such that fluoropolymer forms particles and the swelling of fluoropolymer by the mixture of the first and second solvents is from 0 to 100%. WC/WB is in the range of from 1 to 5, WB represents mass of the first solvent, WC/ represents mass of the second solvent, WC/WB represents a ratio of the mass of the second solvent to the mass of the first solvent. SBC/SB is at most 0.5. SBC represents the swelling by the mixture of the first and second solvents, SB represents the swelling by the first solvent, and SBC/SB represents a ratio of the swelling by the mixture to the swelling by the first solvent.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: February 19, 2013
    Assignee: Asahi Glass Company, Limited
    Inventors: Susumu Saito, Tetsuji Shimohira, Takashi Saeki, Junichi Tayanagi
  • Patent number: 8362167
    Abstract: The invention provides a compound and tautomeric forms thereof having the formula: wherein Rf1 is selected from the group consisting of hydrogen, a straight chain, branched secondary or branched tertiary C1-C20 perfluoroalkyl group optionally containing ether or thioether linkages and C1-C10 perfluoroalicyclic group optionally containing ether or thioether groups; Rf2 is a straight or branched C1-C20 perfluoroalkylene group optionally substituted with ether and thiother linkages; and X is selected from the group consisting of fluorine and The invention also provides perfluoroelastomeric compositions cured with the perfluoroimidoylamidines of the invention as well as combinations of perfluoroimidoylamidines and other curing agents.
    Type: Grant
    Filed: July 10, 2007
    Date of Patent: January 29, 2013
    Assignee: LODESTAR Inc.
    Inventors: Gubanov Viktor Andreevich, Kollar Alexander Nikolaevich, Volkova Margarita Alekseevna, Tsipkina Irina Mikhailovna
  • Publication number: 20120245238
    Abstract: The invention relates to a composition that has been obtained by the melt-process recycling of one or more multi-layer articles, where the multi-layer articles are composed of at least one melt-processible fluoropolymer layer. The composition of the invention is a compatible blend of the different layers from the multi-layer articles. The other layers of the multi-layer articles are also melt-processible, and include one or more layers chosen from: a) a melt-processible fluoropolymer of a different composition, b) a non-fluoropolymer, and c) a barrier layer. The composition is useful for forming an article in a melt-process operation. The composition may be used by itself, may be blended with other virgin or recycled materials, or may be used at low levels with melt-processible polymers as a process aid.
    Type: Application
    Filed: September 23, 2010
    Publication date: September 27, 2012
    Applicant: Arkema Inc.
    Inventors: Saeid Zerafati, Sean M. Stabler, William J. Hartzel
  • Patent number: 8226876
    Abstract: Disclosed herein is a method to produce a semi-crystalline fluoro-polymer film. A semi-crystalline fluoro-polymer material is used. The material is compressed to produce the film. During compression, the material is maintained at a temperature below the melting point of the material. The compression step can be cycled to allow cooling of the material between compression stages. Alternative methods are provided for compressing the material with a co-extrusion substrate, extruding the material and utilizing mandrel expansion for the material.
    Type: Grant
    Filed: May 9, 2006
    Date of Patent: July 24, 2012
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: O. Richard Hughes, Alfred R. Austen
  • Patent number: 8217126
    Abstract: Disclosed herein are novel fluoroolefins of formula Rf—O—(CF2CF2)n(CH2CF2)m—CH?CH2, wherein n is 1 or 2, m is 0 or 1 and Rf is a C1-C8 fluoroalkyl or fluoroalkoxy group. The fluoroolefins may be oxidized to manufacture fluorinated carboxylic acids. Also disclosed are fluoropolymers comprising copolymerized units of the fluoroolefins of the invention and at least one other fluoromonomer.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: July 10, 2012
    Assignee: E I du Pont de Nemours and Company
    Inventors: Ming-Hong Hung, Sheng Peng
  • Patent number: 8124699
    Abstract: The present invention relates to a method for the polymerization of fluoromonomers using non-fluorinated alkyl phosphonate surfactants, and to the fluoropolymers formed thereby. Specifically, the method of the polymerization uses one or more alkyl phosphonic acids or salts thereof.
    Type: Grant
    Filed: August 4, 2006
    Date of Patent: February 28, 2012
    Assignee: Arkema Inc.
    Inventors: Mehdi Durali, Lotfi Hedhli, Roice Wille
  • Publication number: 20120037398
    Abstract: The present invention provides an ethylene/tetrafluoroethylene copolymer showing good heat resistance and good crack resistance even in a high temperature environment. The present invention is an ethylene/tetrafluoroethylene copolymer, comprising: copolymerization units derived from ethylene; tetrafluoroethylene; and a fluorine-containing vinyl monomer represented by general formula: CH2=CH?Rf in the formula, Rf representing a perfluoroalkyl group containing four or more carbon atoms, a fluorine-containing vinyl monomer content being 0.8 to 2.5 mol % to a total amount of all monomers, an ethylene/tetrafluoroethylene molar ratio being 33.0/67.0 to 44.0/56.0, a CH index being 1.40 or less, a melting point being 230° C. or higher, and a melt flow rate being 40 (g/10 minutes) or less.
    Type: Application
    Filed: April 20, 2010
    Publication date: February 16, 2012
    Applicant: Daikin Industries Ltd.
    Inventors: Takayuki Hirao, Kenji Ichikawa, Shigehito Sagisaka, Yumi Nakano
  • Publication number: 20120015124
    Abstract: An object of the present invention it to provide a novel fluororesin that has excellent mechanical strength and chemical resistance, and very low permeability at high temperature. The fluorine resin a copolymer that includes copolymerized units derived from tetrafluoroethylene, vinylidene fluoride, and an ethylenically unsaturated monomer other than tetrafluoroethylene and vinylidene fluoride. The fluororesin has a storage modulus E?, as measured at 170° C. by a dynamic viscoelasticity analysis, in the range of 60 to 400 MPa.
    Type: Application
    Filed: March 16, 2010
    Publication date: January 19, 2012
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Takahiro Kitahara, Takuma Kawabe
  • Patent number: 8076431
    Abstract: The present invention relates to a partially-crystalline copolymer comprising tetrafluoroethylene, hexafluoropropylene in an amount corresponding to hexafluoropropylene index (HFPI) of from about 2.8 to 5.3, and preferably from about 0.2% to 3% by weight of perfluoro(alkyl vinyl ether), said copolymer having less than about 50 ppm alkali metal ion, having a melt flow rate of within the range of about 30±3 g/10 min, and having no more than about 50 unstable endgroups/106 carbon atoms and which can be extruded at high speed onto conductor over a broad polymer melt temperature range to give insulated wire of high quality.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: December 13, 2011
    Assignee: E.I. du Pont de Nemours and Company
    Inventors: Thomas Robert Earnest, Jr., Daniel A. Favereau, Niall D. McKee, Patricia A. Tooley
  • Patent number: 8058352
    Abstract: A membrane humidifier assembly includes a first flow field plate adapted to facilitate flow of a first gas thereto and a second flow field plate adapted to facilitate flow of a second gas thereto. A polymeric membrane is disposed between the first and second flow fields and adapted to permit transfer of water from the first flow field plate to the second flow field plate. The polymeric membrane includes a polymer having perfluorocyclobutyl groups.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: November 15, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Sean M MacKinnon, Timothy J. Fuller, Annette M. Brenner
  • Patent number: 8053530
    Abstract: A polymer useful as an ion conductor in fuel cells includes a perfluorocyclobutyl moiety and pendant PFSA side groups. The polymer is made by a variation of the Ullmann reaction. Ion conducting membranes incorporating the polymer are provided.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: November 8, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Timothy J. Fuller, Sean M MacKinnon, Michael R. Schoeneweiss
  • Patent number: 8048963
    Abstract: An ion exchange membrane is prepared from a block copolymer comprising a hydrophobic polymer segment and a polar polymer segment. The ion exchange membrane is formed by placing a film layer in steam, water or an electric field at a temperature greater than about 40° C. for sufficient amount of time to develop a bicontinuous morphology. The ion exchange membrane is also formed from a film layer comprising a block copolymer and a solvent. The film layer is placed in an electric field at an elevated temperature and dried therein. The film layer is thereby converted into an ion exchange membrane with bicontinuous morphology. The ion exchange membrane prepared according to these processes exhibits improved mechanical and electrochemical properties.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: November 1, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Timothy J. Fuller, Sean M MacKinnon, Michael R. Schoeneweiss
  • Patent number: 8044146
    Abstract: A polymer useful as an ion conducting membrane for fuel cell applications includes both main chain and side chain protogenic groups. Methods for preparing the polymer include addition of the side chains both before and after addition of the protogenic groups.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: October 25, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Lijun Zou, Sean M. MacKinnon, Timothy J. Fuller
  • Patent number: 8030405
    Abstract: A blend composition comprises a fluorine-containing polymer electrolyte and a fluoro-rubber. An electrolyte membrane may be prepared from the blend composition. The electrolyte membrane may be used in electrochemical cells such as electrolyzers, batteries and fuel cells.
    Type: Grant
    Filed: May 4, 2009
    Date of Patent: October 4, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Sean M MacKinnon, Timothy J. Fuller, Michael R. Schoeneweiss
  • Publication number: 20110213089
    Abstract: The present invention provides a clear resin molded body which has high heat resistance that can be used in the reflow soldering process using Pb-free solder, which has high transparency that can be used for an optical member, and which can be easily produced, and also provides a method of producing the same. A clear resin molded body includes a molded body of a resin composition composed of a carbon-hydrogen-bond-containing fluororesin, in which the resin composition is crosslinked by irradiating the molded body with ionizing radiation at least once in an atmosphere at a temperature lower than the melting point of the fluororesin and at least once in an atmosphere at a temperature equal to or higher than the melting point of the fluororesin. A method produces the clear resin molded body.
    Type: Application
    Filed: August 2, 2010
    Publication date: September 1, 2011
    Inventors: Satoshi Yamasaki, Hiroshi Hayami, Makoto Nakabayashi
  • Patent number: 8008404
    Abstract: A composite membrane for fuel cell applications includes a support substrate with a predefined void volume. The void volume is at least partially filled with an ion conducting polymer composition. Characteristically, the ion conducting polymer composition includes a first polymer with a cyclobutyl moiety and a second polymer that is different than the first polymer.
    Type: Grant
    Filed: May 4, 2009
    Date of Patent: August 30, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Sean M MacKinnon, Timothy J. Fuller
  • Patent number: 8003732
    Abstract: An ion conducting polymeric structure suitable for fuel cell applications is provided. The polymeric structure comprises a non-homogenous polymeric layer. The non-homogeneous layer is a blend of a first polymer comprising cyclobutyl moiety; and a second polymer having a non-ionic polymer segment. The weight ratio of the first polymer to the second polymer varies as a function of position within the non-homogenous layer. The blend composition may be cast into an electrolyte membrane that can be used to prepare electrochemical cells such as batteries and fuel cells.
    Type: Grant
    Filed: August 25, 2008
    Date of Patent: August 23, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Sean M MacKinnon, Michael R. Schoeneweiss, Timothy J. Fuller, Craig S. Gittleman
  • Patent number: 7999049
    Abstract: An emulsion polymerization process for the production of fluoroelastomers is disclosed wherein at least one fluorosurfactant is employed as dispersant, said fluorosurfactant being a fluoroalkylphosphoric acid ester of the formula X—Rf-(CH2)n—O—P(O)(OM)2, wherein n=1 or 2, X=H or F, M=a univalent cation, and Rf is a C4-C6 fluoroalkyl or fluoroalkoxy group. Optionally, a second dispersing agent may be employed in the polymerization, said second agent being a perfluoropolyether having at least one endgroup selected from the group consisting of carboxylic acid, a salt thereof, sulfonic acid and a salt thereof, phosphoric acid and a salt thereof.
    Type: Grant
    Filed: January 15, 2009
    Date of Patent: August 16, 2011
    Assignee: DuPont Performance Elastomers L.L.C.
    Inventors: Michael Cregg Coughlin, Ming-Hong Hung, Phan Linh Tang
  • Patent number: 7989566
    Abstract: An emulsion polymerization process for the production of non-elastomeric fluoropolymers is disclosed wherein at least one fluorosurfactant is employed as dispersant, said fluorosurfactant being a fluoroalkylphosphoric acid ester of the formula X-Rf-(CH2)n—O—P(O)(OM)2, wherein n is 1 or 2, X?H or F, M=a univalent cation, and Rf is a C4-C6 fluoroalkyl or fluoroalkoxy group. Optionally, a second dispersing agent may be employed in the polymerization, said second agent being a perfluoropolyether having at least one endgroup selected from the group consisting of carboxylic acid, a salt thereof, sulfonic acid and a salt thereof, phosphoric acid and a salt thereof.
    Type: Grant
    Filed: January 15, 2009
    Date of Patent: August 2, 2011
    Assignee: DuPont Performance Elastomers LLC
    Inventors: Michael Cregg Coughlin, Ming-Hong Hung
  • Patent number: 7989512
    Abstract: A method of forming an ionomeric membrane includes a step of reacting a first polymer in chlorosulfonic acid to form a first precipitate. The first precipitate comprising a polymer including a polymer unit having at least one —SO2Cl moiety attached thereto and includes a step of dissolving the first precipitate in a polar aprotic solvent to form the first solution. A polymeric membrane is then formed from the first solution such that the membrane includes the polymer unit having at least one —SO2Cl. The polymer including a polymer unit a polymer unit having at least one —SO2Cl is then reacted with a nucleophilic compound to form the polymeric membrane.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: August 2, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Timothy J. Fuller, Sean M MacKinnon, Michael R. Schoeneweiss
  • Publication number: 20110184089
    Abstract: The invention relates to a process for extruding plastic compositions, in particular polymer melts and mixtures of polymer melts, above all thermoplastics and elastomers, particularly preferably polycarbonate and polycarbonate blends, also with the incorporation of other substances such as for example solids, liquids, gases or other polymers or other polymer blends with improved optical characteristics, with the assistance of a multi-screw extruder with specific screw geometries.
    Type: Application
    Filed: June 12, 2009
    Publication date: July 28, 2011
    Applicant: Bayer MaterialScience AG
    Inventors: Michael Bierdel, Thomas König, Carsten Conzen, Ulrich Liesenfelder, Klemens Kohlgrüber, Reiner Rudolf, Johann Rechner
  • Patent number: 7985805
    Abstract: A polymer blend useful as an ion conductor in fuel cells includes a first polymer having a cyclobutyl moiety and a second polymer include a sulfonic acid group.
    Type: Grant
    Filed: May 4, 2009
    Date of Patent: July 26, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Timothy J. Fuller, Sean M MacKinnon, Michael R. Schoeneweiss, Craig S. Gittleman
  • Publication number: 20110172338
    Abstract: The present invention provides a processing additive which can bring about improvements in moldability at Mooney viscosity levels at which the dispersibility in a melt-processable resin is high and which further can work at reduced addition levels. The present invention is a processing additive comprising a fluoropolymer having an acid value of not lower than 0.5 KOH mg/g.
    Type: Application
    Filed: January 13, 2011
    Publication date: July 14, 2011
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Shinji MURAKAMI, Ken OKANISHI, Masahiko OKA
  • Patent number: 7977433
    Abstract: A fluororubber composition including a polyol-crosslinkable fluororubber; a cross-linking accelerator comprising a quaternary ammonium salt; and a polyol crosslinking agent; wherein the weight ratio X (quaternary ammonium salt/polyol crosslinking agent) between the cross-linking accelerator and the polyol crosslinking agent is in a range of 0.40 to 0.60; and a production method of a cross-linked fluororubber product, comprising the steps of: previously polyol-crosslinking, as required, the fluororubber composition; and subsequently heat treating the polyol-crosslinked composition, in a temperature range of 200° C. to 300° C. for 0.1 to 48 hours. The fluororubber composition has surface has a lower friction coefficient, and the surface roughness of the cross-linked fluororubber product can be increased without applying a treatment to a mold.
    Type: Grant
    Filed: October 16, 2006
    Date of Patent: July 12, 2011
    Assignee: Nok Corporation
    Inventor: Hiroyuki Sano
  • Patent number: 7972732
    Abstract: A membrane humidifier assembly includes a first flow field plate adapted to facilitate flow of a first gas thereto and a second flow field plate adapted to facilitate flow of a second gas thereto. A polymeric membrane is disposed between the first and second flow fields and adapted to permit transfer of water from the first flow field plate to the second flow field plate. The polymeric membrane includes a polymer having perfluorocyclobutyl groups and a pendant side chain having a protogenic group.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: July 5, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Sean M MacKinnon, Timothy J. Fuller, Annette M. Brenner
  • Patent number: 7947791
    Abstract: The present invention provides a fluorinated polymer excellent in the crosslinking reactivity, crosslinked rubber physical properties and chemical resistance, and its crosslinked rubber. A fluorinated polymer comprising repeating units (a) based on at least one monomer selected from the group consisting of ethylenic unsaturated compounds each having a hydroxyphenyl group, repeating units (b) based on at least one fluoromonomer selected from the group consisting of tetrafluoroethylene, hexafluoropropylene, vinylidene fluoride, 3,3,3-trifluoropropene, 1,3,3,3-tetrafluoropropene, 1,1,2-trifluoroethylene, vinyl fluoride, 1,2-difluoroethylene and CF2?CF—O—Rf (wherein Rf is a C1-8 saturated perfluoroalkyl group or a perfluoro(alkoxyalkyl) group) and, if necessary, repeating units (c) based on at least one hydrocarbon monomer selected from the group consisting of ethylene, propylene and CH2?CH—O—R1.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: May 24, 2011
    Assignee: Asahi Glass Company, Limited
    Inventors: Jumpei Nomura, Toshikazu Yoneda, Mitsuru Seki, Hiroki Kamiya, Hiroshi Funaki, Takehiro Kose