N-hexene Patents (Class 526/348.5)
  • Publication number: 20140194277
    Abstract: An object of the present invention is to provide a polyethylene-based resin composition excellent in the moldability and at the same time, excellent in the balance between impact strength and stiffness as well as in the transparency, and a molded product and a film, which are obtained by the molding of the polyethylene-based resin composition. The polyethylene-based resin composition of the present invention comprises from 41 to 99 wt % of (A) an ethylene-based polymer satisfying specific conditions and from 1 to 59 wt % of (B) an ethylene-based polymer satisfying specific conditions, wherein MFR of the composition as a whole is from 0.05 to 50 g/10 min and the density is from 0.910 to 0.960 g/cm3.
    Type: Application
    Filed: March 29, 2012
    Publication date: July 10, 2014
    Applicant: JAPAN POLYETHYLENE CORPORATION
    Inventors: Yoshiyuki Ishihama, Ryousuke Asakawa, Tsutomu Sakuragi, Tetsurou Fukuda, Kazuya Sakata, Masaru Aoki, Kenji Kawagishi, Keiichi Yoshimoto
  • Patent number: 8772426
    Abstract: Copolymers of ethylene and ?-olefins having (a) a density (D) in the range 0.900-0.940 g/cm3, (b) a melt index MI2 (2.16 kg, 190° C.) in the range of 0.01-50 g/10 min, (c) a melt index MI2 (2.16 kg, 190° C.) and Dow Rheology Index (DRI) satisfying the equation [DRI/MI2]>2.65, and (d) a Dart Drop Impact (DDI) in g of a blown film having a thickness of 25 ?m produced from the copolymer satisfying the equation DDI?1900×{1?Exp [?750(D?0.908)2]}×{Exp [(0.919?D)/0.0045]}. The copolymers may be prepared using metallocene catalysis and are preferably prepared in multistage processes carried out in loop reactors in the slurry phase. The copolymers exhibit long chain branching as defined by Dow Rheology Index (DRI) and exhibit unexpected improvements in mechanical properties, in particular dart drop impact, when extruded into blown films.
    Type: Grant
    Filed: January 18, 2011
    Date of Patent: July 8, 2014
    Assignee: Ineos Manufacturing Belgium NV
    Inventors: Choon Kooi Chai, Luc Marie Ghislain Dheur, Benoit Koch, Stefan Klaus Spitzmesser
  • Patent number: 8759460
    Abstract: New ethylene polymers having broad molecular weight distribution and long-chain branching, above all at high molecular weight fractions; the polymers have strain hardening equal or higher than 1.4 (at constant elongational rate of 0.5 s?1, at 150° C.), branching index g? equal or lower than 0.9 (at Mw of 2·106 g/mol). The polymers are prepared by using a mixed catalyst system comprising a polymerization catalyst based on a late transition metal component having a tridentate ligand, and a Ziegler polymerization catalyst annealed at a temperature higher than 100° C., for a time of at least 10 minutes.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: June 24, 2014
    Assignee: Bassell Polyolefine GmbH
    Inventors: Eleonora Ciaccia, Iakovos Vittorias, Shahram Mihan, Lenka Lukesova, Dieter Lilge, Maclovio Herrera Salinas, Gerhardus Meier, Gerd Mannebach
  • Publication number: 20140171610
    Abstract: A strap comprising a propylene and 1-hexene copolymer containing from 0.3 wt % to less than 5 wt % of 1-hexene derived units said copolymer having a melt flow rate (MFR) determined according to ISO method 1133 (230° C., 2.16 kg ranging from 0.3 to less than 11 g/10 min.
    Type: Application
    Filed: July 13, 2012
    Publication date: June 19, 2014
    Applicant: Basell Poliolefine Italia S.r.l.
    Inventors: Gianni Perdomi, Monica Galvan, Renaud Lemaire, Roberta Marzolla
  • Publication number: 20140163190
    Abstract: The present invention provides a polymerization process utilizing a dual ansa-metallocene catalyst system. Polymers produced from the polymerization process are also provided, and these polymers have a reverse comonomer distribution, a non-bimodal molecular weight distribution, a ratio of Mw/Mn from about 3 to about 8, and a ratio of Mz/Mw from about 3 to about 6.
    Type: Application
    Filed: February 18, 2014
    Publication date: June 12, 2014
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Qing Yang, Max P. McDaniel, William B. Beaulieu, Joel L. Martin, Tony R. Crain
  • Publication number: 20140163181
    Abstract: Disclosed herein are polymerization processes for the production of olefin polymers. These polymerization processes use a catalyst system containing three metallocene components, often resulting in polymers having a reverse comonomer distribution and a broad and non-bimodal molecular weight distribution.
    Type: Application
    Filed: December 6, 2012
    Publication date: June 12, 2014
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Qing Yang, Max P. McDaniel, Tony R. Crain, Youlu Yu, Yongwoo Inn
  • Publication number: 20140145376
    Abstract: A process for homogenizing and pelletizing a polyethylene composition comprising the steps of a) providing a polyethylene composition having a density of from 0.90 g/cm3 to 0.97 g/cm3 and a melt flow rate MFR21.6 at 190° C. under a load of 21.6 kg of from 1 g/10 min to 80 g/10 min, b) melting the polyethylene composition; c) passing the melt through a combination of screens consisting of screens having a mesh opening of at least 205 ?m and comprising at least two screens having a mesh opening of from 205 ?m to 350 ?m; and e) pelletizing the molten polyethylene composition, the use of a polyethylene composition obtained by such a process for the preparation of films, fibers, pipes, blow-molded articles, injection-molded articles, compression-molded articles or rotomolded articles and films, fibers, pipes, blow-molded articles, injection-molded articles, compression-molded articles or rotomolded articles prepared from a polyethylene composition obtained by such a process.
    Type: Application
    Filed: May 8, 2012
    Publication date: May 29, 2014
    Applicant: Basell Polyolefine GmbH
    Inventors: Gerhardus Meier, Ulf Schueller, Jens Wiesecke, Decio Malucelli, Marco Consalvi
  • Publication number: 20140135467
    Abstract: Process for polymerization and, in particular, to a process for start-up of a gas phase fluidized bed polymerization reaction involving one or more monomers using a catalyst in a reactor. The process includes providing a start-up bed of particles in the reactor in the presence of the one or more monomers but in the absence of the catalyst, introducing at T0 catalyst to the reactor to initiate reaction and start-up polymer production at a time Ti, Ti being between 1 and 6 hours after T0. The value of Xi is less than a threshold value, wherein: Xi=Cumulative production in the time period T0 to Ti/(Cumulative catalyst injection the time period T0 to Ti*PiC2=), where PiC2= is the ethylene partial pressure in the reactor at the time Ti, subsequently stopping the injection of catalyst, and taking a corrective action to address the low value of X.
    Type: Application
    Filed: February 8, 2013
    Publication date: May 15, 2014
    Applicant: Ineos Commercial Services UK Limited
    Inventors: Andreas Harald Gondorf, Jose Andre Laille, Claudine Viviane Lalanne-Magne
  • Publication number: 20140134911
    Abstract: A propylene and 1-hexene copolymer containing from 0.5 wt % to less than 5 wt % of 1-hexene derived units said copolymer having: a) a melting point higher than 145° C.; b) a melt flow rate (MFR2) determined according to ISO method 1133 (230° C., 2.16 kg ranging from 10 dl/10 min to less than 60 dl/10 min; said copolymer being chemically degradated to MFR2 and wherein the ratio MFR2/MFR1 is comprised between 15 and 56; wherein MFR1 is the melt flow rate measured according to ISO method 1133 (230° C., 2.
    Type: Application
    Filed: July 6, 2012
    Publication date: May 15, 2014
    Applicant: Basell Poliolefine Italia S.r.l.
    Inventors: Claudio Cavalieri, Monica Calvan, Fiorella Pradella
  • Patent number: 8722818
    Abstract: Described herein are methods for monitoring and restoring electrical properties of polymerization reactor wall films. The method may comprise using a reactor wall monitor to monitor and determine an electrical property, such as the bed voltage or breakdown voltage, of the wall film. The method may further comprise adding continuity additive to the reactor and/or adjusting the feed rate of continuity additive being added to the reactor in response to the measured electrical property.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: May 13, 2014
    Assignee: Univation Technologies, LLC
    Inventors: Eric J. Markel, William A. Lamberti, Harry W. Deckman
  • Publication number: 20140128563
    Abstract: Disclosed herein are broad molecular weight distribution olefin polymers having densities in the 0.895 to 0.930 g/cm3 range, and with improved impact and tear resistance. These polymers can have a ratio of Mw/Mn in the 8 to 35 range, a high load melt index in the 4 to 50 range, less than about 0.008 LCB per 1000 total carbon atoms, and a reverse comonomer distribution.
    Type: Application
    Filed: November 6, 2013
    Publication date: May 8, 2014
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Ashish M. Sukhadia, Errun Ding, Chung Ching Tso, Albert P. Masino, Qing Yang, Lloyd W. Guatney, Guylaine St. Jean, Daniel G. Hert
  • Patent number: 8716423
    Abstract: A novel polyethylene is devised which polyethylene is particularly advantageous for manufacturing rotomoulded articles.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: May 6, 2014
    Assignee: Basell Polyolefine GmbH
    Inventors: Gerd Mannebach, Heinz Vogt, Fabiana Fantinel, Shahram Mihan, Peter Bisson, Cees Besems, Gerhardus Meier, Ulf Schüller, Barbara Gall, Iakovos Vittorias, Manfred Hecker, Michael Olmscheid
  • Publication number: 20140114039
    Abstract: Techniques are provided for catalyst preparation. A system for catalyst preparation may include an agitator disposed inside a polymerization catalyst tank and configured to mix a polymerization catalyst and a solvent to generate a polymerization catalyst solution. The system may also include a heating system coupled to the polymerization catalyst tank and configured to maintain a temperature of the polymerization catalyst solution above a threshold. The system may also include a precontactor configured to receive feed streams comprising an activator and the polymerization catalyst solution from the polymerization catalyst tank to generate a catalyst complex. The system may also include a transfer line configured to transfer the catalyst complex from an outlet of the precontactor to a reactor.
    Type: Application
    Filed: October 18, 2012
    Publication date: April 24, 2014
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Elizabeth A. Benham, Albert P. Masino, Qing Yang, Randy S. Muninger, Rebecca A. Gonzales
  • Publication number: 20140107308
    Abstract: The present invention provides a polymerization process utilizing a dual metallocene catalyst system for the production of broad or bimodal molecular weight distribution polymers, generally, in the absence of added hydrogen. Polymers produced from the polymerization process are also provided, and these polymers can have a Mn in a range from about 9,000 to about 30,000 g/mol, and a short chain branch content that decreases as molecular weight increases.
    Type: Application
    Filed: November 1, 2013
    Publication date: April 17, 2014
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Qing Yang, Max P. McDaniel, Tony R. Crain, Youlu Yu
  • Publication number: 20140100343
    Abstract: Ethylene copolymers having a relatively high melt flow ratio and a multimodal profile in a temperature rising elution fractionation (TREF) plot are disclosed. The copolymers can be made into film having good dart impact values and good stiffness properties under decreased extruder pressures.
    Type: Application
    Filed: December 12, 2013
    Publication date: April 10, 2014
    Applicant: NOVA Chemicals (International) S.A.
    Inventors: Victoria Ker, Patrick Lam, Yan Jiang, Peter Phung Minh Hoang, Charles Ashton Garret Carter, Darryl J. Morrison
  • Publication number: 20140094582
    Abstract: The present invention relates to an ethylene-?-olefin copolymer satisfying the following requirements (A) to (E): (A) the MFR is 0.1 to 50 g/10 min., (B) the density is 860 to 970 kg/m3, (C) the Mz/Mw is from 3.0 to 6.0, (D) the fraction having a molecular weight of 106.5 g/mol of the ethylene-?-olefin copolymer has a branching index g? of 0.26 or more, and (E) the Ea is 60 to 90 kJ/mol.
    Type: Application
    Filed: September 30, 2013
    Publication date: April 3, 2014
    Inventors: Jumma NOMURA, Masato TAKANO, Yoshinobu NOZUE
  • Publication number: 20140088261
    Abstract: This invention relates to a polyolefin composition comprising one or more of the following formulae: wherein the PO is the residual portion of a vinyl terminated macromonomer (VTM) having had a terminal unsaturated carbon of an allylic chain and a vinyl carbon adjacent to the terminal unsaturated carbon; and wherein the VTM is preferably a vinyl terminated polymer having greater than 30% allyl chain ends with an Mn of greater than 10,000.
    Type: Application
    Filed: September 19, 2013
    Publication date: March 27, 2014
    Inventors: Donna J. Crowther, Patrick Brant
  • Publication number: 20140079899
    Abstract: Propylene copolymer a. comprising at least 1-hexene as a comonomer, b. having a comonomer content in the range of 1.0 to 3.0 wt.-%, c. having a xylene soluble fraction equal or below 2.5 wt.-%, and d. being partially crystallized in the ?-modification.
    Type: Application
    Filed: November 20, 2013
    Publication date: March 20, 2014
    Applicant: Borealis AG
    Inventors: Klaus Bernreitner, Manfred Stadlbauer, Norbert Hafner, Wilfried Töltsch, Pirjo Jääskeläinen
  • Publication number: 20140066586
    Abstract: The present invention relates to a process of forming a polymer, the process comprising polymerizing olefin monomers to form a reaction mixture, treating the reaction mixture to form a first polymer-rich phase, treating the first polymer-rich phase to form a second polymer-rich phase, and devolatilizing the second polymer-rich phase, the process further comprising at least one step of adjusting the temperature of a first and/or the second polymer-rich phase before the devolatilization. The present invention also relates to a plant that is useful for the process provided above.
    Type: Application
    Filed: August 31, 2012
    Publication date: March 6, 2014
    Inventor: Yu Feng Wang
  • Publication number: 20140039143
    Abstract: A process for making propylene by dehydration of propanol can include gasifying a carbonaceous solid or liquid feedstock, or reforming a gaseous carbonaceous feedstock into synthesis gas. The synthesis gas can be fermented or co-fermented by means of a microorganism into propanol. The microorganism can be a wild strain having the natural capability to ferment synthesis gas into propanol. The microorganism can be a microorganism possessing the required nucleic acid sequence information to express the enzymes for the biosynthesis of C3-oxygenates modified with the required nucleic acid sequence information to express the enzymes of the Wood-Ljungdahl pathway. The microorganism can be a microorganism possessing the required nucleic acid sequence information to express the enzymes of the Wood-Ljungdahl pathway, modified with the required nucleic acid sequence information to express the enzymes for the biosynthesis of C3-oxygenates.
    Type: Application
    Filed: December 15, 2011
    Publication date: February 6, 2014
    Applicant: TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventor: Walter Vermeiren
  • Patent number: 8618219
    Abstract: Disclosed herein is an in-reactor produced multi-component copolymer comprises a semi-crystalline component having a crystallinity of 20% or more, and an amorphous component having a crystallinity of 5% or less. The copolymer comprises at least 80 wt % of units derived from propylene and from about 1 to about 20 wt % of units derived from at least one C6 to C12 alpha-olefin. The copolymer has a viscosity at 190° C. of at least 530 mPa sec and a heat of fusion between about 10 and about 70 J/g. An adhesive containing the copolymer exhibits a good balance of adhesive properties and mechanical strength.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: December 31, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Peijun Jiang, Patrick Brant, David Aaron Henning, David R. Johnsrud, Charles L. Sims
  • Publication number: 20130338323
    Abstract: The instant invention is a polyethylene composition, method of producing the same, articles made therefrom, and method of making the same. The polyethylene composition according to the instant invention comprises (1) less than or equal to 100 percent by weight of the units derived from ethylene; and (2) less than 15 percent by weight of units derived from one or more ?-olefin comonomers. The polyethylene composition according the instant invention has a density in the range of 0.907 to 0.975 g/cm3, a molecular weight distribution (Mw/Mn) in the range of 1.70 to 3.62, a melt index (I2) in the range of 2 to 1000 g/10 minutes, a molecular weight distribution (Mz/Mw) in the range of less than 2.5, and a vinyl unsaturation of less than 0.06 vinyls per one thousand carbon atoms present in the backbone of the composition.
    Type: Application
    Filed: June 12, 2013
    Publication date: December 19, 2013
    Applicant: Dow Global Technologies LLC
    Inventors: William J. Michie, JR., Mark B. Davis, Nathan J. Wiker, Debra R. Wilson, Peter Schindler, John W. Garnett, IV
  • Publication number: 20130324690
    Abstract: The present invention provides dual catalyst systems containing a metallocene catalyst and a hydrogen scavenging catalyst, and polymerization processes employing these dual catalyst systems. Due to a reduction in hydrogen levels in the polymerization processes, olefin polymers produced from these polymerization processes may have a higher molecular weight, a lower melt index, and higher levels of unsaturation.
    Type: Application
    Filed: June 26, 2013
    Publication date: December 5, 2013
    Inventors: Rex E. Murray, William B. Beaulieu, Qing Yang, Errun Ding, Gary L. Glass, Alan L. Solenberger, Steve J. Secora
  • Publication number: 20130317166
    Abstract: An ?-olefin polymer satisfying the following (1) to (4): (1) the average carbon-atom number of ?-olefins constituting the polymer is 6.0 or more and 14 or less; (2) the molecular weight distribution (Mw/Mn)?2.0; (3) 3000?weight average molecular weight (Mw)?600000; and (4) (Log10 Mp-Log10M1)?(Log10M2-Log10Mp)?0.2; wherein, in a chart measured by gel permeation chromatography, M1 is the molecular weight at the starting point of the peak, Mp is the molecular weight at the peak top; and M2 is the molecular weight at the end point of the peak.
    Type: Application
    Filed: November 24, 2011
    Publication date: November 28, 2013
    Applicant: Idemitsu Kosan Co., Ltd.
    Inventors: Masami Kanamaru, Takenori Fujimura, Yutaka Minami
  • Publication number: 20130296519
    Abstract: The present description relates to an olefin block copolymer with enhanced processability as well as excellences in elasticity and heat resistance, and a preparation method for the same. The olefin block copolymer includes first and second segments, each containing an ethylene or propylene repeating unit and an ?-olefin repeating unit at different mole fractions, where the second segment is dispersed in the form of a closed curve as a dispersed phase on the first segment according to a TEM (Transmission Electron Microscope) image.
    Type: Application
    Filed: January 27, 2012
    Publication date: November 7, 2013
    Inventors: Yong-Ho Lee, Man-Seong Jeon, Jeong-Min Kim, Heon-Yong Kwon, Min-Seok Cho, Seon-Kyoung Kim, Dae-Sik Hong, Ki-Soo Lee, Kyoung Lim
  • Publication number: 20130280462
    Abstract: The polyethylene of the invention is polymerized using a chromium catalyst, and has a weight average molecular weight (Mw) of 30,000 or more at the maximum value in a branching degree distribution curve that shows a molecular weight dependency of short chain branches having 4 or more carbon atoms.
    Type: Application
    Filed: December 22, 2011
    Publication date: October 24, 2013
    Applicant: JAPAN POLYEHTYLENE CORPORATION
    Inventors: Yuuichi Kuzuba, Takashi Monoi, Satoshi Kanazawa, Kouichi Ogawa, Takaaki Hattori, Keiichi Yoshimoto
  • Publication number: 20130266786
    Abstract: Polymer compositions including an ethylene-based polymer having a melt index of from about 0.1 g/10 min to about 5.0 g/10 min; a melt index ratio of from about 15 to about 30; a weight average molecular weight (Mw) of from about 20,000 to about 200,000; a molecular weight distribution (Mw/Mn) of from about 2.0 to about 4.5; and a density of from 0.900 to 0.920 g/cm3. Films having a thickness of 1 mil show a difference between the maximum seal strength and the minimum seal strength over the ranges of temperatures between 95.0° C. and 140.0° C. of ?1.00×102 grams/cm.
    Type: Application
    Filed: March 12, 2013
    Publication date: October 10, 2013
    Applicant: ExxonMobil Chemical Patents Inc.
    Inventors: Alan M. Malakoff, Richard W. Halle, Adriana S. Silva, Steve A. Best
  • Publication number: 20130253150
    Abstract: A Ziegler-Natta catalyzed ethylene copolymer having a novel composition distribution in which comonomers are incorporated into the high molecular weight polymer molecules and distributed evenly among the entire polyethylene chains, and a method for making the same are provided. The resins having a novel composition distribution have controlled molecular weight distribution which is narrower than conventional ZN-ethylene copolymers but broader than single-site catalyzed ethylene copolymers. The resins having a novel composition distribution exhibit a superior tear strength and impact strength.
    Type: Application
    Filed: March 23, 2012
    Publication date: September 26, 2013
    Inventors: Honglan Lu, Guangxue Xu
  • Publication number: 20130216835
    Abstract: The present invention relates to a chromium catalysed ethylene copolymer powder exhibiting a superior fragmentation coefficient.
    Type: Application
    Filed: October 5, 2011
    Publication date: August 22, 2013
    Applicant: INEOS COMMERCIAL SERVICES UK LIMITED
    Inventors: Christophe Moineau, Stephan Detournay, Pierre Mangin, Julie Bigeault
  • Publication number: 20130209707
    Abstract: The present disclosure provides for a tape or monofilament of a polyethylene composition comprising less than or equal to 100 percent by weight of the polyethylene composition derived from ethylene monomers, and less than 20 percent by weight of the polyethylene composition derived from one or more ?-olefin monomers, where the polyethylene composition of the tape or monofilament has a density in the range of 0.920 to 0.970 g/cm3, a molecular weight distribution (Mw/Mn) in the range of 1.70 to 3.5, a melt index (I2) in the range of 0.2 to 50 g/10 minutes, a molecular weight distribution (Mz/Mw) in the range of less than 2.5, vinyl unsaturation of less than 0.1 vinyls per one thousand carbon atoms present in the backbone of the polyethylene composition, where the tape or monofilament has a decitex of greater than 500 g/10,000 m.
    Type: Application
    Filed: October 29, 2010
    Publication date: August 15, 2013
    Applicant: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Peter Sandkuehler, Gert J. Claasen
  • Patent number: 8492498
    Abstract: A polymer having a density of from about 0.94 g/cm3 to about 0.96 g/cm3 and a primary structure parameter 2 (PSP2 value) of greater than about 8.5, wherein an article formed from the polymer has an environmental stress crack resistance of equal to or greater than about 1000 hours when measured in accordance with ASTM D 1693 condition A. A polymer having at least one lower molecular weight component and at least one higher molecular weight component and having a PSP2 value of equal to or greater than about 8.5, wherein an article formed from the polymer has an environmental stress crack resistance of greater than about 1000 hours when measured in accordance with ASTM D 1693 condition A.
    Type: Grant
    Filed: February 21, 2011
    Date of Patent: July 23, 2013
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Richard M. Buck, Albert P. Masino, Qing Yang, Paul J. DesLauriers, Steven J. Secora, Elizabeth M. Lanier, Guylaine St. Jean, Jon D. Ratzlaff, Christopher E. Wittner
  • Patent number: 8492493
    Abstract: The present invention discloses post-metallocene complexes based on sterically encumbered bi- and tri-dentate naphthoxy-imine ligands. It also relates to the use of such post-metallocene complexes in the oligomerization of ethylene to selectively prepare vinyl-end capped linear alpha-olefins.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: July 23, 2013
    Assignees: Total Petrochemicals Research Feluy, Centre National de la Recherche Scientifique (CNRS)
    Inventors: Jean-François Carpentier, Evgueni Kirillov, Abbas Razavi
  • Patent number: 8486323
    Abstract: The instant invention provides rotational molded articles, and method of making the same. The rotational molded articles according to the present invention comprise a polyethylene composition comprising: (a) at least 85 percent by weight of the units derived from ethylene; and (b) less than 15 percent by weight of units derived from one or more ?-olefin comonomers; wherein the polyethylene composition has a density in the range of 0.930 to 0.945 g/cm3, a molecular weight distribution (Mw/Mn) in the range of 1.70 to 3.50, a melt index (I2) in the range of 0.5 to 20 g/10 minutes, a molecular weight distribution (Mz/Mw) in the range of less than 2.5, vinyl unsaturation of less than 0.06 vinyls per one thousand carbon atoms present in the backbone of the polyethylene composition.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: July 16, 2013
    Assignee: Dow Global Technologies LLC
    Inventors: Mark B. Davis, Mridula Kapur, William J. Michie, Jr., Peter Schindler, Nathan J. Wiker, Debra R. Wilson
  • Patent number: 8481665
    Abstract: Use of a metallocene compound of general formula Ind2R?MQ2 as a component of a catalyst system in producing polyethylene, wherein each Ind is the same or different and is indenyl or substituted indenyl; R? is a bridge which comprises a C1 to C4 alkylene radical, a dialkyl germanium or silicon or siloxane, alkyl phosphine or amine, which bridge is substituted or unsubstituted, M is a Group IV metal or vanadium and each Q is hydrocarbyl having 1 to 20 carbon atoms or halogen; and the ratio of meso to racemic forms of the metallocene in the catalyst system is at least 1:3. The metallocene may be supported. The ethylene may be polymerized in a reaction medium that is substantially free of any external comonomer, with comonomer being formed in situ. The produced polyethylene may have long chain branching. The produced polyethylene may be atactic.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: July 9, 2013
    Assignee: Total Research & Technology Feluy
    Inventors: Abbas Razavi, Liliana Peters
  • Patent number: 8475899
    Abstract: The present invention provides a polymerization process which is conducted by contacting an olefin monomer and at least one olefin comonomer in the presence of hydrogen and a metallocene-based catalyst composition. Polymers produced from the polymerization process are also provided, and these polymers have a reverse comonomer distribution, low levels of long chain branches, and a ratio of Mw/Mn from about 3 to about 6.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: July 2, 2013
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Qing Yang, Max P. McDaniel, Joel L. Martin, Tony R. Crain, Randy S. Muninger, Jerry T. Lanier, Jeff S. Fodor, Paul J. Deslauriers, Chung C. Tso, David C. Rohlfing
  • Publication number: 20130165612
    Abstract: A terpolymer containing propylene, ethylene and an alpha olefins of formula CH2?CHZ wherein Z is an hydrocarbon group having from 2 to 10 carbon atoms wherein: (i) the content of ethylene derived units ranges from 0.5 wt % to 5.0 wt %; (ii) the content of alpha olefin derived units ranges from 1.0 wt % to 5.0 wt %; (iii) the amount (Wt %) of alpha-olefin (C6), the amount (Wt %) of ethylene (C2) and the melting point (Tm) of the terpolymer fulfil the following relation (1) Tm>?(C2+0.8C6)*6+157 (1) (iv) the polydispersity index (P1) ranges from 3 to 8.
    Type: Application
    Filed: August 31, 2011
    Publication date: June 27, 2013
    Applicant: BASELL POLIODEFINE ITALIA S.R.I
    Inventors: Roberta Marzolla, Monica Galvan
  • Publication number: 20130165613
    Abstract: A propylene/ethylene/1-hexene terpolymer containing from 1.0 wt % to 2.5 wt %, of ethylene derived units and from 2.0 wt % to 3.5 wt % of 1-hexene derived units, the sum of the amounts of propylene, ethylene and 1-.hexene derived units being 100, having the following features: a)the amount (Wt %) of 1-hexene (C6) and the amount (Wt %) of ethylene (C2) fulfil the following relation (i): 0.5<C6-C2<1.7 (i) wherein C2 is the % wt of ethylene derived units content and C6 is the % wt of 1-hexene derived units content b) Polydispersity index (PI) ranging from 2 to 4.5; c) melting temperature ranges from 125° C., to 138° C.; d) the melting temperature (Tm) and the sum of ethylene content (C2 wt %) and 1-hexene content (C6 wt %) fulfil the following relation (ii) C2+C6<37-0.
    Type: Application
    Filed: August 31, 2011
    Publication date: June 27, 2013
    Inventors: Roberta Marzolla, Monica Galvan
  • Patent number: 8450437
    Abstract: The present techniques relate to catalyst compositions, methods, and polymers encompassing a Group 4 metallocene compound comprising bridging ?5-cyclopentadienyl-type ligands, typically in combination with a cocatalyst, and a activator. The compositions and methods presented herein include ethylene polymers with low melt elasticity.
    Type: Grant
    Filed: January 12, 2012
    Date of Patent: May 28, 2013
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Qing Yang, Max P. McDaniel, Joel L. Martin, Youlu Yu, David C. Rohlfing, Michael D. Jensen
  • Publication number: 20130116392
    Abstract: New plastomer material for use in automotive parts such as bumpers is devised here, which is a novel polyethylene produced by a gas phase process.
    Type: Application
    Filed: May 26, 2011
    Publication date: May 9, 2013
    Applicant: BASELL POLYOLEFINE GMBH
    Inventors: Fabiana Fantinel, Shahram Mihan, Gerhardus Meier, Ulf Schueller, Maclovio Salinas Herrera, Giampaolo Pellegatti, Gerd Mannebach
  • Patent number: 8431660
    Abstract: The present invention provides a non-metallocene transition metal compound that is easily produced, includes a tetrazol group having the high polymerization activity and high temperature stability in the polymerization of olefins, and a catalytic composition that includes the transition metal compound and a cocatalyst. In addition, the present invention provides a method for efficiently producing an olefin homopolymer or copolymer by using the catalytic composition.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: April 30, 2013
    Assignee: LG Chem, Ltd.
    Inventors: Heon-Yong Kwon, Nicola Maggiarosa, Ki-Soo Lee, Min-Seok Cho, Jong-Sang Park, Joon-Hee Cho, Yong-Ho Lee, Byung-Ryul Lee, Seon-Kyoung Kim, Dae-Sik Hong
  • Patent number: 8426540
    Abstract: The present invention relates to new tridentate ligand compounds with imino furan units, to a method for manufacturing said compounds and to their use in the preparation of catalysts for the homopolymerization or copolymerization of ethylene and alpha-olefins.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: April 23, 2013
    Assignee: Total Petrochemicals Research Feluy
    Inventor: Sabine Sirol
  • Patent number: 8426538
    Abstract: This invention relates to the field of olefin polymerization catalyst compositions, and methods for the polymerization and copolymerization of olefins, including polymerization methods using a supported catalyst composition. In one aspect, the present invention encompasses a catalyst composition comprising the contact product of a first metallocene compound, a second metallocene compound, at least one chemically-treated solid oxide, and at least one organoaluminum compound. The new resins were characterized by useful properties in impact, tear, adhesion, sealing, extruder motor loads and pressures at comparable melt index values, and neck-in and draw-down.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: April 23, 2013
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Michael D. Jensen, Max P. McDaniel, Joel L. Martin, Elizabeth A. Benham, Randy L. Muninger, Gary G. Jerdee, Ashish M. Sukhadia, Qing R. Yang, Matthew G. Thorn
  • Patent number: 8426539
    Abstract: The present invention discloses an active supported catalyst system comprising: a) one or more non-metallocene catalyst component; b) an alkylating agent; c) an activating functionalised and fluorinated support. It also discloses a method for preparing said active support and its use in the polymerisation of polar and non polar monomers.
    Type: Grant
    Filed: July 26, 2006
    Date of Patent: April 23, 2013
    Assignees: Total Petrochemicals Research Feluy, Centre National de la Research Scientifique (CNRS)
    Inventors: Floran Prades, Roger Spitz, Christophe Boisson, Sabine Sirol, Abbas Razavi
  • Patent number: 8420756
    Abstract: The present invention relates to the field of single site catalyst systems based on aromatic BINAM diamine ligands and suitable for oligomerising or polymerising ethylene and alpha-olefins.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: April 16, 2013
    Assignee: Total Petrochemicals Research Feluy
    Inventors: Caroline Hillairet, Guillaume Michaud, Sabine Sirol
  • Patent number: 8409681
    Abstract: A process is disclosed for producing a multi-modal linear low density polyethylene in at least two staged reactors connected in series, comprising (i) polymerizing in a first slurry phase stage ethylene monomers with a Ziegler-Natta polymerization catalyst system to obtain a first polyethylene fraction component (A); and (ii) polymerizing in a second gas or slurry phase stage ethylene monomers with a Ziegler-Natta polymerization catalyst system to obtain a second polyethylene fraction component (B). The Ziegler-Natta polymerization catalyst system comprises: 1) a solid procatalyst formed by contacting at least: a) a Mg-alcoholate complex of formula (I) b) an aluminum compound of formula (II); and c) a vanadium compound and a titanium compound having a molar ratio (V:Ti) from 10:90 to 90:10; and 2) one or more organometallic cocatalvsts of formula (III). The linear low density polyethylene shows an improved comonomer composition distribution Formulas (I), (II), and (III) are described herein.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: April 2, 2013
    Assignee: Borealis AG
    Inventors: Thomas Garoff, Paivi Waldvogel, Kalle Kallio, Virginie Eriksson, Aki Aittola, Esa Kokko
  • Publication number: 20130072652
    Abstract: The invention refers to a process for preparing a supported catalyst system for the polymerization of olefins comprising at least one active catalyst component on a support, the process comprising A) impregnating a dry porous support component with a mixture comprising at least one precatalyst, at least one cocatalyst, and a first solvent, such that the total volume of the mixture is from 0.8 to 2.0 times the total pore volume of the support component, and B) thereafter, adding a second solvent in an amount of more than 1.5 times the total pore volume of the support component. The invention refers further to a catalyst system made by this process and the use of this catalyst system for polymerization or copolymerization of olefins.
    Type: Application
    Filed: May 26, 2011
    Publication date: March 21, 2013
    Applicant: Basell Polyolefine GmbH
    Inventors: Fabiana Fantinel, Shahram Mihan, Rainer Karer, Volker Fraaije
  • Patent number: 8399581
    Abstract: Metallocene catalyzed polyethylenes are found to have improved physical properties, improved processability and improved balance of properties. Surprisingly, there is a direct relationship between MD shrinkage, and MD tear. Additionally, MD tear is greater than TD tear, and MD tear is also greater than intrinsic tear. MD tear to TD tear ratios are above 0.9, and dart drop impact is above 500 g/mil. The polyethylenes have a relatively broad composition distribution and relatively broad molecular weight distribution.
    Type: Grant
    Filed: June 15, 2004
    Date of Patent: March 19, 2013
    Assignee: Univation Technologies, LLC
    Inventors: James McLeod Farley, John F. Szul, Matthew Gary McKee
  • Patent number: 8399582
    Abstract: The present invention relates to the field of single site catalyst systems based on pyridine-iminophenol, pyridine-iminoalcohol or pyridine-iminoamine complexes and suitable for oligomerising or homo- or co-polymerising ethylene and alpha-olefins.
    Type: Grant
    Filed: April 17, 2007
    Date of Patent: March 19, 2013
    Assignee: Total Petrochemicals Research Feluy
    Inventors: Caroline Hillairet, Guillaume Michaud, Sabine Sirol
  • Publication number: 20130053528
    Abstract: The present invention relates to a process for the continuous transition between two ethylene copolymers containing a different comonomer. In particular, the present invention relates to a process for the continuous transition between two ethylene copolymers containing a different comonomer.
    Type: Application
    Filed: April 13, 2011
    Publication date: February 28, 2013
    Applicant: Ineos Commercial Services UK Limited
    Inventors: Jean-Louis Chamayou, Benoit Sibourd
  • Patent number: 8383754
    Abstract: The present invention provides a polymerization process utilizing a dual ansa-metallocene catalyst system. Polymers produced from the polymerization process are also provided, and these polymers have a reverse comonomer distribution, a non-bimodal molecular weight distribution, a ratio of Mw/Mn from about 3 to about 8, and a ratio of Mz/Mw from about 3 to about 6.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: February 26, 2013
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Qing Yang, Max P. McDaniel, William B. Beaulieu, Joel L. Martin, Tony R. Crain