Polymerizing In Two Or More Physically Distinct Zones Patents (Class 526/65)
  • Patent number: 10718571
    Abstract: This invention relates to a process for forming polymer including: polymerizing a monomer dissolved in a solvent in the presence of a catalyst system under conditions to obtain a first effluent stream including a solution of the polymer and the solvent; heating the first effluent stream in at least one spiral heat exchanger to produce a second effluent stream, where the first effluent stream flows through the spiral heat exchanger in a cross-flow direction relative to spirals of the spiral heat exchanger and performing a separation on the second effluent stream to produce: a third effluent stream including polymer substantially free of the solvent; and a recycle stream including the solvent and unreacted monomer. Processes for devolatilizing a polymer stream are also provided herein.
    Type: Grant
    Filed: July 11, 2017
    Date of Patent: July 21, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Yifeng Hong, Jay L. Reimers
  • Patent number: 10696756
    Abstract: The present invention relates to a process for the continuous preparation of a polyolefin in a reactor from one or more ?-olefin monomers of which at least one is ethylene or propylene, wherein the reactor comprises a fluidized bed, an expanded section located at or near the top of the reactor, a distribution plate located at the lower part of the reactor and an inlet for a recycle stream located under the distribution plate, wherein the process comprises—feeding a polymerization catalyst to the fluidized bed in the area above the distribution plate—feeding the one or more ?-olefin monomers to the reactor—withdrawing the polyolefin from the reactor—circulating fluids from the top of the reactor to the bottom of the reactor, wherein the circulating fluids are cooled using a heat exchanger, resulting in a cooled recycle stream comprising liquid, and wherein the cooled recycle stream is introduced into the reactor using the inlet for the recycle stream wherein a stream comprising a thermal run away reducing agen
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: June 30, 2020
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Yahya Banat, Ahmad Abdullah Alshaiban, Osamah Maidan
  • Patent number: 10562988
    Abstract: Disclosed is a method for producing a polyolefin including: (1) a step (1) of polymerizing one or more olefins in solution polymerization or slurry polymerization in the presence of a polymerization catalyst to produce a polymer solution, (2) a step (2) of taking out the polymer solution obtained in the step (1), and adding a catalyst deactivator in the polymer solution to deactivate the polymerization catalyst, and (3) a step (3) of removing volatile components in vacuum from the polymer solution where the polymerization catalyst has been deactivated, and including, between the step (2) and the step (3), a step of adding an additive to the polymer solution when the water concentration in the polymer solution is 5 ppm by mass or less.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: February 18, 2020
    Assignee: IDEMITSU KOSAN CO., LTD.
    Inventors: Tatsuyoshi Yokota, Shinji Miyamoto
  • Patent number: 10465024
    Abstract: A process to form an ethylene-based polymer comprises polymerizing a reaction mixture comprising ethylene, at least one monomeric chain transfer agent, and at least one chain transfer agent system comprising at least one chain transfer agent (CTA) in the presence of at least one free-radical initiator and in a reactor configuration comprising at least two reaction zones, reaction zone 1 and reaction zone i (i?2), wherein the reaction zone i is downstream from reaction zone 1. The ratio of “the activity of the CTA system of the feed to the first reaction zone” to the “activity of the CTA system of the cumulative feed to the reaction zone i,” (Z1/Zi), is less than or equal to (0.8?0.2*log(Cs)), wherein Cs is from 0.0001 to 10.
    Type: Grant
    Filed: June 24, 2016
    Date of Patent: November 5, 2019
    Assignee: Dow Global Technologies LLC
    Inventors: Otto J. Berbee, Stefan Hinrichs, Sean W. Ewart, John O. Osby
  • Patent number: 10246535
    Abstract: A method comprising preparing a multi-component catalyst system comprising a catalyst and a cocatalyst, and adjusting the level of at least one component of the catalyst system to maintain a user-desired level of catalyst activity throughout a process, wherein the component comprises a catalyst activator and wherein the catalyst activator comprises the catalyst or the cocatalyst. A method comprising contacting a polymerization catalyst system comprising a Ziegler-Natta catalyst and a cocatalyst with a catalyst activator at least twice during a polymerization process, wherein the polymerization process is carried out in a reactor system comprising multiple reactor types.
    Type: Grant
    Filed: January 8, 2016
    Date of Patent: April 2, 2019
    Assignee: FINA TECHNOLOGY, INC.
    Inventors: Kenneth P. Blackmon, David Ribour, Shabbir Malbari, Tim Coffy, Michel Daumerie
  • Patent number: 10184044
    Abstract: A polymer sheet includes a core layer containing a propylene impact copolymer (ICP), and a first additional layer comprising a first polymer composition. The propylene impact copolymer (ICP) in the core layer includes a matrix and a dispersed phase. The matrix comprises a polypropylene homopolymer or a propylene/alpha-olefin random copolymer which includes greater than 50 wt. % of units derived from propylene monomer. The dispersed phase includes a copolymer of ethylene and a C3-C8 ?-olefin. The ICP has a first melting point being greater than 100° C. (e.g., in the range of from 100° C. to 130° C.) and a second melting point. The polymer sheet can also include a second additional layer containing a second polymer composition.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: January 22, 2019
    Assignee: Braskem America, Inc.
    Inventors: Peter Simon Dias, Debra R. Wilson
  • Patent number: 10059802
    Abstract: Provided is a method for producing polyphenylene ether (PPE) having excellent mechanical properties, heat aging resistance, and color, and in which the content of impurities such as low molecular weight components and catalyst metal is low. The method for producing PPE includes: performing oxidative polymerization of a phenolic compound in a polymerization solution containing the phenolic compound, a catalyst, and an aromatic solvent to obtain a PPE mixed liquid; precipitating PPE to obtain a slurry containing particulate PPE through addition of a polar solvent to the PPE mixed liquid; solid-liquid separating the slurry to obtain wet PPE particles; washing the wet PPE particles to obtain PPE particles through at least one cycle of a washing and solid-liquid separation process in which washing is performed with a washing liquid containing an aromatic solvent and a polar solvent, and in which solid-liquid separation is performed; and drying the PPE particles.
    Type: Grant
    Filed: March 22, 2017
    Date of Patent: August 28, 2018
    Assignee: ASAHI KASEI KABUSHIKI KAISHA
    Inventors: Shigeru Yamamoto, Akira Mitsui
  • Patent number: 9994004
    Abstract: A multilayer film is prepared from a high impact strength polyethylene (HI polyethylene); a Ziegler Natta catalyzed polyethylene (Z/N polyethylene) and a high pressure low density polyethylene (LD polyethylene) with i) at least one skin layer consists essentially of HI polyethylene and ii) at least one core layer comprises a blend of Z/N polyethylene and said LD polyethylene. The HI polyethylene has a density of from 0.915 to about 0.930 g/cc and a normalized impact strength of at least about 300 g/mil. The amount of HI polyethylene is from about 30 to about 55 weight % (based on the combined weights of the HI+Z/N+LD polyethylenes). The films described herein are readily prepared on blown film equipment and provide an excellent balance of mechanical properties.
    Type: Grant
    Filed: February 24, 2014
    Date of Patent: June 12, 2018
    Assignee: NOVA CHEMICALS (INTERNATIONAL) S.A.
    Inventors: Nitin Borse, Norman Dorien Joseph Aubee, P. Scott Chisholm, Shivendra Kumar Goyal, Jamie Michael Marler
  • Patent number: 9938375
    Abstract: The invention relates to a reactor in the form of a VK tube (VK: simplified continuous), for the polymerisation of polyamides, the reactor being subdivided into an upper and lower reactor region, which are controllable independently of each other. Likewise, the invention relates to a method for the production of polyamides in which such a reactor is used.
    Type: Grant
    Filed: January 20, 2014
    Date of Patent: April 10, 2018
    Assignee: UHDE INVENTA-FISCHER GMBH
    Inventors: Ekkehard Siebecke, Johannes Katzer, Bernd Königsmann
  • Patent number: 9908952
    Abstract: The present disclosure provides a process for producing propylene-based polymer. The process includes contacting, under polymerization conditions in a gas phase polymerization reactor, propylene monomer and optionally one or more comonomers with a Ziegler-Natta catalyst composition. The process includes maintaining the temperature of a reaction zone of the reactor at a temperature from greater than 72° C. to less than or equal to 85° C., and forming a propylene-based polymer having a molecular weight (Mw) greater than 100,000, and a Mz+1/Mz less than 2.20. The resultant propylene-based polymer is advantageous in fiber applications.
    Type: Grant
    Filed: November 14, 2014
    Date of Patent: March 6, 2018
    Assignee: W.R. Grace & Co.-Conn.
    Inventors: John K Kaarto, Jan W. Van Egmond, Charles D. Lester
  • Patent number: 9896520
    Abstract: The present disclosure generally relates to a slurry polymerization process for the preparation of polyethylene in the presence of a Ziegler catalyst and aluminum alkyl co-catalyst in at least one polymerization reactor, in which process suspension medium comprising a concentration of aluminum alkyl co-catalyst is recycled to the polymerization, the concentration of aluminum alkyl co-catalyst in the recycled suspension medium is determined; and the amount of fresh aluminum alkyl co-catalyst fed to the polymerization is adjusted to maintain a targeted aluminum alkyl co-catalyst concentration in the recycled suspension medium.
    Type: Grant
    Filed: April 28, 2015
    Date of Patent: February 20, 2018
    Assignee: Basell Polyolefine GmbH
    Inventors: Reinhard Kuehl, Rodrigo Carvajal, Gerhardus Meier, Elke Damm, Phil Pyman
  • Patent number: 9822193
    Abstract: A system and method for startup of a polyolefin reactor temperature control system having a first reactor temperature control path, a second reactor temperature control path, and a shared temperature control path. In some embodiments, during startup the second reactor temperature control path is configured to allow the temperature of a second reactor to rise due to the heat of the exothermic polymerization reaction occurring within reactor until reaching a predetermined setpoint temperature. In other embodiments, during startup a first reactor temperature control path is configured to include a heat exchanger used as a cooler, and a second reactor temperature control path is configured to include a heat exchanger used as a heater, to raise the temperature of the second reactor until reaching a predetermined setpoint temperature.
    Type: Grant
    Filed: February 10, 2017
    Date of Patent: November 21, 2017
    Assignee: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Timothy O. Odi, Ralph Romig, Joseph Curren, Anurag Gupta
  • Patent number: 9790310
    Abstract: The present invention relates to a method for preparing an ABS graft copolymer. According to the present invention, provided is a method for preparing an ABS graft copolymer capable of improving surface gloss by inducing the formation of bimodal particles through the formation of existing ABS resin particles and ABS resin particles having a relatively small diameter.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: October 17, 2017
    Assignee: LG CHEM, LTD.
    Inventors: Su Jeong Han, Sun Haeng Chung, Yoo Vin Kim, Young-Min Kim, Jin-Hyoung Lee, Young-Hwan Jeong, Jae Min Suk
  • Patent number: 9751958
    Abstract: The present invention relates to a process for producing water-absorbing polymer particles, wherein an aqueous monomer solution is polymerized and the monomer solution is prepared using steam condensate.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: September 5, 2017
    Assignee: BASF SE
    Inventors: Rüdiger Funk, Jürgen Schröder
  • Patent number: 9725541
    Abstract: The present technology relates to a polyethylene composition suitable for producing small articles such as flexible and collapsible tubes by blow molding comprising: 1) a density from 0.948 to 0.955 g/cm3; 2) a MIF/MIP ratio from 12 to 25; 3) a MIF from 25 to 40 g/10 min; 4) a Mz from 1000000 to 2000000 g/mol; and 5) a long-chain branching index, LCBI, equal to or greater than 0.55.
    Type: Grant
    Filed: June 19, 2014
    Date of Patent: August 8, 2017
    Assignee: Basell Polyolefine GmbH
    Inventors: Gerhardus Meier, Ulf Schuller, Diana Dotsch, Bernd Lothar Marczinke, Jens Wiesecke
  • Patent number: 9688799
    Abstract: Process for the polymerization of olefins in a polymerization reactor system including (i) a gas phase reactor having a gas outlet and one or more withdrawal lines for withdrawal of a polymer-containing stream, (ii) a recycle loop for recycling gas exiting the reactor through the gas outlet back to the reactor, (iii) a polymer separation system for separating reactants from the polymer product in the withdrawn polymer-containing stream, and (iv) a recycle system for recycling reactants removed from the reactor in the withdrawn polymer-containing stream back to the reactor. A scavenger is introduced directly into one or more of the recycle loop, the polymer separation system and the recycle system.
    Type: Grant
    Filed: December 15, 2014
    Date of Patent: June 27, 2017
    Assignee: INEOS EUROPE AG
    Inventors: Jean-Louis Chamayou, Renaud Viguier
  • Patent number: 9683063
    Abstract: Process for polymerizing olefins in a polymerization reactor system including at least first and second introduction points by which the same reaction component may be introduced directly at different locations on the reactor system. At a first time, the reaction component is introduced through at least the first introduction point, such that a proportion X of the reaction component which is introduced through the first and second introduction points is introduced through the first introduction point. At a second, later, time the same reaction component is introduced through at least the second introduction point and such that a proportion Y of the reaction component which is introduced through the first and second introduction points is introduced through the first introduction point. Y is less than X, and at least one of the first and second introduction points is located on the reactor system at a location not on the reactor.
    Type: Grant
    Filed: December 15, 2014
    Date of Patent: June 20, 2017
    Assignee: INEOS EUROPE AG
    Inventors: Jean-Louis Chamayou, Renaud Viguier, Pierre Sere Peyrigain
  • Patent number: 9605092
    Abstract: Polymerization process, in particular for the polymerization of monomer selected from ethylene and propylene in a reaction system containing at least three reactors operated in series. The process includes (a) polymerizing monomer in a first reactor having a volume of at least 50 m3 to produce a first polymer, (b) passing the first polymer to a second reactor and polymerizing monomer in the second reactor to produce a second polymer containing the first polymer and polymer produced in the second reactor, and (c) passing the second polymer to a third reactor and polymerizing monomer in the third reactor to produce a third polymer containing the second polymer and polymer produced in the third reactor. The polymerizations are performed such that between 0.01 and 5 w % of the total mass of the third polymer is polymer produced in the second reactor.
    Type: Grant
    Filed: July 22, 2014
    Date of Patent: March 28, 2017
    Assignee: INEOS EUROPE AG
    Inventors: Marc Jean-Marie Ghislain Parisel, Philip Van Breuseghem, Brent R. Walworth
  • Patent number: 9598514
    Abstract: A process for component separation in a polymer production system, comprising separating a polymerization product stream into a gas stream and a polymer stream, wherein the gas stream comprises ethane and unreacted ethylene, distilling the gas stream into a light hydrocarbon stream, wherein the light hydrocarbon stream comprises ethane and unreacted ethylene, contacting the light hydrocarbon stream with an absorption solvent system, wherein at least a portion of the unreacted ethylene from the light hydrocarbon stream is absorbed by the absorption solvent system, and recovering a waste gas stream from the absorption solvent system, wherein the waste gas stream comprises ethane, hydrogen, or combinations thereof.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: March 21, 2017
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Scott E. Kufeld, John D. Hottovy, Ai-fu Chang
  • Patent number: 9592486
    Abstract: An olefin polymerization reactor comprising a tubular portion that extends in a vertical direction; a tapered portion disposed inside the tubular portion, an inside diameter of the tapered portion decreasing downwardly, and including a vertically penetrating orifice at a bottom end thereof; a tubular lower deflector disposed above the orifice of the tapered portion, an outside diameter of the tubular lower deflector increasing downwardly, a bottom end thereof being located away from an inner wall of the tubular portion, and including a vertically penetrating orifice at a top end thereof; and an upper deflector disposed above the orifice of the lower deflector, an outside diameter of the upper deflector increasing downwardly, a top end thereof being closed, a bottom end thereof being located away from the inner wall of the tubular portion, and an outside diameter at the bottom end being equal to or greater than an inside diameter of the orifice of the lower deflector.
    Type: Grant
    Filed: May 1, 2013
    Date of Patent: March 14, 2017
    Assignee: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventor: Hideki Sato
  • Patent number: 9556288
    Abstract: A system and method for polymerizing olefin in the presence of a chain transfer agent in a first reactor to form a first polyolefin, discharging from the first reactor a transfer slurry having the first polyolefin and the chain transfer agent, and processing the transfer slurry in a separator to remove chain transfer agent and to provide a fluff slurry having the first polyolefin and a lower content of chain transfer agent than in the transfer slurry. The system and method provide for feeding the fluff slurry to a second reactor, polymerizing olefin in the second reactor to form a second polyolefin, and discharging from the second reactor a slurry having the second polyolefin.
    Type: Grant
    Filed: January 15, 2015
    Date of Patent: January 31, 2017
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Maruti Bhandarkar, Elizabeth A Benham, Rebecca A. Gonzales, Scott E. Kufeld, Joel A Mutchler, Catherine M. Gill, Thanh T. Nguyen, Timothy O. Odi
  • Patent number: 9481785
    Abstract: A finely divided, cationic or amphoteric, aqueous polymer dispersion which is obtainable by emulsion polymerization of ethylenically unsaturated monomers in the presence of a cationic or amphoteric protective colloid, wherein first the cationic or amphoteric protective colloid is prepared by polymerizing a monomer blend in the presence of at least one first polymerization initiator in an organic solvent, and is carried out in a pressurized reactor at a pressure of at least 1720 kPa and at a temperature of at least 150° C.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: November 1, 2016
    Assignee: BASF SE
    Inventors: Anja Song, Holger Kern, Michele N. Williams-Harry, Petra Arnold, Simone Milazzo
  • Patent number: 9428613
    Abstract: Process for producing polyamides that are stable during processing, by treating the polyamide during the solid-phase postcondensation process with a gas which comprises carrier gas (inert gas), water, and acid, or an anhydride or lactone or a mixture of these or, respectively, comprises ammonia, or amine, or a mixture of these, at a temperature from 130 to 200° C. and at a pressure of from 0.01 to 10 bar.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: August 30, 2016
    Assignee: BASF SE
    Inventors: Rolf-Egbert Grützner, Shankara Narayanan Keelapandal Ramamoorthy, Faissal-Ali El-Toufaili, Achim Gerstlauer, Achim Stammer
  • Patent number: 9416207
    Abstract: The present invention relates to a polypropylene composition comprising comonomer units derived from ethylene in an amount of from 1.5 wt % to 35 wt %, and from at least one C5-12 alpha-olefin in an amount of from 1.0 mol % to 3.0 mol %, wherein the polypropylene composition has an amount of xylene solubles XS of at least 40 wt %, and the xylene solubles have an amount of ethylene-derived comonomer units of from 4.0 wt % to 70 wt %.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: August 16, 2016
    Assignee: BOREALIS AG
    Inventors: Kristin Reichelt, Sameli Hakola, Luigi Resconi
  • Patent number: 9382378
    Abstract: The invention is to provide polycarbonate resins having excellent light resistance, transparency, hue, heat resistance, thermal stability, and mechanical strength and to provide processes for efficiently and stably producing a polycarbonate resin which stably shows those performances. The invention includes: polycarbonate resins which at least contain structural units derived from a dihydroxy compound having the portion represented by formula (1) as part of the structure thereof and which have specific properties; and processes for producing the polycarbonate resins, CH2—O??(1) where the case where the portion represented by formula (1) is part of —CH2—O—H is excluded.
    Type: Grant
    Filed: January 8, 2014
    Date of Patent: July 5, 2016
    Assignee: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Shingo Namiki, Michiaki Fuji, Masanori Yamamoto
  • Patent number: 9340763
    Abstract: A heat exchange module for use in a chemical, pharmaceutical or biological reactor system can include a body configured to be disposed in the reactor system having an inner replaceable reactant container is disclosed. The body can further include at least one thermally conductive surface adapted to contact the inner replaceable reactant container to facilitate heat transfer. Furthermore, the heat exchange module can include a heat exchanger disposed within the module body and can include a fluid circulation path through which a heat exchange fluid can be circulated.
    Type: Grant
    Filed: December 3, 2012
    Date of Patent: May 17, 2016
    Assignee: GE HEALTHCARE BIO-SCIENCES CORP.
    Inventors: Richard L. Damren, Thomas Erdenberger, Colin R. Tuohey, Joseph D. Crowell, Parrish M. Galliher, Kenneth P. Clapp, Peter A. Mitchell
  • Patent number: 9328183
    Abstract: Polymerization process including polymerizing a monomer and a comonomer in a polymerization reaction, withdrawing an effluent stream containing solid polymer and a mixture of unreacted monomer and unreacted comonomer, and passing the effluent to a high pressure recovery system having (a) a high pressure separation step for separating vapor containing unreacted monomer and unreacted comonomer from the solids, and (b) a high pressure recycle system for recycling a portion of the vapor to the polymerization reaction, passing the solids from the high pressure recovery system to a low pressure recovery system having (a) a low pressure separation step for separating further unreacted monomer and unreacted comonomer from the solids, and (b) a low pressure recycle system for recycling at least a portion of the unreacted monomer and unreacted comonomer to the polymerization reaction. A portion of the vapor separated in step 2(a) is passed to the low pressure recovery system.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: May 3, 2016
    Assignee: INEOS EUROPE AG
    Inventors: Daniel Marissal, Philip Van Breuseghem, Brent R. Walworth
  • Patent number: 9310137
    Abstract: A system and method for a polyolefin reactor temperature control system having a first reactor temperature control path, a second reactor temperature control path, and a shared temperature control path. The shared temperature control path is configured to combine and process coolant return streams, and to provide coolant supply for the first reactor temperature control path and the second reactor temperature control path.
    Type: Grant
    Filed: April 29, 2013
    Date of Patent: April 12, 2016
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Timothy O Odi, Anurag Gupta, Ralph W Romig
  • Patent number: 9279024
    Abstract: This invention relates to processes using staged hydrogen addition in propylene polymerization. Using this process, broad/bi-modal MWD iPP with excellent stiffness properties and melt flow rates were produced.
    Type: Grant
    Filed: October 9, 2014
    Date of Patent: March 8, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Matthew W. Holtcamp, Jian Yang, Celestino M. Perez, Jr., Gregory S. Day, Rohan A. Hule
  • Patent number: 9266975
    Abstract: The present invention provides a novel continuous polymerization apparatus which is able to efficiently produce a polymer composition suitable for obtaining a resin composition with high quality. In a continuous polymerization apparatus, at least, a first reactor of a complete mixing type and a second reactor of a complete mixing type (10, 20) are used. Each of the reactors (10, 20) is provided with a supply port (11a, 21a), an effluent port (11b, 21b), and a temperature detecting means (T) for detecting a temperature in the reactor, wherein the supply port (11a) of the first reactor (10) is connected to the supply sources (1, 3) of a raw material monomer and a polymerization initiator, and the effluent port (11b) of the first reactor is connected through a connection line (15) provided with a cooling means (16) to the supply port (21a) of the second reactor (20).
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: February 23, 2016
    Assignee: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Yoshinori Sato, Kazuhiro Yamazaki
  • Patent number: 9228028
    Abstract: The present invention is directed to processes for making a crosslinked cation exchange polymer comprising a fluoro group and an acid group. The process allows the polymer to be efficiently made on a commercial scale, and the polymers are useful to bind potassium in the gastrointestinal tract of a human or animal subject.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: January 5, 2016
    Assignee: Relypsa, Inc.
    Inventor: George Tyson
  • Patent number: 9228078
    Abstract: A process for preparing a homogeneous polyethylene product can include producing a first polyethylene resin in the presence of a metallocene catalyst in a reactor. The first polyethylene resin can have a density of from 0.940 to 0.970 g/cm3. The first polyethylene resin can have a Low Molecular Weight (LMW) with an MI2 of between 2 and 250 g/10 min. The process can include separately producing a second polyethylene resin in the presence of a Ziegler-Natta catalyst in a reactor. The second polyethylene resin can have a High Molecular Weight (HMW) with an MI2 of between 0.01 and 15 g/10 min. The process can include physically blending together the first polyethylene resin and the second polyethylene resin to produce the homogeneous polyethylene product.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: January 5, 2016
    Assignee: TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventors: Daan Dewachter, Eric Damme
  • Patent number: 9192903
    Abstract: Reactor assembly for the production of polymers including a fluidized bed reactor (1) comprising a bottom zone (5), a middle zone (6) and an upper zone (7), an inlet (8) for the fluidization gas located in the bottom zone (5), an outlet (9) for the fluidization gas located in the upper zone (7); the outlet (9) for the fluidization gas being coupled with the fluidized bed reactor (1) via inlet (8) via a gas circulation line; means for separation of solids from gas (2) being connected to said gas circulation line; the equivalent cross-sectional diameter of the upper zone (7) being monotonically decreasing with respect to the flow direction of the fluidization gas through the fluidized bed reactor; the middle zone (6) having an essentially constant equivalent cross-sectional diameter with respect to the flow direction of the fluidization gas through the fluidized bed reactor; the equivalent cross-sectional diameter of the bottom zone (5) being monotonically increasing with respect to the flow direction of the fl
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: November 24, 2015
    Assignee: BOREALIS AG
    Inventors: Günter Weickert, Erik Eriksson, Michiel Bergstra, Klaus Nyfors
  • Patent number: 9192905
    Abstract: The invention relates to a reactor assembly for the production of polymers including a fluidized bed reactor (1) comprising a bottom zone (5), a middle zone (6) and an upper zone (7), an inlet (8) for the fluidization gas located in the bottom zone (5), an outlet (9) for the fluidization gas located in the upper zone (7); the outlet (9) for the fluidization gas being coupled with the fluidized bed reactor (1) via inlet (8); the equivalent cross-sectional diameter of the bottom zone (5) being monotonically increasing with respect to the flow direction of the fluidization gas through the fluidized bed reactor; the middle zone (6) having an essentially constant equivalent cross-sectional diameter with respect to the flow direction of the fluidization gas through the fluidized bed reactor; the equivalent cross-sectional diameter of the upper zone (7) being monotonically decreasing with respect to the flow direction of the fluidization gas through the fluidized bed reactor; wherein that the ratio of the height of
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: November 24, 2015
    Assignee: BOREALIS AG
    Inventors: Erik Eriksson, Michiel Bergstra, Klaus Nyfors, Günter Weickert
  • Patent number: 9169343
    Abstract: An ethylenic polymer comprising amyl groups from about 0.1 to about 2.0 units per 1000 carbon atoms as determined by Nuclear Magnetic Resonance and both a peak melting temperature, Tm, in ° C., and a heat of fusion, Hf, in J/g, as determined by DSC Crystallinity, where the numerical values of Tm and Hf correspond to the relationship Tm?(0.2143*Hf)+79.643. An ethylenic polymer comprising at least one preparative TREF fraction that elutes at 95° C. or greater using a Preparative Temperature Rising Elution Fractionation method, where at least one preparative TREF fraction that elutes at 95° C. or greater has a gpcBR value greater than 0.05 and less than 5 as determined by gpcBR Branching Index by 3D-GPC, and where at least 5% of the ethylenic polymer elutes at a temperature of 95° C. or greater based upon the total weight of the ethylenic polymer.
    Type: Grant
    Filed: April 1, 2014
    Date of Patent: October 27, 2015
    Assignee: Dow Global Technologies LLC
    Inventors: Mehmet Demirors, Teresa P. Karjala, Christopher R. Eddy, Lonnie G. Hazlitt, Pak-Meng Cham, Sarat Munjal, Wallace W. Yau
  • Patent number: 9139794
    Abstract: Provided are processes for making polymer compositions, especially those with reduced or no gel formation in lubricating oils as identified by rheological and visual gel tests and which are useful as viscosity modifiers. The processes described herein aim to achieve this objective by adjusting the concentrations of the hydrogen feed(s) in the first and/or second polymerization reaction zones, preferably such that (a) the hydrogen feed concentration in the first polymerization reaction zone is 0.0-1.0 wt %, based on total weight of feed(s) of hydrogen, ethylene monomer, ?-olefin comonomer, and solvent into the first polymerization reaction zone, and/or (b) the hydrogen feed concentration in the second polymerization reaction zone is 0.0-0.5 wt %, based on total weight of feed(s) of hydrogen, ethylene monomer, ?-olefin comonomer, and solvent into the second polymerization reaction zone.
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: September 22, 2015
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Rainer Kolb, Phillip T. Matsunaga, Periagaram S. Ravishankar, Lisa B. Stefaniak, Quintin Paul Ward Costin
  • Patent number: 9133291
    Abstract: Process for transferring polyolefin particles from a first gas-phase polymerization reactor to a second gas-phase polymerization reactor in a multistage polymerization of olefins carried out in at least two serially connected gas-phase polymerization reactors, wherein the first gas-phase reactor is a fluidized-bed reactor comprising a gas distribution grid and a settling pipe, which is integrated with its upper opening into the distribution grid and contains a bed of polyolefin particles which moves from top to bottom of the settling pipe, the process comprising the steps of introducing a fluid into the settling pipe in an amount that an upward stream of the fluid is induced in the bed of polyolefin particles above the fluid introduction point; withdrawing polyolefin particles from the lower end of the settling pipe; and transferring the withdrawn polyolefin particles into the second gas-phase polymerization reactor, process for polymerizing olefins comprising such a process for transferring polyolefin p
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: September 15, 2015
    Assignee: Basell Polyolefine GmbH
    Inventors: Massimo Covezzi, Giuseppe Penzo, Gabriele Mei, Giulia Mei, Pietro Baita, Gerhardus Meier, Antonio De Lucia, Ulf Schueller, Gianpiero Ferraro
  • Patent number: 9115223
    Abstract: The invention refers to a process for preparing a Group 2 metal/transition metal olefin polymerization catalyst component in particulate form for polymerizing olefins, especially ethylene or propylene or comonomers thereof.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: August 25, 2015
    Assignee: BOREALIS AG
    Inventors: Peter Denifl, Mikaela Eriksson, Timo Leinonen, Anssi Haikarainen
  • Patent number: 9115227
    Abstract: The invention relates to a method for producing a polymer using a chain transfer agents. In particular, the invention relates to a process for polymerizing a polymer in the presence of a mixture of at least two chain transfer agents, which mixture comprises a polar chain transfer agent (polar CTA), and a non-polar (non-polar CTA).
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: August 25, 2015
    Assignee: Borealis AG
    Inventors: Alfred Campus, Markus Huber, Ulf Nilsson, Hermann Schild, Annika Smedberg, Bjorn Voigt
  • Patent number: 9109106
    Abstract: The present invention relates to polymer compositions comprising a propylene impact copolymer and a processing aid, as well as corrugated boards made from such compositions. The impact copolymer has a melt flow range of from 1.5 to 3.5 g/10 min and a dispersed phase content of from 5 to 30% by weight. The dispersed phase of the impact copolymer has an ethylene content of from 30- to 70% by weight of the dispersed phase. The matrix phase of the impact copolymer is a propylene homopolymer or a random copolymer comprising units derived from propylene and a second copolymer selected from either ethylene or 1-butene wherein the units derived from the second copolymer comprise from 0 to 5% by weight of the dispersed phase.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: August 18, 2015
    Assignee: Braskem America, Inc.
    Inventors: Peter S. Dias, Li-Min Tau, John Kaarto
  • Patent number: 9096694
    Abstract: The disclosure includes a polymerization process and an olefin polymerization system. A polymerization product is produced, a vapor phase is recovered from the polymerization product, the vapor phase is fractionated in a first column to yield a fraction stream, and the fraction stream is fractionated in a second column. A first stream of the second column, which comprises a diluent, can be recycled to a first polymerization reactor. A second stream of the second column, which comprises olefin monomer, diluent, and hydrogen, can be recycled to a second polymerization reactor. Comonomer may be recycled from the first column to the first polymerization reactor, the second polymerization reactor, or both.
    Type: Grant
    Filed: January 20, 2014
    Date of Patent: August 4, 2015
    Assignee: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Anurag Gupta, Timothy O. Odi, Ralph W. Romig
  • Patent number: 9096699
    Abstract: A method of preparing a catalyst comprising contacting an acidic colloidal silica suspension with a titanium-containing compound to form a mixture, adjusting the pH of mixture to about neutral to form a catalyst support, and contacting the catalyst support with chromium-containing compound to from a chromium-supported catalyst. A catalyst support prepared by contacting a colloidal silica suspension and a titanium-containing compound under acidic conditions to form a mixture, and contacting the mixture with a basic material in an amount sufficient to increase the pH of the mixture to about 7.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: August 4, 2015
    Assignee: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Max P. McDaniel, Kathy S. Collins
  • Patent number: 9085682
    Abstract: The present invention relates to polymer compositions comprising a propylene impact copolymer and a processing aid, as well as corrugated boards made from such compositions. The impact copolymer has a melt flow range of from 1.5 to 3.5 g/10 min and a dispersed phase content of from 5 to 30% by weight. The dispersed phase of the impact copolymer has an ethylene content of from 30- to 70% by weight of the dispersed phase. The matrix phase of the impact copolymer is a propylene homopolymer or a random copolymer comprising units derived from propylene and a second copolymer selected from either ethylene or 1-butene wherein the units derived from the second copolymer comprise from 0 to 5% by weight of the dispersed phase.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: July 21, 2015
    Assignee: Braskem America, Inc.
    Inventors: Peter S. Dias, Li-Min Tau, John Kaarto
  • Patent number: 9073027
    Abstract: A gas-phase polymerization reactor having interconnected polymerization zones comprising:—a riser through which the polymer particles flow upwards under fast fluidization conditions or transport conditions;—a downcomer through which the polymer particles flow downward in a densified form under the action of gravity, the bottom of said downcomer being connected to the lower region of said riser by means of a transport section, said transport section being designed as a bend descending from the downcomer to the riser.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: July 7, 2015
    Assignee: Basell Poliolefine Italia S.r.l.
    Inventors: Silvia Soffritti, Riccardo Rinaldi, Maurizio Dorini, Giuseppe Penzo
  • Patent number: 9068031
    Abstract: The present invention relates to a reactor (10) and a process for continuous polymerization, where the reactor (10) has an essentially tubular reactor housing (16). The reactor housing (16) has a drive (38) which runs along the geometric central axis (12) in the flow direction (22) and is configured as a central shaft. A rotatably arranged scraper or wiper (36) is provided within the reactor housing (16); the scraper or wiper (36) has at least one scraper or wiper blade (42) to run along an interior side (44) of the reactor housing (16). The rotational movement of the scraper or wiper (36) results in radial mixing of a stream within the reactor housing (16) which dominates gravity effects and, by virtue of shaping of the scrapers or wipers, optionally makes plug flow or a loop flow or backflow within the reactor (10) or else via an additional external pumped circulation system (23) possible.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: June 30, 2015
    Assignee: LANXESS INTERNATIONAL SA
    Inventors: Hanns-Ingolf Paul, Rolf Feller, Paul Wagner, John Lovegrove, Joachim Ritter, Ricarda Leiberich, Jörg Kirchhoff, Udo Wiesner
  • Patent number: 9062200
    Abstract: Polymer blends suitable for packaging are disclosed that include one or more impact modifiers; and one or more polyethylene terephthalate homopolymers or copolymers obtained by a melt phase polymerization using a catalyst system comprising aluminum atoms in an amount, for example, from about 3 ppm to about 60 ppm and one or more alkaline earth metal atoms, alkali metal atoms, or alkali compound residues in an amount, for example, from about 1 ppm to about 25 ppm, in each case based on the weight of the one or more polyethylene terephthalate homopolymers or copolymers The polymer blends disclosed exhibit improved low temperature toughness compared with blends made using polymers prepared with conventional catalyst systems.
    Type: Grant
    Filed: August 14, 2014
    Date of Patent: June 23, 2015
    Assignee: GRUPO PETROTEMEX, S.A. DE C.V.
    Inventors: Frederick Leslie Colhoun, Mark Edward Stewart, Stephen Weinhold, Richard Dalton Peters, Roger Lee Martin
  • Patent number: 9045598
    Abstract: The process for producing aromatic polyether sulfones via reaction of a dichlorodiphenyl sulfone component with a bisphenol component as monomers in the presence of alkali metal carbonate in the melt in the absence of solvents and diluents comprises carrying out the reaction in a mixing kneader which is operated with a shear rate in the range from 5 to 500 s?1.
    Type: Grant
    Filed: September 3, 2013
    Date of Patent: June 2, 2015
    Assignee: BASF SE
    Inventors: Faissal-Ali El-Toufaili, Achim Stammer, Simon Gramlich, Angela Ulzhöfer
  • Patent number: 9034996
    Abstract: The present invention relates to a production method for efficiently obtaining an acrylic acid-based polymer having a narrow molecular mass distribution and a low molecular mass, without using a large amount of chain transfer agent. A method for continuously producing an acrylic acid-based polymer obtained by continuously polymerizing a monomer having acrylic acid as an essential component, characterized in that a liquid feed pump applies a mechanical load of 0.5 to 2.5 kJ/L to the liquid discharged from the outlet of a reactor. An acrylic acid-based polymer having fewer high-molecular-mass components, excellent dispersion and other properties, and a low molecular mass is thereby obtained.
    Type: Grant
    Filed: October 29, 2012
    Date of Patent: May 19, 2015
    Assignee: TOAGOSEI CO., LTD.
    Inventor: Masahiro Fujiwara
  • Patent number: 9034995
    Abstract: The present disclosure provides a system for recovering emissions generated from an olefin polymerization process, comprising: a devolatilizer for receiving a fresh sweep gas and emissions generated from the olefin polymerization process and outputting a first fluid and a polyolefin resin; a compression refrigeration unit including a compression device and a first heat exchange device, for receiving said first fluid and outputting a first gas-liquid mixture; a first gas-liquid separation device for separating the first gas-liquid mixture and outputting a first recovery product and a first gas phase composition; a first gas separation device for receiving the first gas phase composition, removing small molecular substances therefrom, and outputting a composition rich in small molecular gases and a second gas phase composition rich in hydrocarbons; and a second gas separation device having a second heat exchange device, a second gas-liquid separation device, and a first gas expansion device.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: May 19, 2015
    Assignees: Hangzhou Shuang'an Science and Technology Company Limited
    Inventors: Yongrong Yang, Zhongwei Yang, Jingdai Wang, Zhengliang Huang, Binbo Jiang, Zuwei Liao
  • Patent number: 9023945
    Abstract: Embodiments of the present disclosure relate to a method of preparing polyethylene compositions comprising polymerizing ethylene in a first gas-phase reactor and polymerizing ethylene in a second gas-phase reactor in the presence of hydrogen; wherein at least one of the first or second gas-phase reactors comprises a first and second polymerization zone; wherein a hydrogen pressure of the first and second polymerization zones are different such that at least a portion of the second ethylene cycles through the first and second polymerization zones and a gas mixture of each polymerization zone is partially or totally prevented from entering the other zone.
    Type: Grant
    Filed: February 26, 2014
    Date of Patent: May 5, 2015
    Assignee: Basell Polyolefine GmbH
    Inventors: Harilaos Mavridis, Gerhardus Meier, Ulf Schueller, Diana Doetsch, Bernd Marczinke, Iakovos Vittorias