Monomer Polymerized In Vapor State In Presence Of Transition Metal Containing Catalyst Patents (Class 526/901)
  • Patent number: 7446156
    Abstract: A method for polymerizing olefins in a fluidized-bed reactor is provided. The method involves introducing a fluid into the fluidized-bed reactor at an angle and amount sufficient to induce one or more swirls in the fluidized bed in the reactor.
    Type: Grant
    Filed: October 23, 2006
    Date of Patent: November 4, 2008
    Assignee: Westlake Longview Corporation
    Inventor: Kenneth Alan Dooley
  • Patent number: 7423099
    Abstract: A process for producing a polyolefin comprising a combination of liquid phase polymerization of ?-olefin conducted in one or more liquid phase polymerization reactors and gas phase polymerization of ?-olefin conducted in one or more gas phase polymerization reactors after the liquid phase polymerization in a material flow.
    Type: Grant
    Filed: October 10, 2006
    Date of Patent: September 9, 2008
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Hitoshi Kimoto, Ryouji Kanita, Yoichi Konno
  • Patent number: 7414098
    Abstract: Process for the gas-phase catalytic polymerization of olefins carried out in a plurality of interconnected polymerization zones, the process comprising feeding one or more monomers to said polymerization zones in the presence of a catalyst under reaction conditions and collecting the polymer product from said polymerization zones, in which process the polymer particles grow within a first polymerization zone where a fluidized bed is formed, at least a part of said polymer particles leave said first polymerization zone to enter a second polymerization zone through which they flow downward, leave said second polymerization zone and enter a third polymerization zone through which they flow upward under fast fluidization or transport conditions, leave said third polymerization zone and are reintroduced into the first polymerization zone, thus establishing a circulation of polymer between the different polymerization zones.
    Type: Grant
    Filed: September 25, 2003
    Date of Patent: August 19, 2008
    Assignee: Basell Polioefine Italia S.p.A.
    Inventors: Massimo Covezzi, Gerben Meier, Gabriele Mei
  • Patent number: 7405260
    Abstract: A method for controlling the flowability of polymer particles flowing downward in a densified form inside a polymerization reactor, in which one or more monomers are gas-phase polymerized in the presence of a polymerization catalyst, the density of solid (Kg of polymer per m3 of reactor occupied by the polymer) being higher than 80% of the “poured bulk density” of the polymer, the method being characterized in that a liquid stream is continuously fed into the polymerization reactor at a mass flow rate per unity of reactor surface higher than 30 Kg/h m2.
    Type: Grant
    Filed: January 31, 2005
    Date of Patent: July 29, 2008
    Assignee: Basell Poliolefine Italia s.r.l.
    Inventors: Gabriele Mei, Stefano Bertolini
  • Patent number: 7343225
    Abstract: In some embodiments, a method for determining initial conditions for a transition from an initial reaction to a target reaction to minimize (or substantially minimize) the amount of off-grade material produced during the transition, and optionally also process control variables for implementing the transition. Some embodiments also include the steps of setting the reaction conditions to determined initial conditions and then implementing the transition.
    Type: Grant
    Filed: June 3, 2005
    Date of Patent: March 11, 2008
    Assignee: Univation Technologies, LLC
    Inventors: Ivan J. Hartley, John R. Parrish, Rich John Stolz
  • Patent number: 7332549
    Abstract: The present invention relates to a process for improving the start up of polymerization or copolymerization of ethylene in a gas phase reactor, preferably a fluidized bed gas phase reactor.
    Type: Grant
    Filed: July 8, 2004
    Date of Patent: February 19, 2008
    Assignee: Ineos Europe Limited
    Inventor: Jean-Loic Selo
  • Patent number: 7323523
    Abstract: Properties of a polymer produced in gas phase or slurry phase using a dual catalyst such as polydispersity and comonomer incorporation, may be controlled by controlling reaction parameters such as temperature, (co)monomer pressure, hydrogen partial pressure and the presence of non-polymerizable hydrocarbon. This provides an easy method to control the bimodality of a polymer as well as comonomer incorporation.
    Type: Grant
    Filed: June 20, 2005
    Date of Patent: January 29, 2008
    Assignee: Nova Chemicals (International) S.A.
    Inventors: Peter Phung Minh Hoang, Cliff Robert Baar, Victoria Ker, Peter Zoricak, Paul Mesquita
  • Publication number: 20080021178
    Abstract: A process and apparatus for gas phase polymerization of olefins in a fluidized bed reactor are disclosed. The process and apparatus employ a vertically oriented fines ejector in order to reduce fouling and reactor downtime.
    Type: Application
    Filed: July 20, 2006
    Publication date: January 24, 2008
    Inventors: Matthew Howard Scott, Kenneth Alan Dooley, Bailey James Salmon, Mark Dwayne Lorenz, Paul Keith Scherrer, Robert Lin, David Lynn Meade, Wayne Scott Strasser, Dwayne Ray Leonard
  • Patent number: 7321015
    Abstract: Properties of a polymer produced using a dual catalyst on the same support, such as polydispersity and comonomer incorporation, may be controlled by controlling reaction parameters such as temperature, monomer pressure, hydrogen partial pressure and the presence of non-polymerizable hydrocarbon. This provides an easy method to control the bimodality of a polymer as well as comonomer incorporation.
    Type: Grant
    Filed: December 7, 2004
    Date of Patent: January 22, 2008
    Assignee: Nova Chemicals (International) S.A.
    Inventors: Peter Phung Minh Hoang, Cliff Robert Baar, Victoria Ker, Peter Zoricak, Paul Mesquita
  • Publication number: 20070293639
    Abstract: A process for polymerizing ethylene is disclosed. The process comprises polymerizing ethylene in the presence of a catalyst system which comprises a bridged indenoindolyl transition metal complex on a support material, an alkylalumoxane, a titanium tetralkoxide, and a branched alkyl aluminum compound. The process provides polyethylenes with low density from ethylene alone.
    Type: Application
    Filed: June 20, 2006
    Publication date: December 20, 2007
    Inventors: Sandor Nagy, Barbara M. Tsuie, Ronald J. Clemons
  • Publication number: 20070282085
    Abstract: The use of high activity “Single Site” polymerization catalysts often causes the fouling of polymerization reactors. The problem is particularly acute with gas phase polymerizations. While not wishing to be bound by theory it is believed that the fouling is initiated by the buildup of static charges in the reactor. The use of anti-static agents mitigates this problem, but typical antistatic agents contain polar species, which can deactivate the polymerization catalyst. We have now discovered that the use of a porous metal oxide support allows large levels of a selected antistatic agent to be used in a manner that reduces static/fouling problems in highly active polymerization catalysts.
    Type: Application
    Filed: May 7, 2007
    Publication date: December 6, 2007
    Inventors: Ian McKay, Dusan Jeremic, Paul Mesquita, Grant Berent Jacobsen, Sergio Mastroianni
  • Publication number: 20070276110
    Abstract: The instant invention is a high-density polyethylene composition, and method of making the same. The high-density polyethylene composition of the instant invention includes an ethylene alpha-olefin copolymer having a density in the range of 0.935 to 0.952 g/cm3, a melt index (I2) in the range of 30 to 75 g/10 minutes, an I21/I2 ratio in the range of 13-35, a Mw/Mn ratio in the range of 3.5-8. The high-density polyethylene composition has a brittleness temperature of at least less than ?20° C. The process for producing a high-density polyethylene composition according to instant invention includes the following steps: (1) introducing ethylene, and an alpha-olefin comonomer into a reactor; (2) copolymerizing the ethylene with the alpha-olefin comonomer in the reactor; and (3) thereby producing the high-density polyethylene composition, wherein the high-density polyethylene composition having a density in the range of 0.935 to 0.
    Type: Application
    Filed: May 23, 2006
    Publication date: November 29, 2007
    Applicant: Dow Global Technologies Inc.
    Inventors: William J. Michie, Debra R. Wilson, Stephanie M. Whited, Michael A. Kinnan
  • Patent number: 7300988
    Abstract: A method of polymerizing olefins comprising combining in one embodiment ethylene and optionally one or more ?-olefins with a catalyst composition in a continuous polymerization reactor at a pressure of less than 10,000 kPa; wherein the catalyst composition comprises a hafnocene; and isolating a polyethylene having a density in the range of from 0.930 to 0.975 g/cm3. Also provided is a method of transitioning a continuous polymerization reactor from production of a low density polyethylene to a medium or high density polyethylene. Also provided is a medium to high density polyethylene suitable for injection or rotomolding applications. Also provided is a single catalyst composition suitable for such needs.
    Type: Grant
    Filed: April 11, 2007
    Date of Patent: November 27, 2007
    Assignee: Univation Technologies, LLC
    Inventors: Rainer Kolb, John F. Szul
  • Patent number: 7300987
    Abstract: The present invention relates to a continuous gas phase process comprising polymerizing one or more hydrocarbon monomer(s) in a fluidized bed reactor in the presence of catalyst system or polymerization catalyst and a condensable fluid for a period of at least 12 hours where the bed temperature is less than the Critical Temperature and the dew point temperature of the gas composition in the reactor is within 25° C. of the bed temperature.
    Type: Grant
    Filed: September 5, 2006
    Date of Patent: November 27, 2007
    Assignee: Univation Technologies, LLC
    Inventors: Robert O. Hagerty, Kevin B. Stavens, Marc L. DeChellis, D. Brett Fischbuch, James M. Farley
  • Publication number: 20070270558
    Abstract: A method of preventing or inhibiting fouling in an olefin polymerization fluidized-bed reactor is provided. The method involves varying the fluidization velocity inside the reactor over time about a set point.
    Type: Application
    Filed: October 23, 2006
    Publication date: November 22, 2007
    Inventors: Paul Keith Scherrer, Guy Glen Luneau, Kenneth Alan Dooley
  • Publication number: 20070270557
    Abstract: A method for polymerizing olefins in a fluidized-bed reactor is provided. The method involves introducing a fluid into the fluidized-bed reactor at an angle and amount sufficient to induce one or more swirls in the fluidized bed in the reactor.
    Type: Application
    Filed: October 23, 2006
    Publication date: November 22, 2007
    Inventor: Kenneth Alan Dooley
  • Publication number: 20070255023
    Abstract: Copolymers and methods of forming copolymers are described herein. The methods generally include providing a transition metal compound represented by the formula [L]mM[A]n, wherein L is a bulky ligand including bis-indenyl, A is a leaving group, M is a transition metal and m and n are such that the total ligand valency corresponds to the transition metal valency and providing a support material having a bonding sequence selected from Si—O—Al—F, F—Si—O—Al, F—Si—O—Al—F and combinations thereof. The methods further include contacting the transition metal compound with the support material to form an active supported catalyst system, wherein the contact of the transition metal compound with the support material occurs in proximity to contact with monomer and contacting the active supported catalyst system with a plurality of monomers to form an olefin copolymer.
    Type: Application
    Filed: September 29, 2006
    Publication date: November 1, 2007
    Applicant: Fina Technology, Inc.
    Inventors: Abbas Razavi, Vladimir P. Marin, Margarito Lopez
  • Patent number: 7276564
    Abstract: The present invention relates to a process for improving the start up of polymerization or copolymerization of ethylene in a gas phase reactor, preferably a fluidised bed gas phase reactor.
    Type: Grant
    Filed: July 8, 2004
    Date of Patent: October 2, 2007
    Assignee: Ineos Europe Limited
    Inventor: Jean-Loic Selo
  • Patent number: 7253239
    Abstract: A method for preventing or inhibiting fouling in a gas-phase polyolefin polymerization process. The method includes maintaining the inside surface temperature of the process equipment below the dew point temperature of the gas mixture passing through the equipment.
    Type: Grant
    Filed: October 13, 2005
    Date of Patent: August 7, 2007
    Assignee: Westlake Longview Corporation
    Inventors: Kenneth Alan Dooley, Don Kent Farrer, Sandra Dorothy Holyfield, Glenn Edward Moore, Larry Allen Noble
  • Patent number: 7247685
    Abstract: The present invention relates to a method for preparing polymers by gas-phase deposition polymerization, initiated by a zero valent metal and an initiator.
    Type: Grant
    Filed: December 27, 2005
    Date of Patent: July 24, 2007
    Assignee: Henkel Kommanditgesellschaft auf Aktien
    Inventors: Haruo Nishida, Yoshito Andou, Takeshi Endo, Mikio Yasutake
  • Patent number: 7232551
    Abstract: A method for the treatment of catalysts or catalyst carriers by: a) introducing and distributing a gas in the lower section of a reactor containing a catalyst or catalyst carrier bulk material; b) forming a fluidized bed in the reactor; c) treating the particles in the fluidized bed while removing the fine particles an/or retaining the course particles by means of a separating organ and d) discharging the reactor. To this end, a reactor bottom which tapers downwards is used.
    Type: Grant
    Filed: October 15, 1999
    Date of Patent: June 19, 2007
    Assignee: Basell Polyolefine GmbH
    Inventors: Paulus De Lange, Hendrik Schönfelder, Michael Kämmerer, Hans Werner Siebenhandl, Kaspar Evertz, Stefan Wietfeldt-Haltenhoff, Joachim Werther
  • Patent number: 7223825
    Abstract: A method of polymerizing olefins comprising combining in one embodiment ethylene and optionally one or more ?-olefins with a catalyst composition in a continuous polymerization reactor at a pressure of less than 10,000 kPa; wherein the catalyst composition comprises a hafnocene; and isolating a polyethylene having a density in the range of from 0.930 to 0.975 g/cm3. Also provided is a method of transitioning a continuous polymerization reactor from production of a low density polyethylene to a medium or high density polyethylene. Also provided is a medium to high density polyethylene suitable for injection or rotomolding applications. Also provided is a single catalyst composition suitable for such needs.
    Type: Grant
    Filed: May 22, 2006
    Date of Patent: May 29, 2007
    Assignee: Univation Technologies, LLC
    Inventors: Rainer Kolb, John F. Szul
  • Patent number: 7169863
    Abstract: A compound useful as a cocatalyst or cocatalyst component, especially for use as an addition polymerization catalyst compound, corresponding to the formula: (A*+a)b(Z*J*j)?cd, wherein: A* is a proton or a cation of from 1 to 80 atoms, preferably 1 to 60 atoms, not counting hydrogen atoms, said A* having a charge +a; Z* is an anion group of from 1 to 50 atoms, preferably 1 to 30 atoms, not counting hydrogen atoms, further containing two or more Lewis base sites, said Z* being the conjugate base of an inorganic Bronsted acid or a carbonyl- or non-cyclic, imino-group containing organic Bronsted acid; J* independently each occurrence is a Lewis acid of from 1 to 80 atoms, preferably 1 to 60 atoms, not counting hydrogen atoms, coordinated to at least one Lewis base site of Z*, and optionally two or more such J* groups may be joined together in a moiety having multiple Lewis acidic functionality; j is a number from 1 to 12; and a, b, c, and d are integers from 1 to 3, with the proviso that a×b is equal to c×d.
    Type: Grant
    Filed: January 20, 2004
    Date of Patent: January 30, 2007
    Assignee: Dow Global Technologies Inc.
    Inventor: Alexander Vogel
  • Patent number: 7157531
    Abstract: Methods for controlling a melt viscosity of a polyolefin, controlling comonomer distribution of a polyolefin, achieving a targeted melt viscosity of a polyolefin, and films made from such polyolefins are provided. The methods include contacting an olefin monomer and at least one comonomer with a catalyst system in the presence of a condensable fluid comprising a saturated hydrocarbon having from 2 to 8 carbon atoms. The catalyst system in one embodiment includes a hafnium metallocene catalyst component.
    Type: Grant
    Filed: June 21, 2004
    Date of Patent: January 2, 2007
    Assignee: Univation Technologies, LLC
    Inventors: John F. Szul, James McLeod Farley
  • Patent number: 7141635
    Abstract: A catalyst composition for the polymerization of olefins and process for the use thereof, comprising the combination of one or more Ziegler-Natta catalysts, comprising one or more transition metal compounds, one or more aluminum containing cocatalyts, and a mixture of different selectivity control agents, including in said mixture of selectivity control agents at least one normally dominating selectivity control agent and one normally dominated selectivity control agent, characterized in that the individual selectivity control agents are present in the mixture in relative amounts to each other and relative to the one or more transition metal compounds, such that the effect of the selectivity control agents on the resulting polymer properties is not determined solely or substantially solely by the normally dominating selectivity control agent.
    Type: Grant
    Filed: May 20, 2003
    Date of Patent: November 28, 2006
    Assignee: Union Carbide Chemicals and Plastics Tech
    Inventors: Linfeng Chen, Thomas L. Nemzek
  • Patent number: 7135531
    Abstract: Disclosed are catalyst systems and methods of making the catalyst systems/supports for the polymerization of an olefin containing a solid titanium catalyst component having a substantially spherical shape and containing an internal electron donor, a support made from a magnesium compound, an alcohol, an ether, a surfactant, and an alkyl silicate. The catalyst system may further contain an organoaluminum compound and an organosilicon compound. Also disclosed are methods of making an impact copolymer involving polymerizing an olefin to provide a polyolefin matrix and polymerizing a polyolefin rubber using a catalyst component containing a support made from a magnesium compound, an alcohol, an ether, a surfactant, and an alkyl silicate.
    Type: Grant
    Filed: April 4, 2005
    Date of Patent: November 14, 2006
    Assignee: BASF Catalysts LLC
    Inventors: Zhidong Zhu, Main Chang
  • Patent number: 7122607
    Abstract: The present invention relates to a continuous gas phase process comprising polymerizing one or more hydrocarbon monomer(s) in a fluidized bed reactor in the presence of catalyst system or polymerization catalyst and a condensable fluid for a period of at least 12 hours where the bed temperature is less than the Critical Temperature and the dew point temperature of the gas composition in the reactor is within 25° C. of the bed temperature.
    Type: Grant
    Filed: May 19, 2005
    Date of Patent: October 17, 2006
    Assignee: Univation Technologies, LLC
    Inventors: Robert O. Hagerty, Kevin B. Stavens, Marc L. DeChellis, D. Brett Fischbuch, James M. Farley
  • Patent number: 7091291
    Abstract: A process for polymerizing an alpha-olefin is disclosed. The polymerization is performed in the presence of a catalyst system comprising a three-membered titanacycle. A wide variety of titanacycles can be readily prepared, making this a versatile and inexpensive olefin polymerization process.
    Type: Grant
    Filed: November 23, 2005
    Date of Patent: August 15, 2006
    Assignee: Equistar Chemicals, LP
    Inventor: Sandor Nagy
  • Patent number: 7084223
    Abstract: The invention encompasses late transition metal catalyst systems immobilized on solid supports and their use in heterogenous polymerization processes, particularly in gas phase polymerization of olefin monomers. Preferred embodiments include a late transition metal catalyst system comprising a Group 9, 10, or 11 metal complex stabilized by a bidentate ligand structure immobilized on a solid porous metal or metalloid oxide particle support, particularly those comprising silica. The gas phase polymerization process for olefin monomers comprises contacting one or more olefins with these catalyst systems under gas phase polymerization conditions.
    Type: Grant
    Filed: May 4, 2004
    Date of Patent: August 1, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: George Alan Vaughan, Jo Ann Marie Canich, Phillip T. Matsunaga, David Edward Gindelberger, Kevin Richard Squire
  • Patent number: 7078467
    Abstract: A method of polymerizing olefins comprising combining in one embodiment ethylene and optionally one or more ?-olefins with a catalyst composition in a continuous polymerization reactor at a pressure of less than 10,000 kPa; wherein the catalyst composition comprises a hafnocene; and isolating a polyethylene having a density in the range of from 0.930 to 0.975 g/cm3. Also provided is a method of transitioning a continuous polymerization reactor from production of a low density polyethylene to a medium or high density polyethylene. Also provided is a medium to high density polyethylene suitable for injection or rotomolding applications. Also provided is a single catalyst composition suitable for such needs.
    Type: Grant
    Filed: June 14, 2005
    Date of Patent: July 18, 2006
    Assignee: Univation Technologies, LLC
    Inventors: Rainer Kolb, John F. Szul
  • Patent number: 7067598
    Abstract: The present invention relates to a process for the gas-phase (co-)polymerization of olefins in a fluidized bed reactor using a chromium oxide catalyst characterized in that the polymerization is performed in the presence of a polymer structure modifier.
    Type: Grant
    Filed: November 16, 2001
    Date of Patent: June 27, 2006
    Assignee: BP Chemicals Limited
    Inventors: Jean-Jacques Kuhlburger, Kenneth John Rowley
  • Patent number: 7053163
    Abstract: The tendency of copolymer fluff grains of propylene and ethylene to agglomerate is reduced by injecting at least one olefin comonomer, such as ethylene monomer, into more than one point along the length of the reactor, rather than injecting all of the ethylene at one point. This process reduces the tendency of copolymer fluff grains to agglomerate and cause processing problems as compared with injecting the comonomer at only one point. Copolymer made by this process is expected to have lower substantially amorphous polypropylene content and better organoleptics than copolymer made where the ethylene is injected at only one point. In one non-limiting embodiment the copolymerization reactor is a loop-type reactor.
    Type: Grant
    Filed: February 22, 2005
    Date of Patent: May 30, 2006
    Assignee: Fina Technology, Inc.
    Inventors: Jun Tian, David Rauscher, William Gauthier, Mark C. Douglass, Nelson Black, Ronald Tharappel
  • Patent number: 7041750
    Abstract: A process to support a homogeneous catalyst on a porous solid support is performed in two separate zones. In the first zone the solid is contacted, under stirring, with an amount of a catalyst solution lower than the total pore volume of the solid. In the second zone the solid is dried from the solvent while flowing under pneumatic conveying. A loop circulation of solid is established between the two zones, so that the solid is subject to more contacting steps. The process is particularly suitable to support a metallocene-alumoxane polymerization catalyst on a porous prepolymer. The process can be advantageously performed in continuous, thus fitting the needs of an industrial scale production process.
    Type: Grant
    Filed: December 14, 2000
    Date of Patent: May 9, 2006
    Assignee: Basell Polyolefine GmbH
    Inventors: Massimo Covezzi, Anna Fait
  • Patent number: 7001964
    Abstract: Provided herein is an oligomerization product formed from alpha-olefins having at least three carbon atoms comprising dimers, at least about 80 weight percent of which are linear. In an embodiment, an oligomerization product formed from alpha-olefins having at least three carbon atoms comprises trimers, at least about 20 weight percent of which are linear. In another embodiment, an oligomerization product formed from alpha-olefins having at least three carbon atoms comprises tetramers, at least about 5 weight percent of which are linear. In yet another embodiment, an oligomerization product formed from alpha-olefins having at least three carbon atoms comprises pentamers, at least about 5 weight percent of which are linear.
    Type: Grant
    Filed: March 14, 2003
    Date of Patent: February 21, 2006
    Assignee: Chevron Phillips Chemical Company, LP
    Inventor: Brooke L. Small
  • Patent number: 6995217
    Abstract: Processes for transitioning among polymerization catalyst systems, preferably catalyst systems that are incompatible with each other. In particular, the processes relate to transitioning from olefin polymerizations utilizing metallocene catalyst systems to olefin polymerizations utilizing traditional Ziegler-Natta catalyst systems.
    Type: Grant
    Filed: July 28, 2005
    Date of Patent: February 7, 2006
    Assignee: Univation Technologies, LLC
    Inventors: Agapios Kyriacos Agapiou, Robert Olds Hagerty, F. David Hussein, Michael Elroy Muhle, Richard B. Pannell, Kathryn Ann Russell, Robert Lynn Santana, X. Simon Zhang
  • Patent number: 6995220
    Abstract: A process for polymerizing ethylene is disclosed. The ethylene is polymerized with a catalyst system which comprises an activator and an indeno[2,1-b]indolyl Group 4-6 transition metal complex having open architecture. The process gives polyethylene having a broad molecular weight distribution for improved processability.
    Type: Grant
    Filed: April 29, 2004
    Date of Patent: February 7, 2006
    Assignee: Equistar Chemicals, LP
    Inventors: Shaotian Wang, Gregory G. Hlatky
  • Patent number: 6995235
    Abstract: Films and methods of forming films comprising first combining in a reactor olefins, a catalyst composition and an activator; wherein the activator is present from less than 50 wt % in a diluent by weight of the activator and diluent; followed by isolating a polyolefin having a density of from 0.940 to 0.980 g/cm3; and finally, extruding the polyolefin into a film having a gel count of less than 200 gels/m2.
    Type: Grant
    Filed: May 2, 2005
    Date of Patent: February 7, 2006
    Assignee: Univation Technologies, LLC
    Inventors: Fred D. Ehrman, Rainer Kolb, Chi-I Kuo, Porter C. Shannon, Keith W. Trapp
  • Patent number: 6989344
    Abstract: The present invention is directed to the use of aluminum alkyl activators and co-catalysts to improve the performance of chromium-based catalysts. The aluminum alkyls allow for the variable control of polymer molecular weight, control of side branching while possessing desirable productivities, and may be applied to the catalyst directly or separately to the reactor. Adding the alkyl aluminum compound directly to the reactor (in-situ) eliminates induction times.
    Type: Grant
    Filed: November 18, 2003
    Date of Patent: January 24, 2006
    Assignee: Univation Technologies, LLC
    Inventors: Kevin J. Cann, Minghui Zhang, Jose Fernando Cevallos-Candau, John Moorhouse, Mark Gregory Goode, Daniel Paul Zilker, Jr., Maria Apecetche
  • Patent number: 6977283
    Abstract: The present invention relates to a process for polymerizing monomer and comonomer(s) utilizing a bulky ligand transition metal metallocene-type catalyst or catalyst system, where the process is operated in the absence of or with a low amount of any of the isomers of the comonomer(s). The level of these isomers in the process of the invention are eliminated or maintained below a threshold level. It has been discovered that removal of certain isomers of the comonomer used in a polymerization process using metallocene-type catalysts results in an improved process.
    Type: Grant
    Filed: April 7, 1998
    Date of Patent: December 20, 2005
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John R. Shutt, Kevin R. Squire, Abdulgaffar Vadgama
  • Patent number: 6949612
    Abstract: Processes for transitioning among polymerization catalyst systems, preferably catalyst systems that are incompatible with each other. In particular, the processes relate to transitioning from olefin polymerizations utilizing metallocene catalyst systems to olefin polymerizations utilizing traditional Ziegler-Natta catalyst systems.
    Type: Grant
    Filed: November 18, 2003
    Date of Patent: September 27, 2005
    Assignee: Univation Technologies, LLC
    Inventors: Agapios Kyriacos Agapiou, Robert Olds Hagerty, F. David Hussein, Michael Elroy Muhle, Richard B. Pannell, Kathryn Ann Russell, Robert Lynn Santana, X. Simon Zhang
  • Patent number: 6946530
    Abstract: The present invention relates to a process for the gas-phase (co-)polymerization of olefins in a fluidized bed reactor wherein fouling is prevented and/or flowability of polymer is improved thanks to the use of a process aid additive.
    Type: Grant
    Filed: October 4, 2002
    Date of Patent: September 20, 2005
    Assignee: BP Chemicals Limited
    Inventors: Alexandre Gallice, Vince Reiling, Jean-Loic Selo
  • Patent number: 6936666
    Abstract: Continuous gas-phase polymerization process for preparing ethylene and propene homopolymers and copolymers, in which ethylene, propene or mixtures comprising ethylene or propene and C3-C8-?-monoolefins are polymerized in the polymerization zone of a gas-phase polymerization reactor at from 30 to 125° C. and pressures of from 1 to 100 bar in the gas phase in a bed comprising finely divided polymer in the presence of a catalyst. To remove the heat of polymerization, the reactor gas is circulated and firstly passes through a cyclone after leaving the reactor. To prevent polymer deposits in the circulating gas system, a catalyst poison having a boiling point above the maximum temperature within the circulating gas system is fed into this circulating gas system at a position between the reactor and the cyclone.
    Type: Grant
    Filed: October 29, 2002
    Date of Patent: August 30, 2005
    Assignee: Babell Polyolfine GmbH
    Inventors: Shahram Mihan, Rainer Karer, Manfred Hecker, Philipp Rosendorfer, Kasper Evertz, Armin Lange
  • Patent number: 6927260
    Abstract: A process for preparing polyethylene from “feed ethylene” comprises: a) a hydrogenation stage in which “feed ethylene” containing impurities or secondary components such as acetylene and ethane is reacted with hydrogen to remove the acetylene by catalytic hydrogenation to form ethylene and part of the ethylene is converted into ethane, and b) a polymerization stage in which the ethylene leaving stage a) is reacted in the gas phase in a fluidized-bed reactor to form polyethylene, where the fluidizing gas used comprises, on entering the reactor, ethene and from 20 to 70% by volume of ethane, based on the total volume of the fluidizing gas, possibly together with further components, where, in a), ethylene is converted in a targeted manner into ethane in addition to the ethane already present in the “feed ethylene” so that the concentration specified in b) results. An apparatus for carrying out the process is also provided.
    Type: Grant
    Filed: August 7, 2002
    Date of Patent: August 9, 2005
    Assignee: Basell Polyolefine GmbH
    Inventors: Klaus Berhalter, Walter Schicketanz, Gerard Duc
  • Patent number: 6921799
    Abstract: The invention relates to a process for the preparation of an olefin polymer comprising at least two polymerization stage in the presence of an olefin polymerization catalyst material, an olefin polymer produced by such process, and the use of such polymers for the production of fibres, pipes, films, moulded products and products for wire and cable applications.
    Type: Grant
    Filed: December 9, 1999
    Date of Patent: July 26, 2005
    Assignee: Borealis A/S
    Inventors: Arild Follestad, Hannu Salminen
  • Patent number: 6914104
    Abstract: The object of the present invention is to provide a polyolefin polymerization method which prevents fine particles of polymer from scattering from a fluidized bed in a gas phase polymerization reactor. This object is achieved by a process for polymerization of ?-olefin in multi-stage polymerization process and in at least two serially arranged polymerization reactors including a gas phase polymerization reactor, the process comprising; drawing out polyolefin particles from a polymerization reactor, and transferring the polyolefin particles into the interior of fluidized bed of a gas phase polymerization reactor of the next stage.
    Type: Grant
    Filed: April 5, 2004
    Date of Patent: July 5, 2005
    Assignee: Sumitomo Chemical Company, Limited
    Inventor: Katsutoshi Kougo
  • Patent number: 6911508
    Abstract: The invention provides a catalyst system and a method of making polyethylene using the catalyst system, the method comprising combining ethylene; an activator; and a metallocene catalyst compound; wherein in one embodiment the metallocene catalyst compound is selected from: wherein M is a Group 4 atom; X is a leaving group; n is an integer from 0 to 3; and R1 to R12 are independently selected from hydrides, halogens, hydroxy, C1 to C6 alkoxys, C1 to C6 alkenyls, and C1 to C10 alkyls; characterized in that when the comonomer is 1-hexene, and the mole ratio of 1-hexene to ethylene combined is varied between 0.015 to 0.05, the density of the resultant polyethylene changes by less than 5% and the I21/I2 varies from 10 to 150.
    Type: Grant
    Filed: April 21, 2004
    Date of Patent: June 28, 2005
    Assignee: Univation Technologies, LLC
    Inventor: Laughlin Laughlin McCullough
  • Patent number: 6911505
    Abstract: Processes for the production of alpha-olefins, including dimerization and isomerization of olefins using a cobalt catalyst complex are provided herein. The olefins so produced are useful as monomers in further polymerization reactions and are useful as chemical intermediates.
    Type: Grant
    Filed: October 4, 2002
    Date of Patent: June 28, 2005
    Assignee: Chevron Phillips Chemical Company, LP
    Inventor: Brooke L. Small
  • Patent number: 6911504
    Abstract: A process for the continuous gas-phase (co)polymerization of one or more olefins for which a rising stream of a gas mixture, comprising at least one olefin to be (co)polymerized, maintains polymer particles in the course of formation in the fluidized state in a polymerization reactor, the said stream entraining fine particles above the fluidized bed outside the reactor, the said fine particles being substantially separated from the gas mixture using a separator, thus dividing the said stream into (i) one or more gas streams (A) substantially devoid of solid particles which is cooled and reintroduced below and/or into the bottom part of the fluidized bed, and (ii) one or more gas streams (B) comprising at least a portion of the said particles which is introduced into or above the fluidized bed, which process is characterized in that at least one of the gas streams (B) comprising the solid particles is introduced directly into the fluidized bed by a dilute-phase transport in a simple pipe, that is to say prefer
    Type: Grant
    Filed: April 12, 2001
    Date of Patent: June 28, 2005
    Assignee: BP Chemicals Limited
    Inventor: Vincent Reiling
  • Patent number: 6904785
    Abstract: A method for the analysis by on-line gas phase chromatography of a gaseous phase produced by an olefin polymerization process which includes carrying out a chromatographic analysis of a gaseous phase produced by an olefin polymerization process with carrier gases containing mainly hydrogen and/or nitrogen, wherein the content of oxygen and of water of the hydrogen and the nitrogen in the carrier gases is less than 5 ppm by weight.
    Type: Grant
    Filed: November 30, 2001
    Date of Patent: June 14, 2005
    Assignee: B.P. Chemicals Limited
    Inventors: Eric Cassisa, Marc Herzog, Christophe Ordan, Myung J. Shin
  • Patent number: 6903168
    Abstract: Ethylenically unsaturated monomers are polymerized in a gas-phase fluidized-bed reactor comprising a reactor space (1) in the form of a vertical tube, a calming zone (2) adjoining the upper part of the reactor space, a circulated gas line (3), a circulated gas compressor (4), a cooling apparatus (5), a gas distributor plate (6) which forms the lower boundary of the reactor space and, if desired, a flow divider (7), wherein the gas distributor plate (6) has a plurality of gas flow orifices (8) whose outlet sides are widened conically.
    Type: Grant
    Filed: October 30, 2003
    Date of Patent: June 7, 2005
    Assignee: Basell Polyolefine
    Inventors: Benno Knauer, Peter Hennenberger, Klaus Hilligardt, Eckard Schauss, Horst Bullack