Polymerization With Metallocene Catalysts Patents (Class 526/943)
  • Patent number: 7294599
    Abstract: This invention relates to the field of olefin polymerization catalyst compositions, and methods for the polymerization and copolymerization of olefins, typically using a supported catalyst composition. In one aspect, this invention encompasses precontacting a metallocene with an olefin or alkyne monomer and an organoaluminum compound, prior to contacting this mixture with the acidic activator-support.
    Type: Grant
    Filed: June 25, 2004
    Date of Patent: November 13, 2007
    Assignee: Chevron Phillips Chemical Co.
    Inventors: Michael D. Jensen, Gil R. Hawley, Max P. McDaniel, Tony Crain, Elizabeth A. Benham, Joel L. Martin, Qing Yang
  • Publication number: 20070255024
    Abstract: Supported catalyst systems and methods of forming polyolefins are generally described herein. The polymerization methods generally include introducing an inorganic support material to a reaction zone, wherein the inorganic support material includes a bonding sequence selected from Si—O—Al—F, F—Si—O—Al, F—Si—O—Al—F and combinations thereof, introducing a transition metal compound to the reaction zone and contacting the transition metal compound with the inorganic support material for in situ activation/heterogenization of the transition metal compound to form a catalyst system. The method further includes introducing an olefin monomer to the reaction zone and contacting the catalyst system with the olefin monomer to form a polyolefin.
    Type: Application
    Filed: June 21, 2006
    Publication date: November 1, 2007
    Applicant: Fina Technology, Inc.
    Inventors: Abbas Razavi, Vladimir P. Marin, Margarito Lopez
  • Publication number: 20070255025
    Abstract: Supported catalyst systems, methods of forming polyolefins and the formed polymers are generally described herein. The methods generally include identifying desired polymer properties, providing a transition metal compound and selecting a support material capable of producing the desired polymer properties, wherein the support material includes a bonding sequence selected from Si—O—Al—F, F—Si—O—Al, F—Si—O—Al—F and combinations thereof.
    Type: Application
    Filed: July 26, 2006
    Publication date: November 1, 2007
    Applicant: Fina Technology, Inc.
    Inventors: Abbas Razavi, Vladimir P. Marin, Margarito Lopez
  • Publication number: 20070255023
    Abstract: Copolymers and methods of forming copolymers are described herein. The methods generally include providing a transition metal compound represented by the formula [L]mM[A]n, wherein L is a bulky ligand including bis-indenyl, A is a leaving group, M is a transition metal and m and n are such that the total ligand valency corresponds to the transition metal valency and providing a support material having a bonding sequence selected from Si—O—Al—F, F—Si—O—Al, F—Si—O—Al—F and combinations thereof. The methods further include contacting the transition metal compound with the support material to form an active supported catalyst system, wherein the contact of the transition metal compound with the support material occurs in proximity to contact with monomer and contacting the active supported catalyst system with a plurality of monomers to form an olefin copolymer.
    Type: Application
    Filed: September 29, 2006
    Publication date: November 1, 2007
    Applicant: Fina Technology, Inc.
    Inventors: Abbas Razavi, Vladimir P. Marin, Margarito Lopez
  • Publication number: 20070249490
    Abstract: The present invention relates to a bis-arylaryloxy catalyst system for the production of ethylene homopolymers or copolymers with ?-olefins, which has high catalytic activity. More particularly, it relates to a transition metal catalyst comprising a group-IV transition metal as a central metal, a cyclopentadiene derivative around the central metal, and two aryloxide ligands substituted with aryl derivatives at the ortho-positions, the ligands not being bridged to each other, as well as a catalyst system comprising said catalyst and an aluminoxane co-catalyst or a boron compound co-catalyst, and a method for producing high-molecular-weight ethylene homopolymers or copolymers with ?-olefins using the same.
    Type: Application
    Filed: April 23, 2007
    Publication date: October 25, 2007
    Applicant: SK CORPORATION
    Inventors: Myung-Ahn Ok, Jong-sok Hahn, Dae Ho Shin, Sang-Ook Kang, Tae Eung Kim
  • Patent number: 7285513
    Abstract: The present invention relates to a process for preparing a catalyst for olefin polymerization which is obtainable by bringing A) at least one organic transition metal compound, B) a mixture of at least two different organo metallic compounds and C) at least one cation-forming compound into contact with one another, wherein the organic transition metal compound A) is firstly brought into contact with the mixture of the organo metallic compounds B). In addition, the invention relates to the use of the catalyst for olefin polymerization, to catalysts obtainable by this process and to a process for the polymerization of olefins in which these catalysts are used.
    Type: Grant
    Filed: July 14, 2003
    Date of Patent: October 23, 2007
    Assignee: Basell Polyolefine GmbH
    Inventors: Roland Kratzer, Volker Fraaije
  • Patent number: 7285608
    Abstract: A catalyst system includes a metallocene compound having the formula R9 L1 L2 M1 R1 R2 wherein R9 is a bridge between ligands L1 and L2 and M1 is a metal of Group IVB of the Periodic Table such as titanium, zirconium and hafnium and R1 and R2 can be hydrogen or aliphatic or aromatic groups. Bridge R9 can include silicon, germanium or tin. The metallocene compound of the invention as synthesized has a racemic to meso isomer ratio of greater than 5 to 1, thereby precluding the need for subsequent separation of the meso isomer.
    Type: Grant
    Filed: April 21, 2004
    Date of Patent: October 23, 2007
    Assignee: Novolen Technology Holdings C.V.
    Inventors: Joerg Schottek, Nicola Stefanie Paczkowski, Andreas Winter, Thorsten Sell
  • Patent number: 7279536
    Abstract: Process to polymerize olefins comprising contacting, in a polymerization system, olefins having three or more carbon atoms with a catalyst compound, activator, optionally comonomer, and optionally diluent or solvent, at a temperature above the cloud point temperature of the polymerization system and a pressure no lower than 10 MPa below the cloud point pressure of the polymerization system, where the polymerization system comprises any comonomer present, any diluent or solvent present, the polymer product, where the olefins having three or more carbon atoms are present at 40 weigh % or more.
    Type: Grant
    Filed: August 25, 2006
    Date of Patent: October 9, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Patrick Brant, Francis Charles Rix, Gabor Kiss, Robert P. Reynolds
  • Publication number: 20070225158
    Abstract: Provided are a novel transition metal complex where a monocyclopentadienyl ligand to which an amido group is introduced is coordinated, a catalyst composition including the same, and an olefin polymer using the catalyst composition. The transition metal complex has a pentagon ring structure having an amido group connected by a phenylene bridge in which a stable bond is formed in the vicinity of a metal site, and thus, a sterically hindered monomer can easily approach the transition metal complex. By using a catalyst composition including the transition metal complex, a linear low density polyolefin copolymer having a high molecular weight and a very low density polyolefin copolymer having a density of 0.910 g/cc or less can be produced in a polymerization of monomers having large steric hindrance. Further, the reactivity for the olefin monomer having large steric hindrance is excellent.
    Type: Application
    Filed: March 22, 2007
    Publication date: September 27, 2007
    Applicant: LG CHEM, LTD.
    Inventors: Choong Hoon Lee, Eun Jung Lee, Seungwhan Jung, Boram Lee, Jung A. Lee, Bun Yeoul Lee
  • Patent number: 7273913
    Abstract: A process is described for the preparation of ethylene copolymers having a wide molecular weight distribution, characterized in that it is carried out in the presence of meso- and rac-stereoisomeric mixtures of metallocene compounds having general formula (I), wherein A? and A?, the same or different, are a radical of the ??5-tetrahydroindenyl type (Ia)
    Type: Grant
    Filed: November 18, 2002
    Date of Patent: September 25, 2007
    Assignee: Polimeri Europa S.p.A.
    Inventors: Paolo Biagini, Stefano Ramello, Roberto Provera, Maria Rivellini, legal representative, Stefano Santi, legal representative, Laura Santi, legal representative, Roberto Santi, deceased
  • Patent number: 7271277
    Abstract: The present invention relates to a novel fulvene compound and a preparation method thereof, and more particularly to a fulvene compound having substituted groups in the 2- and 5-positions, prepared from an unsaturated ketone having a substituted group in the ?-position and a halogen atom in the ?-position, and a preparation method thereof. The present invention also relates to a metallocene catalyst having a substituted group in the ?-position carbon of the bridge of the cyclopentadienyl group only by reaction of a fulvene compound and an anion group including the cyclopentadienyl group, and a preparation method of a polyolefin copolymer using the same.
    Type: Grant
    Filed: August 29, 2003
    Date of Patent: September 18, 2007
    Assignee: LG Chem, Ltd.
    Inventors: Young-Whan Park, Si-Geun Lee, Sung-Don Hong, Kwang-Ho Song, Boong-Goon Jeong, Dae-Woo Nam, Bun-Yeol Lee, Choong-Hoon Lee, Hyo-Sun Lee
  • Patent number: 7268194
    Abstract: A process of converting a loop reactor into multiple loop reactors comprising starting with a loop reactor comprising at least 8 vertical legs, at least two non-vertical conversion runs, each non-vertical run connected in fluid flow communication with two vertical legs; at least two feed inlets; and at least two continuous discharge conduits; disconnecting at least one connection of each conversion run; and reconnecting each conversion run in fluid flow communication with a different vertical leg in such a manner to form multiple loop reactors each having at least one feed inlet and at least one continuous discharge conduit.
    Type: Grant
    Filed: February 28, 2002
    Date of Patent: September 11, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James Austin Kendrick, Thomas W. Towles, Scott Thomas Roger
  • Publication number: 20070208148
    Abstract: In a process for producing a propylene copolymer, propylene and at least one olefin monomer selected from ethylene and alpha olefins having 4 to 20 carbon atoms are contacted with a catalyst system comprising (a) a catalyst precursor comprising an organometallic compound and (b) an activator comprising a fluoroarylborate anion represented by the formula: Ct+[B—(ArxRn)]? where Ct+ is a cation capable of extracting an alkyl group from, or breaking a carbon-metal bond of, the organometallic compound; Ar is a fluorophenyl group; R is a fluoronaphthyl group and each of x and n is 1, 2, or 3, with the proviso that the sum of x+n=4.
    Type: Application
    Filed: January 26, 2007
    Publication date: September 6, 2007
    Inventors: George Rodriguez, Bruce Allan Harrington
  • Patent number: 7259216
    Abstract: A process for preparing highly branched ethylene polymers comprises polymerizing ethylene over a catalyst system comprising a compound of the formula Ia or Ib and an activator, where the process is carried out at from 40 to 110° C. and a pressure of from 10 to 100 bar.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: August 21, 2007
    Assignee: Basell Polyolefine GmbH
    Inventors: Sharam Mihan, Dieter Lilge, Jan Göhre
  • Patent number: 7259215
    Abstract: A process for producing a propylene-ethylene block copolymer in a good morphology using a catalyst system comprising a metallocene catalyst (1) preparing high crystalline polypropylene, a metallocene catalyst (2) preparing low crystalline polypropylene, a porous carrier (3), aluminoxane (4) or a compound (4) which can be reacted with the metallocene catalysts described above to form an ionic complex and, if necessary, an organic aluminum compound (5) and a propylene-ethylene block copolymer. The resultant compound has a high transparency and a low elastic modulus.
    Type: Grant
    Filed: November 11, 2003
    Date of Patent: August 21, 2007
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Masami Kanamaru, Hideo Funabashi
  • Patent number: 7256247
    Abstract: The present invention includes a bimodal polyethylene polymerization process wherein metallocene catalyst to is used to adjust the hydrogen response of a Ziegler-Natta catalyst. The polymerization may be carried out in a single reactor or in two or more reactors in series, preferably two or more continuously stirred tank reactors in series. In an embodiment having two or more reactors, the Zeigler-Natta catalyst is added to a first reactor and the metallocene catalyst is added to a downstream reactor. In another embodiment having two or more reactors, the Zeigler-Natta catalyst and metallocene catalyst are added to the same reactor, preferably an upstream reactor. A preferred Zeigler-Natta catalyst comprises TiCl4, and a preferred metallocene catalyst comprises bis(cyclopentadienyl) titanium dichloride.
    Type: Grant
    Filed: March 4, 2004
    Date of Patent: August 14, 2007
    Assignee: Fina Technology, Inc.
    Inventors: Edwar S. Shamshoum, Luc Haspeslagh, Hong Chen
  • Publication number: 20070179046
    Abstract: Provided is catalyst composition including a transition metal complex precatalyst represented by Formula 1; a first cocatalyst represented by Formula 2 which is an alkylaluminum compound; and a second cocatalyst represented by Formula 3 which is a salt compound comprising a Bronsted acid cation and a noncoordinating, compatible anion. Here, R1, R2, R3, R4, E, Q1, Q2 and M are defined in the specification. Al(R6)3 Formula 2 Here, R6 is defined in the specification. [L-H]+[ZA4]? Here, L, [L-H]+, Z and A are defined in the specification. A catalyst composition including binuclear transition metal complexes, an alkylaluminum compound, and a salt compound including a Bronsted acid cation, and a noncoordinating, compatible anion, and a method of preparing the catalyst composition are provided. The activity of the catalyst composition has been improved.
    Type: Application
    Filed: February 1, 2007
    Publication date: August 2, 2007
    Applicant: LG CHEM, LTD.
    Inventors: Eunjung LEE, Choong Hoon LEE, Seungwhan JUNG, Jung A LEE, Boram LEE
  • Patent number: 7250478
    Abstract: The present invention refers to a metallocene catalyst component for producing polyolefins according to formula (I) R?s (CpRn)g (CpRn) M Q3-g (I) or according to formula (II) R?(CpRn)MeXQ (II) wherein—each Cp is a substituted or unsubstituted cyclopentadienyl ring with the bridge-head position of at least one of the cyclopentadienyl rings being occupied by a silicon atom;—each R is the same or different and is hydrogen or a hydrocarbyl radical such as alkyl, alkenyl, aryl, alkylaryl or arylalkyl radical containing from 1 to 20 carbon atoms or two carbon atoms are joined together to form a C4-C6 ring; —R? is a structural bridge between two Cp rings;—M is a group IIIB, IVB, VB or VIB metal;—Q is a hydrocarbyl radical such as aryl, alkyl, alkenyl, alkylaryl or arylalkyl radical having from 1 to 20 carbon atoms, a hydrocarboxy radical having from 1 to 20 carbon atoms or a halogen and can be the same or different from each other;—s is 0 or 1, g is 0, 1 or 2 and s is 0 when g is 0, n is 4 when s is 1 and n is 5 whe
    Type: Grant
    Filed: September 24, 2003
    Date of Patent: July 31, 2007
    Assignee: TOTAL Petrochemicals Research Feluy
    Inventor: Abbas Razavi
  • Publication number: 20070167586
    Abstract: The present invention provides a process for producing an ethylene-?-olefin-unconjugated polyene random copolymer in an aliphatic hydrocarbon solvent under conditions of high-temperature and high-activity. The process comprises polymerizing at least the following components (a)-(c) in an aliphatic hydrocarbon solvent in the presence of a catalyst comprising (A) a transition metal complex having at least one cyclopentadienyl skeleton and (B) an organoaluminum compound and (C) a boron compound as co-catalysts wherein at least a part of the polyene (c) and at least a part of the boron compound (C) are previously contacted with each other before they are introduced into a polymerization reactor: (a): ethylene (b): an ?-olefin of 3-20 carbon atoms (c): a polyene.
    Type: Application
    Filed: January 4, 2007
    Publication date: July 19, 2007
    Inventor: Jun Kawashima
  • Patent number: 7244795
    Abstract: The present invention relates to a polymerization process using improved metallocene catalyst systems. Specifically, the catalyst systems of the present invention relate to a metallocene compound having optimized metals loading and activator concentration, and demonstrate improved operability and productivity. In an exemplary embodiment, the improved metallocene catalyst system of the present invention comprises a metallocene catalyst compound activated by methylaluminoxane, and a support material, the methylaluminoxane being present in the range of from 3 to 9 mmole methylaluminoxane per gram of support material, and the metallocene being present in the range of from 0.01 to 1.0 mmole metallocene per gram of support material.
    Type: Grant
    Filed: December 8, 2003
    Date of Patent: July 17, 2007
    Assignee: Univation Technologies, LLC
    Inventors: Agapios Kyriacos Agapiou, David Michael Glowczwski
  • Patent number: 7241850
    Abstract: A polypropylene composition comprises an isotactic polypropylene homopolymer resin that is suitable to form an injected molded article exhibiting less than about 60% haze, as determined by ASTM D1003, at a thickness of 0.05 inch without clarity-enhancing agents. The polypropylene composition has particular application to injection molded articles and may have a melt flow rate of from about 0.1 g/10 min to about 150 g/10 min as determined by ASTM D-1238, Procedure B. The resin may be prepared using a metallocene catalyst, and the composition may include clarity-enhancing agents for even greater clarity improvements.
    Type: Grant
    Filed: December 15, 2004
    Date of Patent: July 10, 2007
    Assignee: Fina Technology, Inc.
    Inventors: Douglas Burmaster, Owen Hodges, J. Layne Lumus, Lu Ann Kelly, Mark Murphy
  • Patent number: 7241849
    Abstract: The present invention discloses a metallocene catalyst component of formula (Flu-R?-Cp)M(?3-C3R?5)(ether)n (I) wherein Cp is a cyclopentadienyl, substituted or unsubstituted, Flu is a fluorenyl, substituted or unsubstitutted, R? is a structural bridge between Cp and Flu imparting stereorigidity to the component, M is a metal Group III of the Periodic Table, each R? is the same or different and is hydrogen or a hydrocarbyl having from 1 to 20 carbon atoms and n is 0, 1 or 2. It further discloses a process for preparing said catalyst component and its used in the controlled polymerisation of polar or non polar monomers.
    Type: Grant
    Filed: January 6, 2004
    Date of Patent: July 10, 2007
    Assignee: Total Petrochemicals Research Feluy
    Inventors: Jean-François Carpentier, Evgueni Kirillov, Abbas Razavi
  • Patent number: 7241903
    Abstract: A metallocene compound of formula (I): wherein M is zirconium, titanium and hafnium; X is a hydrogen atom, a halogen atom or a hydrocarbon radical; R1 is a linear C1-C20-alkyl radical; R2 is a hydrogen atom or hydrocarbon R3, R4, R5, R6, R7, and R8, are hydrogen atoms or hydrocarbon radicals, A is a sulphur (S) atom or an oxygen (O) atom; Q is a radical of formula (II), (III) or (IV) being bonded to the indenyl at the position indicated by the symbol *; (II), (III), (IV) wherein T1 is a sulphur atom, an oxygen (O) atom or a NR; R9, R10 and R11 are hydrogen atoms or hydrocarbon radicals; T2, T3, T4, T5, and T6 are carbon atoms (C) or nitrogen atoms (N); m1, m2, m3, m4 and m5 are 0 or 1; R12, R13, R14, R15 and R16 are hydrogen atoms or hydrocarbon radicals with the provisos that at least one of R12, R13, R14, R15 and R16 is different from hydrogen atoms, and that no more than two of T2, T3, T4, T5 and T6 are nitrogen atoms.
    Type: Grant
    Filed: June 20, 2002
    Date of Patent: July 10, 2007
    Assignee: Basell Polyolefine GmbH
    Inventors: Cornelia Fritze, Luigi Resconi, Jörg Schulte, Simona Guidotti
  • Patent number: 7238759
    Abstract: Unique copolymers comprising propylene, ethylene and/or one or more unsaturated comonomers are characterized as having: at least one, preferably more than one, of the following properties: (i) 13C NMR peaks corresponding to a regio-error at about 14.6 and about 15.7 ppm, the peaks of about equal intensity, (ii) a B-value greater than about 1.4 when the comonomer content of the copolymer is at least about 3 wt %, (iii) a skewness index, Six, greater than about ?1.20, (iv) a DSC curve with a Tme that remains essentially the same and a Tmax that decreases as the amount of comonomer in the copolymer is increased, and (v) an X-ray diffraction pattern that reports more gamma-form crystals than a comparable copolymer prepared with a Ziegler-Natta catalyst These polypropylene polymers are made using a nonmetallocene, metal-centered, heteroaryl ligand catalyst. These polymers can be blended with other polymers, and are useful in the manufacture of films, sheets, foams, fibers and molded articles.
    Type: Grant
    Filed: November 15, 2004
    Date of Patent: July 3, 2007
    Assignee: Dow Global Technologies Inc.
    Inventors: James C. Stevens, Daniel D. Vanderlende
  • Patent number: 7232868
    Abstract: A polymerization process is provided. For example, a polymerization process is described, including providing a catalyst slurry having a metallocene catalyst and a first oil, providing a transport medium including a second oil and combining the transport medium and the catalyst slurry to form a catalyst mixture. The process may further include introducing the catalyst mixture to a polymerization reactor and contacting olefin monomers with the catalyst mixture to polymerize the olefin monomers and form polyolefins.
    Type: Grant
    Filed: September 22, 2003
    Date of Patent: June 19, 2007
    Assignee: Exxon/Mobil Chemical Patents Inc.
    Inventors: Lawrence Carl Smith, James Charles Vizzini, Ted Alexander Powell, Terry John Burkhardt, Anthony Nicholas Speca, Shiaw Tzuu Ju
  • Patent number: 7230056
    Abstract: A two-step catalyst preparation method is disclosed. First, a support is combined with an indenoindolyl Group 3-10 metal complex and a first activator comprising an alkyl alumoxane to give a supported complex. The supported complex is subsequently combined with a second activator comprising an ionic borate to produce a borate-treated supported complex. Activating indenoindolyl metal complexes in this sequence surprisingly provides an exceptional activity boost compared with other ways of activating them with either or both types of activators.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: June 12, 2007
    Assignee: Equistar Chemicals, LP
    Inventor: Shaotian Wang
  • Patent number: 7226886
    Abstract: Catalyst compositions comprising a first metallocene compound, a second metallocene compound, an activator-support, and an organoaluminum compound are provided. An improved method for preparing cyclopentadienyl complexes used to produce polyolefins is also provided.
    Type: Grant
    Filed: September 15, 2005
    Date of Patent: June 5, 2007
    Assignee: Chevron Phillips Chemical Company, L.P.
    Inventors: Kumudini C. Jayaratne, Michael D. Jensen, Qing Yang
  • Patent number: 7223878
    Abstract: A process for separating inorganic and organometallic by-products from a mixture comprising at least one organometallic transition metal compound as product and at least one organometallic by-product and at least one inorganic by-product as by-products comprises the steps A) admixing the mixture comprising the product, the organometallic by-product and the inorganic by-product with a mixture comprising at least one polar organic extractant and water and separating off the undissolved residue, B) washing the residue from step A) with a nonpolar organic extractant or a mixture comprising at least one nonpolar organic extractant and at least one aprotic polar organic solvent and C) drying the residue which has been washed in step B) and comprises the organometallic transition metal compound.
    Type: Grant
    Filed: May 18, 2002
    Date of Patent: May 29, 2007
    Assignee: Basell Polyolefine GmbH
    Inventors: Jörg Schulte, Jörg Schottek
  • Patent number: 7223822
    Abstract: Disclosed is a process for producing branched polymers including at least 50 mol % C3–C40 olefins. The process may include: (1) feeding a first catalyst, an activator, and one or more C2–C40 olefins into a first reaction zone at a temperature of greater than 70° C. and a residence time of 120 minutes or less to produce a product; (2) feeding the product a second catalyst, and an activator into a second reaction zone at a temperature of greater than 70° C., and a residence time of 120 minutes or less. One of the catalysts should be chosen to produce a polymer having a weight average molecular weight of 100,000 or less and a crystallinity of 20% or less. The other catalyst should be chosen to producing a polymer having a weight average molecular weight of 100,000 or less and a crystallinity of 20% or more.
    Type: Grant
    Filed: April 15, 2004
    Date of Patent: May 29, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Ramin Abhari, Charles Lewis Sims, Peijun Jiang, David Raymond Johnsrud, Jo Ann Marie Canich
  • Patent number: 7223824
    Abstract: A multinuclear transition metal compound which has two or more catalytic active sites, and is useful in preparing the olefin polymer and copolymer, is disclosed. The multinuclear transition metal compound for olefin polymerization includes two or more metals, and at least one ligand having a cyclopentadienyl moiety, which connects the two or more metals. The preferable multinuclear transition metal catalyst for olefin polymerization includes the first transition metal, the first ? ligand having a cyclopentadienyl moiety, which is coordinated to the first transition metal, and the second transition metal to which the second ? ligand having a cyclopentadienyl moiety is coordinated, wherein the second transition metal is bonded to the first ?-ligand via a sigma (?) bond.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: May 29, 2007
    Assignee: Daelim Industrial Co., Ltd.
    Inventors: Sah-Mun Hong, Sung-Woo Kang, Young-Jae Jun, Jin-Sook Oh, Hyun-Ki Yoon
  • Patent number: 7220695
    Abstract: This invention relates to supported activators comprising the product of the combination of an ion-exchange layered silicate, an organoaluminum compound, and a heterocyclic compound, which may be substituted or unsubstituted. This invention further relates to catalyst systems comprising catalyst compounds and such activators, as well as processes to polymerize unsaturated monomers using the supported activators. For the purposes of this patent specification and the claims thereto, the term “activator” is used interchangeably with the term “co-catalyst”, the term “catalyst” refers to a metal compound that when combined with an activator polymerizes olefins, and the term “catalyst system” refers to the combination of a catalyst and an activator with or without a support. The terms “support” or “carrier”, for purposes of this patent specification, are used interchangeably and are any ion-exchange layered silicates.
    Type: Grant
    Filed: January 7, 2004
    Date of Patent: May 22, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Gary L. Casty, Smita Kacker, Jack W. Johnson, Murielle V. Scott, Steven L. Hegwood, Robert R. Simpson, Robert P. Reynolds
  • Patent number: 7220804
    Abstract: The present invention relates to a supported catalyst composition and a method for making the supported catalyst composition and its use in a process for polymerizing olefin(s). In particular, the invention is directed to a method for making a supported catalyst composition by contacting a supported activator with a bulky ligand and a metal compound.
    Type: Grant
    Filed: October 13, 2000
    Date of Patent: May 22, 2007
    Assignee: Univation Technologies, LLC
    Inventor: Sun-Chueh Kao
  • Patent number: 7214745
    Abstract: A process for producing an olefin polymer with high polymerization activity without using an expensive co-catalyst or using a limited amount of the co-catalyst, more particularly a process for producing a high molecular weight (co)polymer with high polymerization activity even at a high polymerization temperature which is more practical. At least one olefin is polymerized by means of a polymerization catalyst comprising at least one transition metal compound selected from transition metal compounds which have a substituted indenyl group, represented by a certain specific chemical formula, and an organoaluminum compound represented by the formula Al(R)3.
    Type: Grant
    Filed: August 6, 2002
    Date of Patent: May 8, 2007
    Assignee: Denki Kagaku Kogyo Kabushiki Kaisha
    Inventors: Toru Arai, Shingo Hanazato, Masataka Nakajima
  • Patent number: 7214749
    Abstract: The present invention is directed to a novel composition, and to a method of making the composition, the composition being useful in catalyst systems for the homopolymerization and/or copolymerization of olefins, wherein such catalyst systems display a higher level of activity and stereoselectivity than previously reported. The present invention is also directed to novel polymeric compositions made with such catalyst systems, such as a novel syndiotactic polypropylene that melts at temperatures higher than previously reported.
    Type: Grant
    Filed: July 7, 2005
    Date of Patent: May 8, 2007
    Assignee: The Texas A&M University Systems
    Inventors: Stephen A. Miller, Levi J. Irwin
  • Patent number: 7214746
    Abstract: This invention relates to metallocene compounds represented by formula: wherein M is a group 3, 4, 5 or 6 transition metal atom, or a lanthanide metal atom, or actinide metal atom; E is a substituted or unsubstituted indenyl ligand that is bonded to Y through the two position of the indenyl ring; A is bonded to Y, and is a substituted or unsubstituted cyclopentadienyl ligand, a substituted or unsubstituted heterocyclopentadienyl ligand, a substituted or unsubstituted indenyl ligand, a substituted or unsubstituted heteroindenyl ligand, a substituted or unsubstituted fluorenyl ligand, a substituted or unsubstituted heterofluorenyl ligand, or other mono-anionic ligand, or A may, independently, be defined as E; Y is a phosphorus containing group that is bonded to both E and A, and is bonded via the phosphorus atom to E; and X are, independently, univalent anionic ligands, or both X are joined and bound to the metal atom to form a metallocycle ring, or both X join to form a chelating ligand, a diene ligand, o
    Type: Grant
    Filed: March 11, 2005
    Date of Patent: May 8, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Alexander Z. Voskoboynikov, Denis N. Kazyulkin, Vyatcheslav V. Izmer, Alexey N. Ryabov, Jo Ann M. Canich
  • Patent number: 7211536
    Abstract: Supported stereospecific catalysts and processes for the stereotactic propagation of a polymer chain derived from ethylenically unsaturated monomers which contain three or more carbon atoms or which are substituted vinyl compounds, specifically alpha olefins, particularly the polymerization of propylene to produce syndiotactic or isotactic polypropylene. The supported metallocene catalyst comprises a stereospecific metallocene catalyst and a co-catalyst component comprising at least one of an alkyl alumoxane and an alkylaluminum compound. Both the metallocene catalyst and the co-catalyst are supported on a particulate silica support comprising silica particles having an average particle size of 5–40 microns and an average effective pore size of 50–200 angstroms. The silica support further has a differential pore size distribution of a pore volume of at least 0.01 cm3/g. within a range having a maximum pore width of no more than 300 angstroms.
    Type: Grant
    Filed: October 22, 2004
    Date of Patent: May 1, 2007
    Assignee: Fina Technology, Inc.
    Inventors: Margarito Lopez, Edwar Shamshoum, Donald Gordon Campbell, Jr.
  • Patent number: 7211537
    Abstract: A modified aluminum oxy compound (A) obtained by reacting an aluminum oxy compound (a), water (b) and a compound having a hydroxyl group (c); a polymerization catalyst component comprising the modified aluminum oxy compound; a polymerization catalyst obtained by contacting said modified aluminum oxy compound (A), a transition metal compound (B) and optionally an organoaluminum compound (C) and a specified boron compound; and a process for producing an olefin polymer or an alkenyl aromatic hydrocarbon polymer with the polymerization catalyst.
    Type: Grant
    Filed: April 26, 2005
    Date of Patent: May 1, 2007
    Assignee: Sumitomo Chemical Company Limited
    Inventors: Masayuki Fujita, Tatsuya Miyatake, Yoshinori Seki, Nobuo Oi
  • Patent number: 7205363
    Abstract: The invention relates to a process for the polymerization of olefins using an antistatic agent. In particular, the invention relates to a polymerization process to produce propylene polymers using a supported metallocene catalyst system and an antistatic agent. The antistatic agent may also be contacted with a scavenger prior to polymerization.
    Type: Grant
    Filed: April 20, 2004
    Date of Patent: April 17, 2007
    Assignee: Exxon Mobil Chemical Patents Inc.
    Inventors: Randell Wayne Dickey, Jennifer Harting Ward, Thomas Craig Wilson
  • Patent number: 7205371
    Abstract: Polymer blend compositions of a first polymer component comprising an ethylene propylene copolymer and a second polymer component comprising an isotactic polypropylene copolymer. The first polymer component has a uniform distribution of both tacticity and comonomer between copolymer chains. Further, the first polymer component will exhibit a statistically insignificant intramolecular difference of tacticity.
    Type: Grant
    Filed: January 20, 2006
    Date of Patent: April 17, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Charles C. Cozewith, Sudhin Datta, Weiguo Hu
  • Patent number: 7205364
    Abstract: The invention is a catalyst system including a Group IV B transition metal component and an alumoxane component which may be employed to polymerize olefins to produce a high molecular weight polymer.
    Type: Grant
    Filed: March 28, 1991
    Date of Patent: April 17, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Jo Ann Marie Canich
  • Patent number: 7202190
    Abstract: A supported catalyst system for polymerizing olefins comprising a) a support, b) a Lewis base of the formula M3R6R7R8 ??(I) wherein M3 is an element of main group III of the Periodic Table of the Elements, c) an organometallic compound of the formula II as cocatalyst, M3R6R7R8 ??(II) wherein M3 is an element of main group III of the Periodic Table of the Elements, d) at least one metallocene, e) an organometallic compound of the formula [M4R9j]kIII where M4 is an element of main groups I, II or III of the Periodic Table of the Elements, where the organometallic compound of the formula II is covalently bound to the support.
    Type: Grant
    Filed: December 10, 1998
    Date of Patent: April 10, 2007
    Assignee: Targor GmbH
    Inventors: Hans Bohnen, Cornelia Fritze
  • Patent number: 7199072
    Abstract: A process for preparing a mixed catalyst compound used in the polymerization of polyolefins to produce bimodal polyethylenes is disclosed. In an embodiment, a process of preparing the mixed catalyst system includes: mixing a first catalyst and an activator in a first liquid medium to form a first mixture, combining a support with the first mixture to form a first support slurry, drying the first support slurry in an extent sufficient to provide a dried supported first catalyst, mixing the dried supported first catalyst in a second liquid medium to form a second support slurry, and combining one or more additional catalysts with the second support slurry to provide the mixed catalyst compound.
    Type: Grant
    Filed: September 16, 2003
    Date of Patent: April 3, 2007
    Assignee: Univation Technologies, LLC
    Inventors: Donna Jean Crowther, John Francis Szul
  • Patent number: 7199202
    Abstract: A propylenic polymer according to the present invention or a composition thereof have an excellent melt flowability and contains a less amount of stickiness-causing components, and also has a low modulus and is pliable, and is capable of providing a transparent molded article, thus being useful as a substitute for a pliable vinyl chloride resin. In addition, a molded article made therefrom exhibits an excellent heat seal performance at a low temperature, and is excellent in terms of transparency and rigidity. Specifically, it has an isotactic pentad fraction (mmmm), which indicates a stereoregulariry, of 30 to 80%, a molecular weight distribution (Mw/Mn) of 3.5 or less and an intrinsic viscosity [?] of 0.8 to 5 dl/g.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: April 3, 2007
    Assignee: Idemitsu Kosan Co. Ltd.
    Inventors: Yutaka Minami, Masato Kijima, Takuji Okamoto, Yasushi Seta, Yasuhiro Mogi, Tsuyoshi Ota, Hideo Funabashi, Takashi Kashiwamura, Noriyuki Tani, Masami Kanamaru, Koji Kakigami
  • Patent number: 7199073
    Abstract: Catalyst compositions comprising a first metallocene compound, a second metallocene compound, a third metallocene compound, a chemically-treated solid oxide, and an organoaluminum compound are provided. Methods for preparing and using the catalyst and polyolefins are also provided. The compositions and methods disclosed herein provide ethylene polymers having decreased haze while minimizing impact on other properties, such as dart impact.
    Type: Grant
    Filed: November 10, 2004
    Date of Patent: April 3, 2007
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Joel L. Martin, Elizabeth A. Benham, Mark E. Kertok, Michael D. Jensen, Max P. McDaniel, Gil R. Hawley, Qing Yang, Matthew G. Thorn, Ashish M. Sukhadia
  • Patent number: 7193025
    Abstract: The present invention is concerned with single layer articles produced by rotomoulding and consisting essentially of metallocene-produced syndiotactic polypropylene or isotactic random copolymer of propylene.
    Type: Grant
    Filed: April 22, 2003
    Date of Patent: March 20, 2007
    Assignee: Total Petrochemicals Research Feluy
    Inventors: Eric Maziers, Valérie Smits
  • Patent number: 7192902
    Abstract: The application describes a mixed olefin polymerization catalyst composition comprising a support, a reaction product of at least one first organometallic compound and a first activator capable of rendering the first organometallic compound active for insertion polymerization, and at least one second organometallic compound, the activator incapable of rendering the second organometallic compound active for polymerization of the monomers. The mixed catalyst composition can be used to prepare a first polymer component in a first polymerization reactor stage and then, when an effective activator is added for the second organometallic compound, the catalyst composition can be used to prepare a second polymer composition that is homogeneously blended with the first polymer component.
    Type: Grant
    Filed: November 16, 2001
    Date of Patent: March 20, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jeffrey L. Brinen, Charles Cozewith
  • Patent number: 7189790
    Abstract: To develop a catalyst component for olefin polymerization, a metallocene catalyst for olefin polymerization and a process for the production of an olefin polymer capable of producing an olefin polymer having a high molecular weight and a high melting point which can be extruded or injection-molded in a high yield and a novel transition metal compound to be used in these catalyst components a catalyst component for olefin polymerization is made of a transition metal compound represented by formula (I) shown below; a metallocene catalyst for olefin polymerization comprises the catalyst component for olefin polymerization; and a process for the production of an olefin polymer is performed in the presence of the metallocene catalyst for olefin polymerization:
    Type: Grant
    Filed: September 15, 2004
    Date of Patent: March 13, 2007
    Assignee: Japan Polypropylene Corporation
    Inventors: Naoshi Iwama, Takao Tayano, Hisashi Ohtaki
  • Patent number: 7183332
    Abstract: A process for preparing porous olefin polymers comprising bringing into contact in a polymerization reactor, at a temperature T1, one or more olefins of the formula (I) CH2?CHR1, R1 being hydrogen, a C1–C20-alkyl or a C6–C12-aryl group, with a catalyst obtained by reacting a solid catalyst component in the form of spheroidal particles comprising a compound of Ti or V not containing metal-? bonds and a Mg halide, optionally containing one or more electron donor compounds, with an aluminum-alkyl (Al-alkyl) compound, then raising the temperature up to the polymerization temperature, said process being characterized in that: a) if the temperature T1 is lower than 40° C.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: February 27, 2007
    Assignee: Basell Poliolefine Italia S.p.A.
    Inventors: Angelo Ferraro, Giovanni Baruzzi, Constantine A. Stewart, Ofelia Fusco
  • Patent number: 7176266
    Abstract: A catalyst for polymerizing vinyl compounds or ?-olefins according to the present invention includes (A) a transition metal complex, (B) a clay, clay mineral or ion-exchangeable layered compound, modified with at least one organic compound selected from the group consisting of quaternary ammonium salts, amine compounds, and adducts of amine and Brönsted acid, and (C) at least one aluminoxy compound. The transition metal in (A) is selected from Groups 4 to 10 or Groups 8 to 10 of the Periodic Table for catalysts for vinyl compounds or ?-olefins, respectively. The aluminoxy compound is represented by the general Formula wherein a plurality of R groups are each independently C1-10 hydrocarbon group and at least one of the R groups is a hydrocarbon group having 2 or more carbon atoms; and z is an integer of 2 or more for catalyst for vinyl compounds and 2 to 4 for catalysts for ?-olefins.
    Type: Grant
    Filed: July 13, 2004
    Date of Patent: February 13, 2007
    Assignee: Idemitsu Kosan Co. Ltd.
    Inventors: Haruhito Sato, Masami Watanabe, Masahiko Kuramoto
  • Patent number: 7173099
    Abstract: The propylene polymer of the present invention satisfies (1) a 25° C. hexane soluble content (H25) of 0–80 wt %; and (2) either no melting temperature (Tm) measurable by differential scanning calorimetry (DSC), or a melting temperature (Tm) satisfying, if measurable by DSC, the following relationship: ?H?3×(Tm?120) wherein ?H is a melting endotherm (J/g). The propylene homopolymer of the present invention satisfies (1) a meso pentad fraction (mmmm) of 30–60 mol %; (2) a racemic pentad fraction (rrrr) satisfying the following relationship: [rrrr/(1?mmmm)]?0.1; (3) a fraction (W25) eluted at a temperatures up to 25° C. by temperature-programmed chromatography, of from 20–100 wt %; and, (4) a pentad fraction (rmrm) of more than 2.5 mol %. The propylene copolymer of the present invention satisfies (1) a stereoregularity index (P) of 55–90 mol % as determined by 13C-NMR measurement; and (2) a fraction (W25) eluted at a temperatures up to 25° C. by temperature-programmed chromatography, of from 20–100 wt %.
    Type: Grant
    Filed: October 5, 2000
    Date of Patent: February 6, 2007
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventor: Yutaka Minami