Halogen-containing Material Is A Reactant Patents (Class 528/174)
  • Patent number: 6586555
    Abstract: This invention provides processes of the preparation of polyamides, polyimides, and polyamideimides, which are easy to purify after reactions, from polycarboxylic acids and polyamines in high yield without side reactions such as a change of color to black by direct polycondensation reaction with heat, especially processes of preparing aromatic polyamides (aramids), aromatic polyimides, and aromatic polyamideimides, which are difficult to synthesize in direct polycondensation reaction. Polyamides, polymides, and polyamideimides are prepared in high yield by the polycondensation of aromatic dicarboxylic acids, aromatic tetracarboxylic acids or aromatic tricarboxylic acids and aromatic diamines, using arylboric acids such as 3,4,5-trifluorophenylboric acids as polycondensation catalysts, in a mixed solvent of pentamethylbenzene and N-methylpyrrolidinone or a mixed solvent of m-terphenyl and N-butylpyrrolidinone.
    Type: Grant
    Filed: September 12, 2001
    Date of Patent: July 1, 2003
    Assignee: Japan Science and Technology Corporation
    Inventors: Kazuaki Ishihara, Hisashi Yamamoto
  • Patent number: 6566483
    Abstract: This invention discloses a photosensitive phosphorylated phenol-formaldehyde resin, characterized by containing in its molecule at least two phosphate groups, each phosphate group coupled with at least one photo-sensitive group. The photosensitive resin of the present invention is prepared by reacting a phenol-formaldehyde resin with phosphorus oxychloride to form a phosphorylated phenol-formaldehyde resin; then reacting the resin with a compound having one hydroxyl group and at least one ethylenically unsaturated bond, thereby esterifying some of the phosphorochloridate groups to produce a resin having ethylenically unsaturated bonds and unreacted phosphorochloridate groups; and hydrolyzing the unreacted phosphorochloridate groups into phosphoric groups. The photosensitive resin according to the invention is UV-curable and alkaline-soluble as traditional photosensitive resins are; moreover, it exhibits good flame retardant and adhesive properties.
    Type: Grant
    Filed: September 27, 2001
    Date of Patent: May 20, 2003
    Assignee: Industrial Technology Research Institute
    Inventors: Ching-Sheng Cho, Shinn-Jen Chang, Wan-Jung Teng, Jiun-Ji Chen
  • Patent number: 6538100
    Abstract: The object of the present invention is to provide a method capable of producing polyimide resins having excellent heat resistance, which can utilize inexpensive monomers and does not use solvents. The method comprises mixing, in the absence of a solvent, a diamine and at least one tetracarboxylic acid component selected from the group consisting of a tetracarboxylic acid, a tetracarboxylic acid monoanhydride and a tetracarboxylic acid dianhydride capable of forming two imide rings upon cyclization, and then heat-treating the mixture.
    Type: Grant
    Filed: February 14, 2000
    Date of Patent: March 25, 2003
    Assignee: Sumitomo Bakelite Company Limited
    Inventors: Yoshiyuki Yamamori, Hiroyuki Yasuda
  • Patent number: 6531568
    Abstract: This invention provides crosslinkable-group-containing polyimides of various known thermoplastic polyimide backbone structures, which are provided with far better heat resistance, chemical resistance and mechanical properties than known polyimides of the structures without impairing excellent moldability or formability, superb sliding property, low water absorption property, outstanding electrical properties, high thermal oxidation stability and high radiation resistance, all of which are inherent to the structures.
    Type: Grant
    Filed: April 9, 2001
    Date of Patent: March 11, 2003
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Atsushi Shibuya, Tomomi Okumura, Hideaki Oikawa, Yoshihiro Sakata, Takashi Kuroki, Yuichi Okawa, Shoji Tamai
  • Patent number: 6518392
    Abstract: A novel dielectric composition is provided that is useful in the manufacture of integrated circuit devices and integrated circuit packaging devices. The dielectric composition is prepared by imidizing and curing an oligomeric precursor compound comprised of a central polybenzoxazole, polybenzothiazole, polyamic acid or polyamic acid ester segment end-capped at each terminus with an aryl-substituted acetylene moiety such as an ortho-bis(arylethynyl)aryl group, e.g., 3,4-bis(phenylethynyl)phenyl. Integrated circuit devices, integrated circuit packaging devices, and methods of synthesis and manufacture are provided as well.
    Type: Grant
    Filed: March 8, 2001
    Date of Patent: February 11, 2003
    Assignee: International Business Machines Corporation
    Inventors: Kenneth R. Carter, James L. Hedrick, Victor Yee-Way Lee, Dale C. McHerron, Robert D. Miller
  • Patent number: 6500904
    Abstract: A method for the synthesis of high molecular weight poly(imide)s comprising coupling poly(imide) precursors having complementary functional groups and a weight average molecular weight of less than about 50,000 Daltons to form high molecular weight poly (imides)s having a weight average molecular weight greater than 50,000 Daltons.
    Type: Grant
    Filed: November 2, 2001
    Date of Patent: December 31, 2002
    Assignee: General Electric Company
    Inventor: Robert F. Hayes
  • Publication number: 20020198358
    Abstract: The present invention provides a polymer in which coumarin, a photo-reactive molecule, is grafted onto a polyimide for preparing liquid crystal alignment layer which has a superior alignment property and an excellent thermal stability in photo-alignment, a process for preparing the said grafted polymer, a process for preparing liquid crystal alignment layer by employing the said grafted polymer, and a liquid crystal alignment layer prepared by the process. The polymer of the invention is prepared by mixing a coumarin compound with a polyimide, dissolving the mixture in an organic solvent, adding a catalyst, and stirring under an environment of N2 gas. The polymer of the invention is superior in terms of the thermal stability, which makes possible its universal application for the development of a novel liquid crystal display(LCD).
    Type: Application
    Filed: March 8, 2002
    Publication date: December 26, 2002
    Inventors: Jung-Ki Park, Shi-joon Sung, Jong-Woo Lee
  • Patent number: 6498226
    Abstract: This invention provides cycloaliphatic polyimide having the following formula (I): wherein 1 and n are integers from 4 to 7; m is an integer from 0 to 2; p is an integer from 1 to 8; polycyclic aliphatic compound R reprents C1-8 cycloalkyl, cycloalkenyl, cycloalkynyl, norbornenyl, decalinyl, adamantanyl, or cubanyl. That cycloaliphatic polyimide can be a through transparent film, their thermal stability is over 430° C. and dielectric constant is about 2.7.
    Type: Grant
    Filed: May 3, 2001
    Date of Patent: December 24, 2002
    Assignee: Industrial Technology Research Institute
    Inventors: Kung-Lung Cheng, Shu-Chen Lin, Wen-Ling Lui, Chih-Hsiang Lin, Wei-Ling Lin, Woan-Shiow Tzeng
  • Patent number: 6498224
    Abstract: A new method for the synthesis of poly(etherimide)s comprises transimidation of bis(imide) (IV) in the presence of a substituted phthalic anhydride or 4-substituted tetrahydrophthalic anhydride to yield dianhydride (V) which may then be reacted with a diamine to produce poly(etherimide)s. By-product substituted N-alkylphthalimide or 4-substituted N-alkyltetrahydrophthalic anhydride may be recycled or converted to 4-substituted N-alkylphthalimide for use in the formation bisimide (IV), obviating the need for a nitration step.
    Type: Grant
    Filed: December 5, 2001
    Date of Patent: December 24, 2002
    Assignee: General Electric Company
    Inventors: Roy Ray Odle, Thomas Link Guggenheim, William James Swatos, Michael J. Vollmer
  • Patent number: 6489431
    Abstract: A polyimide precursor having a repeating unit represented by the following general formula (1), wherein R1 contains a bivalent organic group constituting a diamine having a hexafluoropropylidene group in its molecule represented by the following general formula (2), and the reduced viscosity is from 0.05 to 5.0 dl/g (in N-methylpyrrolidone at a temperature of 30° C., concentration: 0.5 g/dl), and a polyimide obtained by imidizing said precursor: (wherein R1 is a bivalent organic group constituting a diamine, A is a hydrogen atom, a linear alkyl group including a methyl group, or a trifluoromethyl group, and n is the number of a substituent on an aromatic ring and an integer of from 1 to 4).
    Type: Grant
    Filed: April 12, 2001
    Date of Patent: December 3, 2002
    Assignee: Nissan Chemical Industries, Ltd.
    Inventors: Kazuhisa Ishii, Takayasu Nihira, Hiroyoshi Fukuro
  • Patent number: 6486292
    Abstract: The present invention provides an optical polyimide compound defined by the following formula in an optical high polymer material: wherein X is Cl, Br, oxo-halide, or fully halogenated alkyl; A is a divalent aromatic or halogenated aromatic moiety; and Z is a tetravalent moiety which may be a partly or fully fluorinated aromatic ring, a partly or fully chlorinated aromatic ring, a partly or fully fluorinated cycloaliphatic group, a partly or fully chlorinated aliphatic group, or combinations thereof connected via hetero atoms.
    Type: Grant
    Filed: March 7, 2001
    Date of Patent: November 26, 2002
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyung-Hee You, Kwan-Soo Han, Tae-Hyung Rhee, Eun-Ji Kim, Jung-Hee Kim, Woo-Hyeuk Jang
  • Patent number: 6479615
    Abstract: The polyamic acid of the invention can be obtained by the reaction of an acid anhydride component comprising pyromellitic anhydride and 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane with 2,2′-di-substituted-4,4′-diaminobiphenyls as a first aromatic diamine and any aromatic diamine component, as a second aromatic diamine, of 2,2-bis(4-aminophenoxyphenyl)propanes, 1,1-bis(4-(4-aminophenoxy)-3-t-butyl-6-methylphenyl)butane, 2,2-bis(3-amino-4-methylphenyl)hexafluoropropane and &agr;,&agr;′-bis(4-aminophenyl)diisopropylbenzenes in an organic solvent. The polyimide resin of the invention can be obtained by heating such a polyamic acid solution. In the production of a circuit board, by using a photosensitive polyamic acid having a sensitizer incorporated in such a polyamic acid solution, a patterned polyimide resin layer can be provided as an insulation layer on a metal foil.
    Type: Grant
    Filed: December 11, 2000
    Date of Patent: November 12, 2002
    Assignee: Nitto Denko Corporation
    Inventors: Takahiro Fukuoka, Amane Mochizuki, Naoki Kurata, Naotaka Kinjo, Toshihiko Omote
  • Publication number: 20020156231
    Abstract: An electronically active film comprising a compound of the formula: 1
    Type: Application
    Filed: April 20, 2001
    Publication date: October 24, 2002
    Inventors: Geoffrey A. Lindsay, Richard A. Hollins, John D. Stenger-Smith, Peter Zarras
  • Publication number: 20020151668
    Abstract: A multi-dimensional copolymer array of a plurality of copolymers, polymerized from at least two independently variable sets of monomers, wherein the polymerization is characterized by:
    Type: Application
    Filed: April 13, 1999
    Publication date: October 17, 2002
    Inventors: KEN JAMES, BROCCHINI STEPHEN, VARAWUT TANGPASUTHADOL, JOACHIM KOHN
  • Patent number: 6451921
    Abstract: Block copolymers containing blocks of unsulfonated aromatic polyether sulfones and blocks of aromatic polyether sulfones sulfonated on the aromatics are characterized in that the block length of the unsulfonated aromatic polyether sulfones in each case comprises at least 10 repeating units and that the sequence of the main chain at the block transitions between two adjacent blocks of aromatic polyether sulfones is the same as it is inside these blocks. These block copolymers may be prepared by polycondensation, and are preferably used as membranes. The block copolymers provide compounds which in addition to an adjustable degree of sulfonation have a defined length of sulfonated and unsulfonated blocks. As a result, the spectrum of the polymers suitable for the preparation of synthetic membranes can be expanded and graded.
    Type: Grant
    Filed: February 20, 2001
    Date of Patent: September 17, 2002
    Assignee: Membrana GmbH
    Inventors: Hilmar Weisse, Helmut Keul, Hartwig Höcker
  • Patent number: 6437080
    Abstract: Process for the preparation of a polymer composition comprising at least one aromatic or a mixture thereof, the process comprising: i) obtaining a reaction mixture comprising polymer precursors in a first fluid boiling in excess of 100 C.; ii) subjecting the reaction mixture to a first elevated temperature in excess of 100 C. to generate the alkali metal salts of polymer precursors and the polymer reaction products thereof; and iii) subjecting the reaction product mixture to at least a second temperature and isolating the reaction product in the form of a polymer composition which is substantially insoluble in a second fluid, form the first fluid which is substantially soluble in the second fluid, by contacting with an amount of second fluid; wherein the process is conducted in substantial absence of an effective amount of an azeotrope; novel intermediates thereof, polymer composition obtained thereby; resin formulation thereof; method for manufacture of composites thereof, and uses thereof.
    Type: Grant
    Filed: August 24, 2000
    Date of Patent: August 20, 2002
    Assignee: Cytec Technology Corp.
    Inventors: Patrick Terence McGrail, Jeffrey Thomas Carter
  • Publication number: 20020099166
    Abstract: An acid dianhydride, together with a diamine, is heated in an organic polar solvent in the presence of &ggr;-caprolactone or &bgr;-butyrolactone as an acid catalyst to prepare a polyimide having an average molecular weight of 10,000 to 300,000. This production process can realize the production of a polyimide which is soluble in a solvent and has high processability and stability.
    Type: Application
    Filed: January 23, 2002
    Publication date: July 25, 2002
    Applicant: HITACHI CABLE,LTD.
    Inventors: Katsumoto Hosokawa, Yuuki Honda, Seiji Kamimura, Yoshiyuki Ando, Kenji Asano
  • Patent number: 6365678
    Abstract: A process for the production of polyether block copolysulfones via trans-etherification is disclosed. In the inventive process, an aromatic sulfone polymer is reacted with an aliphatic polyether having on average at least one terminal OH function, preferably in the presence of a basic catalyst. In a preferred embodiment the reaction is carried out in a dipolar aprotic solvent.
    Type: Grant
    Filed: February 10, 2000
    Date of Patent: April 2, 2002
    Assignee: Bayer Aktiengesellschaft
    Inventors: Knud Reuter, Claus-Ludolf Schultz, Ute Wollborn, Heinz Pudleiner
  • Patent number: 6350844
    Abstract: A polyimide film having sufficiently excellent characteristics such as a sufficiently high elastic modulus, a low water absorption, a small coefficient of moisture-absorption expansion, a small coefficient of linear expansion and a high dimensional stability; and various electric/electronic equipment bases with the use of the polyimide film. A polyimide film having a tensile elastic modulus of 700 kg/mm2 or less and a coefficient of moisture-absorption expansion of 20 ppm or less and containing a specific repeating unit as an essential repeating unit is synthesized. Then various electric/electronic equipment bases such as a laminate for flexible print connection boards are produced by using the polyimide film.
    Type: Grant
    Filed: November 5, 1999
    Date of Patent: February 26, 2002
    Assignee: Kaneka Corporation
    Inventors: Kazuhiro Ono, Kiyokazu Akahori, Hidehito Nishimura
  • Patent number: 6350845
    Abstract: Novel polyimides substituted by a substituent having an alkyl or fluoroalkyl group and having reduced water absorption; a process for producing these novel polyimides; and novel acid dianhydrides to be used in the production thereof. A polyimide containing a structure represented by the following general formula (I): wherein X1 represents a tetravalent organic group having a substituent —R1AR2 (wherein A represents a divalent linkage group; R1 represents a single bond or a C1-3 alkylene group; and R2 represents a C1-25 alkyl group or a fluoroalkyl group); and Y represents a divalent organic group.
    Type: Grant
    Filed: June 26, 2000
    Date of Patent: February 26, 2002
    Assignee: Kaneka Corporation
    Inventors: Koji Okada, Shoji Hara, Hitoshi Nojiri
  • Patent number: 6350817
    Abstract: Phenylethynyl containing reactive additives were prepared from aromatic diamines containing phenylethynyl groups and various ratios of phthalic anhydride and 4-phenylethynylphthalic anhydride in glacial acetic acid to form the imide in one step or in N-methyl-2-pyrrolidinone to form the amide acid intermediate. The reactive additives were mixed in various amounts (10% to 90%) with oligomers containing either terminal or pendent phenylethynyl groups (or both) to reduce the melt viscosity and thereby enhance processability. Upon thermal cure, the additives react and become chemically incorporated into the matrix and effect an increase in crosslink density relative to that of the host resin. This resultant increase in crosslink density has advantageous consequences on the cured resin properties such as higher glass transition temperature and higher modulus as compared to that of the host resin.
    Type: Grant
    Filed: April 13, 1999
    Date of Patent: February 26, 2002
    Assignee: The United States of America as represented by the United States National Aeronautics and Space Administration
    Inventors: John W. Connell, Joseph G. Smith, Jr., Paul M. Hergenrother
  • Patent number: 6348152
    Abstract: A medical material composed of a poly(alkyl aryl ether)sulfone copolymer (A) and a thermoplastic polymer (B), such as cellulose triacetate, and being used in contact with the blood, wherein the concentration of the copolymer (A) is at least 40% by weight at least near the surface of a part having a surface to be used in contact with the blood and the copolymer (A) is a specified polysulfone bearing fluorine atoms and polyalkyl ether units and which is suitable for a hollow fiber membrane for artificial kidneys, and the like.
    Type: Grant
    Filed: April 10, 2000
    Date of Patent: February 19, 2002
    Assignee: Teijin Limited
    Inventors: Hiroaki Kawahara, Satoru Ohmori, Takeyuki Kawaguhi
  • Publication number: 20020010307
    Abstract: Improved carbonate method for producing poly(biphenyl ether sulfones) having a low color, the improvement being the use of small particle size anhydrous potassium carbonate. The resulting poly(biphenyl ether sulfones) are significantly improved in color.
    Type: Application
    Filed: February 27, 2001
    Publication date: January 24, 2002
    Inventor: Thomas H. Schwab
  • Patent number: 6335418
    Abstract: A primary object of the invention is to provide a production technology for functional polyamic acid microfine particles and functional polyimide microfine particles by which the particle shape, size and size distribution can be freely controlled. The invention is concerned with a process for synthesizing polyamic acid particles having functional groups at least on the surface from a tetracarboxylic anhydride and a diamine compound characterized by its comprising (a) a first step which comprises providing a tetracarboxylic anhydride and a diamine compound at least one of which has functional groups and preparing a first solution containing the tetracarboxylic anhydride and a second solution containing the diamine compound and (b) a second step which comprises mixing the first and second solutions under ultrasonic agitation to thereby precipitate polyamic acid microfine particles from the mixed solution.
    Type: Grant
    Filed: August 18, 2000
    Date of Patent: January 1, 2002
    Assignees: Osaka Prefectural Government, Sumitomo Bakelite Co., Ltd.
    Inventors: Katsuya Asao, Hitoshi Morita, Hitoshi Onishi, Masaki Kimoto, Yayoi Yoshioka, Hidenori Saito
  • Patent number: 6333391
    Abstract: A process for the preparation of an oligomeric polyimide comprises: mixing a tetracarboxylic acid, a dianhydride, a partially hydrolysed dianhydride or a mixture thereof with a diamine in a reaction medium comprising greater than 80% by weight water, and heating mixture in said reaction medium at a temperature above 100° C. for a time sufficient to form said oligomeric polyimide.
    Type: Grant
    Filed: April 21, 2000
    Date of Patent: December 25, 2001
    Assignees: Commonwealth Scientific and Industrial Research Organisation, The Boeing Company
    Inventors: Bronwyn Glenice Laycock, David Geoffrey Hawthorne, Jonathan Howard Hodgkin, Trevor Charles Morton
  • Patent number: 6329493
    Abstract: Plumbing articles made from a thermoplastic resin comprising a poly(biphenyl ether sulfone) and a poly(aryl ether sulfone) comprising bisphenol A residues.
    Type: Grant
    Filed: October 4, 1999
    Date of Patent: December 11, 2001
    Assignee: BP Corporation North America Inc.
    Inventors: Mohammad J. El-Hibri, Barry L. Dickinson
  • Patent number: 6323301
    Abstract: Disclosed is a composition comprising a polymer with a weight average molecular weight of from about 1,000 to about 100,000, said polymer containing at least some monomer repeat units with a first, photosensitivity-imparting substituent which enables crosslinking or chain extension of the polymer upon exposure to actinic radiation, said polymer also containing a second, thermal sensitivity-imparting substituent which enables further crosslinking or chain extension of the polymer upon exposure to temperatures of about 140° C.
    Type: Grant
    Filed: August 10, 2000
    Date of Patent: November 27, 2001
    Assignee: Xerox Corporation
    Inventors: Thomas W. Smith, Timothy J. Fuller, Ram S. Narang, David J. Luca
  • Patent number: 6316589
    Abstract: A polyimide for optical communications, which is expressed by the formula (1) where R1 and R2 are independently selected from the group consisting of CF3, CCl3, unsubstituted aromatic ring group and halogenerated aromatic ring group; R3 and R4 are independently selected from the group consisting of Cl, F, I, Br, CF3, CCl3, unsubstituted aromatic ring group and halogenated aromatic ring group; and n is an integer from 1 to 39. The polyimides have a superior heat resistance, and can avoid the increase in optical absorption loss due to a refractive index increase and deterioration of adhesive and coating properties due to weak surface tension of a polyimide film. In addition, use of the polyimides as a material for a core layer of optical waveguides can expand the selection range of material for the cladding layer of the optical waveguide.
    Type: Grant
    Filed: April 11, 2000
    Date of Patent: November 13, 2001
    Assignee: SamSung Electronics Co., Ltd
    Inventors: Kyung-Hee You, Kwan-Soo Han, Tae-Hyung Rhee
  • Patent number: 6316574
    Abstract: The present invention provides a liquid crystal display element having an adequate pre-tilt angle for preventing the reverse domain, as well as excellent electrical properties by preparation of the polyamic acid composition for the liquid crystal display element which comprises a polyamic acid A that excels in electrical properties and a polyamic acid B that has side chains, mixed in the ratio A/B of 50/50 to 95/5 (by weight).
    Type: Grant
    Filed: June 19, 2000
    Date of Patent: November 13, 2001
    Assignee: Chisso Corporation
    Inventors: Satoshi Tanioka, Shizuo Murata, Itsuo Shimizu, Kazumi Ito
  • Patent number: 6307002
    Abstract: A polyimide represented by the following general formula (1); wherein l, m, and n represent not the order of each repeating unit, but the numbers of each repeating unit existing in the molecule, E1 is a photosensitive group, E2 is a group comprising an alkyl group having 2 to 20 carbon atoms, —A(—E1)—, —A(—E2)—, and B each are a divalent organic group, X and Y each are a tetravalent organic group, X, Y, A, B, E1 and E2 may be identical or different among the repeating units, 1 is an integer of 1 or more, m and n each are an integer of 0 or more. The polyimide and polyimide compositions comprising it has thermoreactivity as well as photoreactivity and photosensitivity.
    Type: Grant
    Filed: November 9, 1999
    Date of Patent: October 23, 2001
    Assignee: Kaneka Corporation
    Inventors: Kohji Okada, Hitoshi Nojiri
  • Patent number: 6307008
    Abstract: A polymide useful as an adhesive for semiconductor assemblies having excellent thermal resistance and adhesive strength at high temperatures.
    Type: Grant
    Filed: February 25, 2000
    Date of Patent: October 23, 2001
    Assignee: Saehan Industries Corporation
    Inventors: Kyung Rok Lee, Soon Sik Kim, Kyeong Ho Chang, Jeong Min Kweon
  • Patent number: 6303742
    Abstract: The present invention provides a novel polyimide composition which includes a cinnamoyl group or a derived cinnamoyl group and has photo-reactivity and heat-reactivity inherent to the cinnamoyl group. Further, a novel diamine and an acid dianhydride according to the present invention are materials mainly used for preparing a novel polyimide composition having the cinnamoyl group or the derived cinnamoyl group in a main chain or a side chain.
    Type: Grant
    Filed: December 1, 1999
    Date of Patent: October 16, 2001
    Assignee: Kanekafuchi Kagaku Kogyo Kabushiki Kaisha
    Inventors: Kohji Okada, Hitoshi Nojiri
  • Patent number: 6303744
    Abstract: Polyimides and the process for preparing polyimides having improved thermal-oxidative stability derived from the polymerization of effective amounts of one or more of the polyamines such as the aromatic diamines, one or more of the tetracarboxylic dianhydrides and a novel dicarboxylic endcap having a formula selected from the group consisting of: wherein R1 is either a radical where R is either hydrogen or an alkyl radical of 1 to 4 carbons, R2 is either OH, NH2, F, or Cl radical, R3 is either H, OH, NH2, F, Cl or an alkylene radical, R4 is either an alkyl, aryl, alkoxy, aryloxy, nitro, F, or Cl radical, and R5 is either H, alkyl, aryl, alkoxy, aryloxy, nitro, F, or Cl radical. The polyimides are useful particularly in the preparation of prepregs and PMR composites.
    Type: Grant
    Filed: March 23, 2000
    Date of Patent: October 16, 2001
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Mary Ann B. Meador, Aryeh A. Frimer
  • Patent number: 6303743
    Abstract: A polyimide for optical communications, which is expressed by the formula (1), a method of preparing the same, and a method of forming multiple polyimide films using the polyimide, wherein the formula (1) is given by X1, X2, X3, A1, A2, B1, B2, B3, D1, D2, E1, E2, Y1, Y2, Y3, Y4, Y5, Y6, Y7, and Y8, are independently selected from the group consisting of hydrogen atom, halogen atom, alkyl group, halogenated alkyl group, aryl group and halogenated aryl group; Z is a simple chemical bond or selected from the group consisting of —O—, —CO—, —SO3—, —S—, —(T)m—, —(OT)m— and —(OTO)m—, wherein T is alkylene or arylene group substituted by at least one of halogen atom and halogenated alkyl group and m is an integer from 1 to 10; and n is an integer from 1 to 39.
    Type: Grant
    Filed: November 17, 1999
    Date of Patent: October 16, 2001
    Assignee: SamSung Electronics Co., Ltd.
    Inventors: Kyung-hee You, Kwan-soo Han, Tae-hyung Rhee
  • Patent number: 6300465
    Abstract: The present invention is a process for producing a phenylene-containing polymer in the presence of a catalyst system containing a transition metal compound, and a film-forming material comprising the phenylene-containing polymer.
    Type: Grant
    Filed: July 30, 1999
    Date of Patent: October 9, 2001
    Assignee: JSR Corporation
    Inventors: Toshiyuki Akiike, Tadahiro Shiba, Keiji Konno, Igor Rozhanskii, Kohei Goto
  • Publication number: 20010021764
    Abstract: Block copolymers containing blocks of unsulfonated aromatic polyether sulfones and blocks of aromatic polyether sulfones sulfonated on the aromatics are characterized in that the block length of the unsulfonated aromatic polyether sulfones in each case comprises at least 10 repeating units and that the sequence of the main chain at the block transitions between two adjacent blocks of aromatic polyether sulfones is the same as it is inside these blocks. These block copolymers may be prepared by polycondensation, and are preferably used as membranes. The block copolymers provide compounds which in addition to an adjustable degree of sulfonation have a defined length of sulfonated and unsulfonated blocks. As a result, the spectrum of the polymers suitable for the preparation of synthetic membranes can be expanded and graded.
    Type: Application
    Filed: February 20, 2001
    Publication date: September 13, 2001
    Inventors: Hilmar Weisse, Helmut Keul, Hartwig Hocker
  • Patent number: 6277950
    Abstract: The present invention provides polyimides and co-polyimides that are organosoluble. The polyimides and co-polyimides are prepared from an aromatic diamine having ortho-linked phenylene and pendant tert-butyl group, i.e., 1,2-bis(4-aminophenoxy)-4-tert-butyl-benzene, or its mixture with other diamines, and a mixture of dianhydrides that containing at least one dianhydride selected from s-BPDA, DSDA, ODPA, 6FDA and other diether-dianhydrides.
    Type: Grant
    Filed: January 26, 2000
    Date of Patent: August 21, 2001
    Assignee: National Science Council
    Inventors: Chin-Ping Yang, Sheng-Huei Hsiao, Shin-Hung Chen
  • Patent number: 6274699
    Abstract: Polyimides and the process for preparing polyimides having improved thermal-oxidative stability derived from the polymerization of effective amounts of one or more of the polyamines such as the aromatic diamines, one or more of the tetracarboxylic dianhydrides and a novel dicarboxylic endcap having a formula selected from the group consisting of: wherein R1 is either a radical where R is either hydrogen or an alkyl radical of 1 to 4 carbons, R2 is either OH, NH2, F, or Cl radical, R3 is either H, OH, NH2, F, Cl or an alkylene radical, R4 is either an alkyl, aryl, alkoxy, aryloxy, nitro, F, or Cl radical, and R5 is either H, alkyl, aryl, alkoxy, aryloxy, nitro, F, or Cl radical. The polyimides are useful particularly in the preparation of prepregs and PMR composites.
    Type: Grant
    Filed: March 23, 2000
    Date of Patent: August 14, 2001
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Mary Ann B. Meador
  • Patent number: 6274695
    Abstract: The present invention relates to a treating agent for liquid crystal alignment, which is an agent for liquid crystal alignment to be used for a method in which polarized ultraviolet rays or electron rays are irradiated on a polymer thin film formed on a substrate in a predetermined direction relative to the substrate plane, and said substrate is used for aligning liquid crystal without rubbing treatment, wherein said agent for liquid crystal alignment contains a polymer compound having photochemically reactive groups in the polymer main chain and a glass transition temperature of at least 200° C.
    Type: Grant
    Filed: November 1, 1999
    Date of Patent: August 14, 2001
    Assignee: Nissan Chemical Industries, Ltd.
    Inventors: Hideyuki Endou, Takayasu Nihira, Hiroyoshi Fukuro
  • Patent number: 6268460
    Abstract: The present invention provides a process for preparing an optical alignment layer for aligning liquid crystals and liquid crystal displays comprising exposing polyimide layers with polarized light. The invention further describes optical alignment layers, liquid crystal displays incorporating optical alignment layers and novel polymer compositions within the class of polyimide, polyamic acids and esters thereof.
    Type: Grant
    Filed: July 18, 2000
    Date of Patent: July 31, 2001
    Inventors: Wayne M. Gibbons, Patricia A. Rose, Paul J. Shannon, Hanxing Zheng
  • Patent number: 6265521
    Abstract: Polyether polymers such as polyetherimides are prepared by a two-step reaction. The first step is the reaction between an alkali metal salt of a dihydroxy-substituted aromatic hydrocarbon, such as bisphenol A disodium salt, and a substituted aromatic compound such as 1,3-bis[N-(4-chlorophthalimido)]benzene, the alkali metal salt being employed in an amount less than stoichiometric. The intermediate low molecular weight polymer thus produced then undergoes reaction with additional alkali metal salt. By this method, a polyether polymer of closely controlled molecular weight can be conveniently prepared.
    Type: Grant
    Filed: August 7, 2000
    Date of Patent: July 24, 2001
    Assignee: General Electric Company
    Inventors: Thomas Joseph Fyvie, Peter David Phelps, Paul Edward Howson, Donald Frank Rohr, Ganesh Kailasam, Elliott West Shanklin
  • Patent number: 6252033
    Abstract: A method for preparing polyamic acid and polyimide, which is suitable for use in adhesives or adhesive tapes for electronic parts. The polymers have such three-dimensional molecular structures that a significant improvement can be brought about in solvent solubility, thermal resistance, mechanical properties, and adhesive properties onto various substrates. The polyamic acid is prepared by reacting at least one tetracarboxylic dianhydride, at least one aromatic diamine, at least one diamine with a siloxane structure, represented by the following general formula I, and at least one polyamino compound represented by the following general formula II or III. The polyamic acid is converted into polyimide through thermal or chemical imidization.
    Type: Grant
    Filed: March 20, 2000
    Date of Patent: June 26, 2001
    Assignee: Saehan Industries Incorporation
    Inventors: Jeong Min Kweon, Soon Sik Kim, Kyeong Ho Chang, Kyung Rok Lee
  • Patent number: 6248857
    Abstract: An aromatic polycarbodiimide comprising a structure represented by the following formula (1) has excellent low moisture resistance, heat resistance and a low dielectric constant: wherein Q is one selected from the group consisting of —CH2—, m is 0 or 1, A is a divalent organic group having 4 or less carbon atoms, Ph is a phenyl group, X's are a hydrogen atom when Q is and the same or different halogen atoms when Q is —CH2—, and n is an integer of 2 to 300.
    Type: Grant
    Filed: September 23, 1999
    Date of Patent: June 19, 2001
    Assignee: Nitto Denko Corporation
    Inventors: Sadahito Misumi, Akiko Matsumura, Amane Mochizuki, Michio Satsuma, Michie Sakamoto
  • Patent number: 6235866
    Abstract: Bis(halophthalimides) such as, 3-bis[N-(4-chlorophthalimido)]benzene are prepared in slurry in an organic liquid such as o-dichlorobenzene or anisole, by a reaction at a temperature of at least 150° C. between at least one diamino compound, preferably an aromatic diamine such as m- or p-phenylenediamine, and at least one halophthalic anhydride such as 4-chlorophthalic anhydride, in the presence of an imidization catalyst such as sodium phenylphosphinate. The solids content of the reaction mixture is at least about 5% and preferably at least about 12% by weight. The product slurry may be employed directly in the preparation of polyetherimides, and similar slurries may be employed to prepare other polyether polymers.
    Type: Grant
    Filed: October 6, 1999
    Date of Patent: May 22, 2001
    Assignee: General Electric Company
    Inventors: Farid Fouad Khouri, Ganesh Kailasam, Joseph John Caringi, Peter David Phelps, Paul Edward Howson
  • Patent number: 6232428
    Abstract: Essentially colorless, transparent polyimide coatings and films prepared by combining aromatic dianhydrides with para-substituted aromatic diamines are provided. The polyimide coatings and films are produced by a process whereby the dianhydride and diamine monomer components are reacted at temperatures of greater than 80° C.
    Type: Grant
    Filed: January 14, 2000
    Date of Patent: May 15, 2001
    Assignee: I.S.T. Corporation
    Inventors: Gary L. Deets, Toshiyuki Hattori
  • Patent number: 6228970
    Abstract: A new poly (biphenyl ether sulfone) having improved polydispersity and also having low levels of low molecular weight oligomer.
    Type: Grant
    Filed: September 22, 1999
    Date of Patent: May 8, 2001
    Assignee: BP Amoco Corporation
    Inventor: Selvaraj Savariar
  • Patent number: 6204356
    Abstract: Heat resistant polybenzoxazole resins useful as layer insulation films and protective films for semiconductor, layer insulation films for multilayer circuits, cover coats for flexible copper-clad sheets, solder resist films, liquid crystal-aligned films and the like. These resins have excellent thermal, electrical, physical and mechanical characteristics. Polybenzoxazole precursors are provided, represented by the general formula (A), and are used to obtain polybenzoxazole resins, represented by the general formula (D). In the formulas (A) and (D), n denotes an integer from 2-1000, and X denotes a structure having a formula selected from structures indicated at (B). In the formulas at (B), Y denotes a structure having a formula selected from those indicated at (C), and the hydrogen atom(s) on the benzene ring in these structures are optionally substituted.
    Type: Grant
    Filed: September 27, 1999
    Date of Patent: March 20, 2001
    Assignee: Sumitomo Bakelite Company Limited
    Inventors: Hidenori Saito, Michio Nakajima, Tsuyoshi Watanabe, Maki Tokuhiro
  • Patent number: 6197920
    Abstract: The present invention relates to the synthesis of new type of diamine monomer, 1,3-bis(4-amonophenoxy)naphthalene, and with such a compound to produce a series of aromatic polymers, including polyamide, polyimide, copoly(amide-imide)s, etc., such polymers having excellent resistance to heat and mechanical properties.
    Type: Grant
    Filed: July 21, 1999
    Date of Patent: March 6, 2001
    Assignee: China Textile Institute
    Inventors: Kun Lin Cheng, Wen-Tung Chen
  • Patent number: 6187512
    Abstract: Disclosed is a process which comprises reacting a polymer of the general formula wherein x is an integer of 0 or 1, A is one of several specified groups, such as B is one of several specified groups, such as or mixtures thereof, and n is an integer representing the number of repeating monomer units, with a halomethyl alkyl ether, an acetyl halide, and methanol in the presence of a halogen-containing Lewis acid catalyst, thereby forming a halomethylated polymer.
    Type: Grant
    Filed: May 17, 1999
    Date of Patent: February 13, 2001
    Assignee: Xerox Corporation
    Inventors: Daniel A. Foucher, Nancy C. Stoffel, Roger T. Janezic, Thomas W. Smith, David J. Luca, Bidan Zhang
  • Patent number: 6187894
    Abstract: Perfluoroether acylperoxides having an average equivalent weight in the range of 350-5000, and of the following formulae: Y′—(CF2—CF(CF3)O)m—(CX′FO)n—CF2CO—O—O—CO—CF2—(OCX′F)n—(OCF(CF3)—CF2)—Y′  (I) wherein Y′=Cl, ORf wherein Rf is a C1-C3 perfluoroalkyl; m, n are integers such that the average equivalent weight of (I) is in the range of 350-5000 and m/n≧40; X′=F, CF3; T—CF2—O—[(CF2CF2O)p—(CF2O)q—CF2—CO—O—O—CO—CF2(OCF2)q—(OCF2CF2)p]y—OCF2—COOH  (II) wherein y is an integer comprised between 1 and 5; p and q are integers such as to give the above mentioned EW and p/q=0.5 to 2.0; T=COOH, F with the proviso that when T=COOH y=1-5, when T=F then y=1, and processes for manufacturing them.
    Type: Grant
    Filed: June 9, 1999
    Date of Patent: February 13, 2001
    Assignee: Ausimont S.p.A.
    Inventors: Ivan Wlassics, Vito Tortelli