Two Or More Phenolic Reactants Patents (Class 528/193)
  • Patent number: 8524855
    Abstract: Environmentally-friendly, biodegradable polyol:carboxylic acid polyester solid-phase products may be produced utilizing microwave heating. In this process, a di- or tricarboxylic acid is reacted with a polyol such as a glycerol or a sugar alcohol, or an ester thereof with the application of heating by microwave energy. Sufficient microwave heating is provided to esterify the polyol with the carboxylic acids, while removing as steam the water by-product which is generated during the reaction. The polyesters so-produced are resistant to high temperatures and solvents, and may by cured and/or molded.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: September 3, 2013
    Assignee: The United States of America, as represented by the Secretary of Agriculture
    Inventors: Brent Tisserat, Ronald A. Holser, Rogers E. Harry-O'Kuru
  • Patent number: 8507635
    Abstract: The present invention relates to polycarbonates comprising imide-containing aryl mono- or dihydroxy compounds as chain terminators and, respectively, monomer units, and also to compositions comprising the said polycarbonates, to their use for the production of mouldings, and to mouldings obtainable therefrom.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: August 13, 2013
    Assignee: Bayer Intellectual Property GmbH
    Inventors: Alexander Meyer, Helmut-Werner Heuer, Rafael Oser, Rolf Wehrmann
  • Patent number: 8501897
    Abstract: The present invention provides a method for producing a liquid-crystalline polyester, which comprises melt-polymerizing monomers in a reactor having a draw outlet to obtain a polymer melt and drawing the polymer melt through the draw outlet, characterized in that the monomers comprise a compound selected from an aromatic hydroxycarboxylic acid and derivatives thereof, a compound selected from an aromatic dicarboxylic acid and derivatives thereof and a compound selected from an aromatic diol, an aromatic hydroxyamine, an aromatic diamine and derivatives thereof; the amount of units derived from a compound containing a 1,2-phenylene and/or a 1,3-phenylene skeleton(s) in the polyester is from 0 to 10 mol %; the melt polymerization is performed in the presence of a heterocyclic compound containing two or more nitrogen atoms; and the polymer melt has a flow initiation temperature of from 220 to 250° C.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: August 6, 2013
    Assignee: Sumitomo Chemical Co., Ltd.
    Inventors: Tomoya Hosoda, Eiji Hosoda, Masanobu Matsubara
  • Patent number: 8497342
    Abstract: A liquid crystal block copolymer comprising at least one liquid crystal polymer block comprising a polymer of diethylene glycol bis(4-hydroxybenzoate) and diphenyl 2,6-naphthalene dicarboxylate and at least one non-liquid crystal polymer block.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: July 30, 2013
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: John J. Chen, Daniel J. Horn, Zhikuan Lu, Dong Zhang, Jiaokai Jing, Frank W. Harris
  • Patent number: 8492500
    Abstract: The present invention provides a method for producing a liquid-crystalline polyester, the method comprising: a step of melt-polymerizing raw monomers in a melt polymerization vessel to obtain a polymer melt; a step of drawing the polymer melt from the melt polymerization vessel and granulating the polymer melt to obtain a granulate; a step of allowing the granulate to undergo solid phase polymerization in a solid phase polymerization vessel to obtain a solid phase polymer; and a step of making an impact on the solid phase polymerization vessel containing the solid phase polymer, and taking out the solid phase polymer from the solid phase polymerization vessel.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: July 23, 2013
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Tomoya Hosoda, Eiji Hosoda, Masanobu Matsubara
  • Patent number: 8487068
    Abstract: The present invention provides a method for producing a polybenzoxazole precursor having reduced contents of residual aprotic polar solvent and residual halogen without discharging a large amount of waste water during purification. The present invention specifically relates to a method for producing a polybenzoxazole precursor, which comprises synthesizing a polybenzoxazole precursor in an aprotic polar solvent, adding and mixing water and a water-insoluble solvent with the resulting polybenzoxazole precursor solution to still stand the solution, and then separating a water layer from the solution to reduce a content of impurities remaining in the polybenzoxazole precursor.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: July 16, 2013
    Assignee: Toho Chemical Industry Co., Ltd.
    Inventor: Naoya Kutsuzawa
  • Publication number: 20130165621
    Abstract: Disclosed herein is a method for preparing a polycondensation resin. The method includes preparing a low degree condensate; and solid phase polymerizing the low degree condensate, wherein a granular molded article is introduced into the solid phase polymerization. The method enables efficient manufacture of high quality resins without problems such as agglomeration or scaling of a low degree condensate in pipes.
    Type: Application
    Filed: December 7, 2012
    Publication date: June 27, 2013
    Applicant: CHEIL INDUSTRIES INC.
    Inventor: Cheil Industries Inc.
  • Patent number: 8466253
    Abstract: A method of purifying a capped poly(phenylene ether) includes mixing a poly(phenylene ether) capping reaction mixture comprising a capped poly(phenylene ether), a capping agent, a capping byproduct, a capping catalyst, and a poly(phenylene ether) solvent, and first washing solvents comprising a C1-C4 alkanol and water to form a first liquid phase comprising the capped poly(phenylene ether) and poly(phenylene ether) solvent, and a second liquid phase comprising C1-C4 alkanol and water; and separating the first liquid phase from the second liquid phase. Capped poly(phenylene ether) having reduced levels of residual capping agent, capping byproduct, and capping catalyst is produced from poly(phenylene ether) capping reaction mixtures by this method.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: June 18, 2013
    Assignee: Sabic Innovative Plastics IP B.V.
    Inventors: Prashant Kumar, Alvaro Carrillo, Scott Michael Fisher, Nitin Vilas Tople
  • Patent number: 8461279
    Abstract: Disclosed is a method for producing a devolatilized polyolefin, wherein the method comprises a step that involves providing a twin screw extruder comprising a resin feeding port, a first molten resin kneading zone, a molten resin partially filled zone which is prevented from being fully filled with molten resin, a second molten resin kneading zone, and a devolatilization zone that are disposed in order from the upstream of a cylinder of the extruder, feeding a polyolefin through the resin feeding port, and feeding water to the molten resin partially filled zone in an amount of 0.01 to 50 parts by weight relative to 100 parts by weight of the polyolefin.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: June 11, 2013
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Hisakatsu Hama, Tetsuro Dobashi
  • Publication number: 20130142752
    Abstract: The present invention relates to biodegradable polymers (e.g., polyesters and polyester amides) derived from functionalized biologically active compounds that can provide site specific delivery of bioactive compounds upon biodegradation in a controlled manner.
    Type: Application
    Filed: May 31, 2012
    Publication date: June 6, 2013
    Applicant: BEZWADA BIOMEDICAL, LLC
    Inventor: Rao S. Bezwada
  • Publication number: 20130137845
    Abstract: Disclosed are a production method for a wholly aromatic liquid crystalline polyester resin, a wholly aromatic liquid crystalline polyester resin produced using the method, and a compound of the wholly aromatic liquid crystalline polyester resin. The disclosed production method for a wholly aromatic liquid crystalline polyester resin comprises the steps of synthesizing a wholly aromatic liquid crystalline polyester resin by synthesizing a wholly aromatic liquid crystalline polyester prepolymer by a condensation polymerization of a monomer and then reducing the pressure inside a reaction vessel containing the synthesized prepolymer at a predetermined internal pressure reduction rate of the reaction vessel.
    Type: Application
    Filed: January 12, 2011
    Publication date: May 30, 2013
    Applicant: SAMSUNG FINE CHEMICALS CO., LTD.
    Inventors: Hyun Min Kim, Jong Hwa Yun, Mahn Jong Kim
  • Patent number: 8440780
    Abstract: A wholly aromatic liquid crystalline polyester contains 2.0 to 15.0 mole percent of a hydroquinone-derived structural unit relative to a total amount of structural units. The wholly aromatic liquid crystalline polyester has sum of an amount (a) of terminal hydroxyl group and an amount (b) of terminal acetyl group in a range of 50 to 350 equivalents/(g·10?6), and has a ratio [(a)+(b)]/(c) of the sum of the amount (a) of terminal hydroxyl group and the amount (b) of terminal acetyl group to an amount (c) of terminal carboxyl group in a range of 1.05 to 2.00.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: May 14, 2013
    Assignee: Toray Industries, Inc.
    Inventors: Mitsushige Hamaguchi, Kohei Miyamoto, Hideyuki Umetsu
  • Patent number: 8436129
    Abstract: A polycarbonate resin having at least one terminal group which is represented by formula (1), and a resin composition and an optical material comprising the polycarbonate resin are disclosed. In the formula, R1-R9 each independently represent a hydrogen atom, halogen atom or an alkyl group. X1 represents a direct bond or alkylene group.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: May 7, 2013
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Noriyuki Kato, Shu Yoshida, Toshiaki Yamada, Jun Hagiwara
  • Publication number: 20130053532
    Abstract: A method for forming a high molecular weight liquid crystalline polymer is provided. The method include melt polymerizing two or more precursor monomers (e.g., acetylated or non-acetylated) in the presence of an aromatic amide oligomer. The present inventors have discovered that such an oligomer can lower the melt viscosity of the viscous polymer as it is formed. The ability to lower melt viscosity in situ during melt polymerization enables the formation of high molecular weight polymers that display low melt viscosity and can still be removed from the reactor vessel without solidifying therein. This not only improves the ease of processing, but also allows molecular weights to be reached that are even higher than conventionally practical.
    Type: Application
    Filed: August 27, 2012
    Publication date: February 28, 2013
    Applicant: TICONA LLC
    Inventors: Kamlesh P. Nair, Steven D. Gray
  • Publication number: 20130053487
    Abstract: This disclosure relates generally to polycarbonate compositions whose hydrolysis products and residual monomer content, if any, exhibit little or no estradiol binding activity. Also disclosed are methods for making the disclosed polycarbonates and articles of manufacture comprising the disclosed polycarbonates.
    Type: Application
    Filed: August 1, 2012
    Publication date: February 28, 2013
    Inventors: Robert R. Gallucci, James A. Mahood, Jean Francois Morizur, Steve Dimond
  • Publication number: 20130053533
    Abstract: A method for forming a high molecular weight thermotropic liquid crystalline polymer is provided. The method includes melt polymerizing two or more monomers in the presence of a unique aromatic amide oligomer to form a prepolymer, and then solid-state polymerizing the prepolymer to achieve a target molecular weight. The present inventors have discovered that a unique aromatic amide oligomer can be employed to help increase the “low shear” complex viscosity of the resulting solid-state polymerized composition. This allows for the attainment of higher than conventional “low shear” complex viscosity values and/or a substantial reduction in the solid-state polymerization time needed to achieve a target complex viscosity. In addition, the oligomeric flow aid can also accelerate the extent to which the “high shear” melt viscosity is increased during solid-state polymerization, which may also contribute to a substantial reduction in the solid-state polymerization time needed to achieve a certain molecular weight.
    Type: Application
    Filed: August 27, 2012
    Publication date: February 28, 2013
    Applicant: TICONA LLC
    Inventors: Kamlesh P. Nair, Steven D. Gray
  • Publication number: 20130043425
    Abstract: Provided is a thermoplastic resin which (A) remarkably improves thermal conductivity of a resin composition when a thermally conductive filler is added and (B) can be injection-molded even by use of a general injection-molding die. The thermoplastic resin is a resin wherein: a main chain which mainly has a specific repeating unit; and 60 mol % or more ends of molecular chains are carboxyl groups.
    Type: Application
    Filed: April 14, 2011
    Publication date: February 21, 2013
    Applicant: KANEKA CORPORATION
    Inventors: Shusuke Yoshihara, Toshiaki Ezaki, Kazuaki Matsumoto
  • Publication number: 20130041125
    Abstract: The invention provides an amorphous polyester resin that can sufficiently achieve the reciprocal performance properties of hot offset resistance and cold offset resistance, which is a major issue for a toner for electrostatic image development, while allowing adequate blocking resistance to be obtained, as well as a binder resin for toner for electrostatic image development, and an amorphous polyester resin production method, the amorphous polyester resin being obtained by reaction between a polybasic carboxylic acid compound and a polyhydric alcohol, wherein the polybasic carboxylic acid compound comprises (a) the reaction product between an aromatic polybasic carboxylic acid compound and a C2-4 glycol at 60 mol % or greater based on the total amount of the polybasic carboxylic acid compound, and the amorphous polyester resin has a glass transition point of 55° C. to 75° C. and a weight-average molecular weight of 10,000 to 50,000.
    Type: Application
    Filed: April 23, 2010
    Publication date: February 14, 2013
    Applicant: NICCA CHEMICAL CO., LTD.
    Inventors: Tatsuhiro Hishida, Koji Ogawa, Yasumichi Moriyama, Masaaki Hosoda, Kazuo Tanabe
  • Publication number: 20130035468
    Abstract: Provided is a thermoplastic resin having excellent thermal conductivity, in which thermoplastic resin a change in number average molecular mass caused by progress of polymerization occurring when the thermoplastic resin material is melted and a change in thermal conductivity caused by the change in number average molecular mass are low. The thermoplastic resin has (A) a specific structure and (B) ends of molecular chains sealed by a monofunctional low molecular weight compound. The resin itself has excellent thermal conductivity. The change in number average molecular mass becomes small during melting of the thermoplastic resin material, so that the change in thermal conductivity of the resin itself becomes small.
    Type: Application
    Filed: April 14, 2011
    Publication date: February 7, 2013
    Applicant: KANEKA CORPORATION
    Inventors: Shusuke Yoshihara, Toshiaki Ezaki, Kazuaki Matsumoto
  • Publication number: 20130030142
    Abstract: The present invention provides a method for producing a liquid-crystalline polyester, the method comprising: a step of melt-polymerizing raw monomers in a melt polymerization vessel to obtain a polymer melt; a step of drawing the polymer melt from the melt polymerization vessel and granulating the polymer melt to obtain a granulate; a step of allowing the granulate to undergo solid phase polymerization in a solid phase polymerization vessel to obtain a solid phase polymer; and a step of making an impact on the solid phase polymerization vessel containing the solid phase polymer, and taking out the solid phase polymer from the solid phase polymerization vessel.
    Type: Application
    Filed: July 24, 2012
    Publication date: January 31, 2013
    Inventors: Tomoya HOSODA, Eiji Hosoda, Masanobu Matsubara
  • Publication number: 20130022908
    Abstract: There is provided a polyester resin for a toner, including: a polycondensate of a polyvalent carboxylic acid component and a polyhydric alcoholic component, wherein the polyhydric alcoholic component contains a rosin diol represented by the following Formula (1) and a content of the rosin diol is 80 mole % to 100 mole % based on the total polyhydric alcoholic component. wherein, each of R1 and R2 independently represents a hydrogen atom or a methyl group; L1 represents a divalent linking group having the following Formula (I); each of L2 and L3 independently represents a divalent linking group selected from the group consisting of carbonyl groups, carboxyl groups, ether groups, sulfonyl groups, substituted or unsubstituted chained alkylene groups, substituted or unsubstituted cyclic alkylene groups, substituted or unsubstituted arylene groups, and combinations thereof; and each of A1 and A2 independently represents a rosin ester group.
    Type: Application
    Filed: September 25, 2012
    Publication date: January 24, 2013
    Applicant: FUJI XEROX CO., LTD.
    Inventor: FUJI XEROX CO., LTD.
  • Publication number: 20130012680
    Abstract: A wholly aromatic liquid crystalline polyester contains 2.0 to 15.0 mole percent of a hydroquinone-derived structural unit relative to a total amount of structural units. The wholly aromatic liquid crystalline polyester has sum of an amount (a) of terminal hydroxyl group and an amount (b) of terminal acetyl group in a range of 50 to 350 equivalents/(g·10?6), and has a ratio [(a)+(b)]/(c) of the sum of the amount (a) of terminal hydroxyl group and the amount (b) of terminal acetyl group to an amount (c) of terminal carboxyl group in a range of 1.05 to 2.00.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 10, 2013
    Applicant: TORAY INDUSTRIES, INC.
    Inventors: Mitsushige Hamaguchi, Kohei Miyamoto, Hideyuki Umetsu
  • Patent number: 8337719
    Abstract: The present invention provides a resin composition containing a liquid crystalline polyester and a high dielectric material filler. The present invention also provides a molded article of the liquid crystalline polyester resin composition. The liquid crystalline polyester resin composition of the present invention comprises 50 to 80% by volume of a liquid crystalline polyester which has 40% by mol or more of a 2,6-naphthalenediyl group as an aromatic group, also has a flow initiation temperature of 280° C. or higher, and shows a melt tension of 1 g or more measured at a temperature higher than flow initiation temperature; and 20 to 50% by volume of a high dielectric material filler. The liquid crystalline polyester resin composition can be formed into composition pellets easily and stably by a strand method, and a molded article obtained from the liquid crystalline polyester resin composition is excellent in flexural strength and dielectric characteristics.
    Type: Grant
    Filed: December 2, 2008
    Date of Patent: December 25, 2012
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Tomoya Hosoda, Tomoko Uehara, Satoshi Okamoto
  • Publication number: 20120316313
    Abstract: The invention provides halogen-free, bisphenol triazole resins and polymers having exceptional flame retarding properties, related compositions and methods of making and use thereof.
    Type: Application
    Filed: June 6, 2012
    Publication date: December 13, 2012
    Inventors: Todd Emrick, Beom-Young Ryu
  • Patent number: 8293861
    Abstract: An optical film comprising a copolycarbonate composed of 25 to 90 mol % of unit (A) of the following formula, and 10 to 75 mol % of unit (B) of the following formula, wherein the substituents are defined herein, and the optical film satisfies the following expression (1), R(450)<R(550)<R(650) (1), wherein R(450), R(550) and R(650) are in-plane retardation values of the film at wavelengths of 450 nm, 550 nm and 650 nm. The optical film exhibits a desired chromatic dispersion, low photoelasticity and excellent melt processability.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: October 23, 2012
    Assignee: Teijin Chemicals Ltd.
    Inventors: Tetsuya Motoyoshi, Masatoshi Ando, Akiko Washizu
  • Patent number: 8247518
    Abstract: A multi-layer polymer film for printing and copying of the present invention comprising a two-layer polymer base film composed of layer A and layer B laminated on one side of the layer A, the layer B containing a filler in an amount of 50 to 3000 ppm and the layer A containing no filler or a filler in an amount of at least 1000 ppm and less than the B layer; an image receiving layer coated on the exposed surface of the layer A; and an antistatic layer coated on the exposed surface of the layer B, wherein the layer A having the image receiving coating layer and the layer B having the antistatic coating layer have average degrees of surface roughness (Ra) ranging from 10 to 60 nm and 50 to 150 nm, respectively, exhibits improved properties in terms of runnability, printing, optical (haze), antistatic, friction coefficient and anti-blocking properties, which can be advantageously used as an OHP film.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: August 21, 2012
    Assignee: SKC Inc.
    Inventors: Taehoung Jeong, Kwang Soo Choi, Mary Elizabeth Klima
  • Patent number: 8207287
    Abstract: Disclosed are polymers derived from units of bisphenol compounds, such as tetramethylcyclobutane diol-bisphenol, and processes for making and using them.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: June 26, 2012
    Assignee: SABIC Innovative Plastics IP B.V.
    Inventor: Jean-Francois Morizur
  • Publication number: 20120153224
    Abstract: The present invention provides a wholly aromatic liquid-crystalline polyester resin, consisting of the repeating units shown by the formulae [I]-[V]: wherein p, q, r, s and t represent molar proportion (mol %) of repeating units respectively in the liquid-crystalline polyester resin and satisfy the following formulae: 25?p?45; 2?q?10; 10?r?20; 10?s?20; 20?t?40; r>s; p+q+r+s+t=100; having a ratio P1/P2 of equal to or lower than 3.0, wherein P1 is a melt viscosity at a crystalline melting temperature measured under the condition of shear rate 1000 sec?1 and P2 is a melt viscosity at a temperature of the crystalline melting temperature +20° C. measured under the same condition as P1; and having a deflection temperature under load (DTUL) of equal to or higher than 230° C.
    Type: Application
    Filed: December 15, 2011
    Publication date: June 21, 2012
    Applicant: UENO FINE CHEMICALS INDUSTRY, LTD.
    Inventors: Satoru YONEZAWA, Hisanari FUJIWARA, Tetsuhide SAWADA
  • Patent number: 8202962
    Abstract: Processes for making polyesters in a polyester production facility are disclosed, that include the steps of: forming a reaction medium comprising at least one monomer that includes terephthalic acid (TPA) and/or an ester derivative of TPA; subjecting at least a portion of the reaction medium to one or more chemical reactions in the polyester production facility to thereby produce the polyester; heating at least a portion of the reaction medium via indirect heat exchange with high-pressure steam, wherein the heating causes at least a portion of the high-pressure steam to condense and thereby provide pressurized condensed water; flashing at least a portion of the pressurized condensed water to thereby produce lower-pressure steam; and heating one or more process fluid streams of the polyester production facility via indirect heat exchange with at least a portion of the lower-pressure steam, wherein the process fluid streams include any stream that is formed predominately of the reaction medium and/or the at lea
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: June 19, 2012
    Assignee: Grupo Petrotemex, S.A. de C.V.
    Inventors: Alan George Wonders, James Donald Simpson, Bruce Roger DeBruin
  • Patent number: 8198397
    Abstract: Integrated processes for making polyesters are disclosed, that include the steps of: (a) producing an aromatic polycarboxylic acid in a monomer production facility; (b) producing a polyester in a polyester production facility, wherein the producing of the polyester comprises the substeps of: (i) forming a polyester reaction medium comprising at least a portion of the aromatic polycarboxylic acid from the monomer production facility, (ii) subjecting at least a portion of the polyester reaction medium to one or more chemical reactions to thereby produce the polyester, (iii) heating the polyester reaction medium at one or more locations in the polyester production facility via indirect heat exchange with high-pressure steam, wherein the heating causes at least a portion of the high-pressure steam to condense and thereby provide pressurized condensed water, and (iv) flashing at least a portion of the pressurized condensed water to thereby produce lower-pressure steam; and (c) using at least a portion of the lower
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: June 12, 2012
    Assignee: Grupo Petrotemex, S.A. de C.V.
    Inventors: Alan George Wonders, James Donald Simpson, Bruce Roger DeBruin
  • Patent number: 8168727
    Abstract: A polyester resin having excellent dimensional stability against environmental changes and excellent dimensional stability in the processing step while having excellent moldability and a biaxially oriented polyester film comprising the same. The polyester resin comprises a recurring unit represented by the following formula (A) and a recurring unit represented by the following formula (B) as the main constituents: —O—C(O)—R1—C(O)—O—R2—O—??(A) —O—C(O)—R3—C(O)—O—R2—O—??(B) (R? is a phenylene group or naphthalenediyl group, R2 is an alkylene group having 2 to 4 carbon atoms or cyclohexylene group, and R3 is 6,6?-(alkylenedioxy)di-2-naphthoic acid), wherein the content of the recurring unit (B) is not less than 5 mol % and less than 50 mol %, and the ratio of adjacent recurring units (A) and (B) is less than 0.9 based on a value obtained by doubling the product of the content of the recurring unit (A) and the content of the recurring unit (B).
    Type: Grant
    Filed: January 15, 2009
    Date of Patent: May 1, 2012
    Assignee: Teijin Limited
    Inventors: Eiji Kinoshita, Mitsuo Tojo
  • Patent number: 8138116
    Abstract: The application discloses a Titanium oxide composition and the application thereof. The mentioned Titanium oxide composition comprises Titanium co-precipitate(s), organic acid, diol, and water. According to this application, a catalyzed poly-esterification with said Titanium oxide composition is also disclosed. The mentioned polyesterification comprises a step of adding said Titanium oxide composition into at least one stage selected from slurry stage, esterification stage, and polycondensation stage.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: March 20, 2012
    Assignee: Far Eastern New Century Corporation
    Inventors: Hsin-Chin Ho, Ching-Tsu Peng, Shih-Fong Lee, Yui-Chi Lin, Chun-Wei Chen
  • Patent number: 8133650
    Abstract: A polyester resin which includes acid components having aromatic dibasic acid component and trivalent or higher acid component; alcohol components including aliphatic, aromatic or cycloaliphatic diol component, and trihydric or higher alcohol component; polyolefin polyol having 1,800 to 2,500 number average molecular weight and hydroxyl value of 40 to 55 KOHmg/g; and wax having melting point of 80 to 110, wherein the amount of the polyolefin polyol is 0.1 to 2 weight % and the amount of the wax is 0.5 to 15 weight % with respect to the total polyester resin. Also disclosed is a method for preparing polyester resin by (a) carrying out an esterification reaction or an ester exchange reaction with the acid components, the alcohol components, and the polyolefin polyol; and (b) carrying out a polycondensation reaction for reaction product of the esterification or ester exchange reaction in the presence of the wax.
    Type: Grant
    Filed: July 10, 2008
    Date of Patent: March 13, 2012
    Assignee: SK Chemicals Co., Ltd.
    Inventors: Young-Man Yoo, Jae-Kyoung Roh, Kye-Yune Lee, Tae-Woong Lee
  • Patent number: 8124225
    Abstract: An aqueous floor care composition comprising water, polymer particles wherein the polymer particles include units derived from a conjugated diene monomer, units derived from an acidic monomer, and units derived from a hard, non-acidic monomer, an external crosslinking agent, and optionally one or more of a leveling agent, surfactant, polyurethane, alkali-soluble resin, coalescing agent, plasticizer, and wax.
    Type: Grant
    Filed: July 17, 2007
    Date of Patent: February 28, 2012
    Assignee: OMNOVA Solutions Inc.
    Inventors: Kyung Don Kim, James Gaston, II
  • Patent number: 8044151
    Abstract: The present invention provides a wholly aromatic liquid-crystalline polyester consisting of the repeating units represented by formulae (I), (II), (III) and (IV): wherein: the molar proportion of the repeating unit represented by formula (I) based on the total repeating units constituting the wholly aromatic liquid-crystalline polyester is 40-80 mol %; the molar ratio of the total amount of the repeating units represented by formulae (II) and (III) to the repeating unit represented by formula (IV) is from 90/100 to 100/90; the molar proportion of the repeating unit represented by formula (II) based on the total amount of the repeating units represented by formulae (II) and (III) is 80-99.9 mol%; and the two “—O—” attached to the benzene ring in formula (III) are positioned meta or para to each other and “Ar” in formula (IV) represents a bivalent aromatic group.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: October 25, 2011
    Assignee: Ueno Fine Chemicals Industry, Ltd.
    Inventors: Motoki Asahara, Hiroaki Terada, Hiroyuki Kato
  • Patent number: 8030441
    Abstract: A loose mixture formed of one or more solid inert materials and a hardenable resin dissolved in an organic solvent, in particular the remainder of the initial mix used for the manufacture of conglomerate stone sheets, is rendered inert by means of dielectric heating at a frequency of less than 300 MHz. A plant for implements a method where a loose mixture is formed of one or more solid inert materials and a hardenable resin dissolved in an organic solvent, in particular the remainder of the initial mix used for the manufacture of conglomerate stone sheets, is rendered inert by means of dielectric heating at a frequency of less than 300 MHz.
    Type: Grant
    Filed: July 10, 2007
    Date of Patent: October 4, 2011
    Inventor: Dario Toncelli
  • Publication number: 20110213077
    Abstract: A polyester containing polymerized units of hydroquinone; 4,4?-biphenol; and hydroxybenzoic acid; terephthalic acid and optionally isophthalic acid. A method of forming a polyester including first acylating a mixture of hydroquinone; 4,4?-biphenol; terephthalic acid and optionally isophthalic acid; and hydroxybenzoic acid; and then polycondensing the resulting acylated mixture. The polyester is suitable for uses such as lighting where high whiteness, high reflectivity and high heat resistance are desirable.
    Type: Application
    Filed: October 30, 2009
    Publication date: September 1, 2011
    Applicant: SOLVAY ADVANCED POLYMERS, L.L.C.
    Inventors: Maria G. Bertucci, Nancy J. Singletary, Jan G. Nel, Christie W. Crowe, Geert J. Verfaillie, Glenn W. Cupta
  • Patent number: 7956154
    Abstract: A polymer containing a polyester polymer unit having the formula -(I-III-II)-, wherein III is derived form a di-carboxylic acid, wherein I is derived from 1,3 cyclohexanedimethanol, wherein II is derived from 1,4 cyclohexanedimethanol and wherein the polymer is a solid at room temperature.
    Type: Grant
    Filed: September 26, 2006
    Date of Patent: June 7, 2011
    Inventors: John N. Argyropoulos, Marcos Pini Franca, Gary E. Spilman
  • Patent number: 7906211
    Abstract: This invention relates to thermoplastic article having one or more decorative materials embedded therein which is obtained by applying heat and pressure to one or more laminates wherein at least one of said laminates comprises, in order, (1) an upper sheet material; (2) one or more decorative materials; and (3) a lower sheet material; wherein the upper and lower sheet materials are formed from a polyester/aromatic polycarbonate blend wherein the thermoplastic article comprises at least one polyester composition comprising at least one polyester which comprises terephthalic acid and 2,2,4,4-tetramethyl-1,3-cyclobutanediol.
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: March 15, 2011
    Assignee: Eastman Chemical Company
    Inventors: Emmett Dudley Crawford, David Scott Porter, Gary Wayne Connell
  • Patent number: 7906212
    Abstract: This invention relates to thermoplastic article having one or more decorative materials embedded therein which is obtained by applying heat and pressure to one or more laminates wherein at least one of said laminates comprises, in order, (1) an upper sheet material; (2) one or more decorative materials; and (3) a lower sheet material; wherein the upper and lower sheet materials are formed from a polyester/aromatic polycarbonate blend wherein the thermoplastic article comprises at least one polyester composition comprising at least one polyester which comprises terephthalic acid and 2,2,4,4-tetramethyl-1,3,-cyclobutanediol.
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: March 15, 2011
    Assignee: Eastman Chemical Company
    Inventors: Emmett Dudley Crawford, David Scott Porter, Gary Wayne Connell
  • Patent number: 7884173
    Abstract: To provide an aromatic polyester which is formed into a film having excellent heat resistance, color, mechanical properties, dimensional stability and gas barrier properties and a manufacturing process thereof; the aromatic polyester comprises a dicabroxylic acid component and a diol component, wherein (i) the dicarboxylic acid component contains 50 to 100 mol % of a recurring unit represented by the following formula (A): ?wherein R is an alkylene group having 2 to 10 carbon atoms, (ii) the aromatic polyester has an intrinsic viscosity measured at 35° C. by using a mixed solvent of P-chlorophenol and 1,1,2,2-tetrachloroethane (weight ratio of 40/60) of 0.4 to 3.0; (iii) the aromatic polyester has a content of a recurring unit represented by the following formula (D) of less than 10 mol %: —O—CH2CH2—O—CH2CH2—O—??(D) (iv) the aromatic polyester has a terminal carboxyl group concentration of 200 eq/ton or less; and (v) the aromatic polyester has an alkali metal content of 300 ppm or less.
    Type: Grant
    Filed: July 19, 2007
    Date of Patent: February 8, 2011
    Assignee: Teijin Limited
    Inventors: Kazuteru Kohno, Eiji Kinoshita, Tomoyuki Kishino
  • Patent number: 7858728
    Abstract: Disclosed herein is a polycarbonate comprising a terminal olefin group of the formula wherein R1 is a C1-C40 hydrocarbon that can be unsubstituted or substituted with a halogen, olefin, ether, ketone, or C4-C30 polyoxyalkylene functionality in which the alkylene groups contain 2 to 6 carbon atoms, R2 to R4 are each independently a hydrogen or a C1-C40 hydrocarbon that can be unsubstituted or substituted with a halogen, olefin, ether, ketone, or a C4-C30 polyoxyalkylene functionality in which the alkylene groups contain 2 to 6 carbon atoms, and optionally wherein any two of R1 to R4 together form a monocyclic, bicyclic, or tricyclic ring system optionally substituted with a heteroatom in each ring.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: December 28, 2010
    Assignee: SABIC Innovative Plastics IP B.V.
    Inventors: Hans-Peter Brack, Bernard Jansen, Jan Henk Kamps, Hans Looij, Han Vermeulen, Dennis Willemse
  • Patent number: 7848025
    Abstract: Disclosed herein is a camera lens comprising a thermoplastic composition comprising a poly(aliphatic ester)-polycarbonate copolymer comprising soft block ester units derived from an alpha, omega C6-20 aliphatic dicarboxylic acid or derivative thereof, a dihydroxyaromatic compound, and a carbonate source, wherein the thermoplastic composition has a melt volume rate of 13 to 25 cc/10 min at 250° C. and under a load of 1.2 Kg and a dwell time of 6 minutes, according to ASTM D1238-04, and wherein the camera lens has an effective lens area of 0.5 to 100 mm2. A method of making the camera lens, and a camera lens comprising a thermoplastic composition comprising a redistribution product of a poly(aliphatic ester)-polycarbonate, are also disclosed.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: December 7, 2010
    Assignee: Sabic Innovative Plastics IP B.V.
    Inventors: Akira Hatano, Theodorus Lambertus Hoeks, Dennis Karlik, Ken Kuriki, Jon M. Malinoski, Sriramakrishna Maruvuda
  • Patent number: 7838602
    Abstract: A multilayer article comprises a substrate layer, and a coating layer in contiguous superposed contact with the substrate layer, the coating layer comprising a thermostable, weatherable polymer comprising structural units derived from at least one 1,3-dihydroxybenzene moiety, at least one aromatic dicarboxylic acid moiety, at least one bisphenol moiety, and at least one soft-block moiety derived from a siloxane oligomer, in which the multilayer article comprises the substrate layer and the coating layer, or the substrate layer with coating layers on each side of the substrate layer.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: November 23, 2010
    Assignee: Sabic Innovative Plastics IP B.V.
    Inventors: Gary C Davis, Brian D Mullen, Paul D Sybert
  • Patent number: 7816014
    Abstract: The present invention provides a liquid crystalline polyester comprising (a) a repeating unit derived from aromatic hydroxycarboxylic acid, (b) a repeating unit derived from aromatic dicarboxylic acid and (c) a repeating unit represented by —X—Ar1-O—Ar1-Y—, wherein Ar1 represents 1,4-phenylene which may be substituted by a halogen atom, an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 20 carbon atoms, and X and Y independently represent O or NH. The polyester in the preset invention has a sufficiently low dielectric constant and/or is a sufficiently high resistance in hydrolysis.
    Type: Grant
    Filed: January 13, 2006
    Date of Patent: October 19, 2010
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Toyonari Ito, Tomoya Hosoda, Satoshi Okamoto
  • Patent number: 7799424
    Abstract: A resin composition includes an aliphatic polyester resin. The resin has carboxyl groups at the end termini of the molecular chain and at least one compound represented by the general formula (I), the compound being added to the resin to cap a part or all of the carboxyl groups at the end termini of the molecular chain of the resin. A process for producing a fiber includes mixing a pellet comprising an aliphatic polyester resin having carboxyl groups at the end termini of the molecular chain with a compound represented by the general formula (I) so that the content of the compound becomes 0.1 to 8% by weight and then melt-spinning the resulting mixture under the conditions of a spinning temperature of 200 to 250 C.°, a melt residence time of 180 to 1800 sec and a spinning rate of 500 to 10000 m/min.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: September 21, 2010
    Assignee: Toray Industries, Inc.
    Inventors: Katsuhiko Mochiduki, Takaaki Mihara
  • Patent number: 7776991
    Abstract: The disclosure contains a medical article comprising a polymer containing polyesters and, optionally, agents for use with medical articles and methods of fabricating the same are disclosed. The medical article generally comprises an implantable substrate having a coating, and the coating contains a polymer comprising a polymeric product of a reaction comprising a polyol and a polycarboxylic acid.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: August 17, 2010
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: Stephen D. Pacetti, Yiwen Tang
  • Patent number: 7750109
    Abstract: The invention relates to methods and systems for the use of an oligomer recyclate from a depolymerization product stream. The oligomer byproduct of a polyester depolymerization reaction can be used as a reactant in the formation of a polyester. For example, linear oligomer byproduct can be used as a reactant in a solution polymerization to form a low-acid polyalkylene terephthalate.
    Type: Grant
    Filed: March 24, 2006
    Date of Patent: July 6, 2010
    Assignee: Cyclics Corporation
    Inventors: Peter D. Phelps, Jimmy Lynn Webb, David Patrick Phelon, Paul M. Andrusyszyn, Gary R. Faler
  • Patent number: RE41616
    Abstract: A polymer comprising a tagging material is provided wherein the tagging material comprises at least one organic fluorophore dye, or at least one inorganic fluorophore, or at least one organometallic fluorophore, or at least one semi-conducting luminescent nanoparticle, or combination thereof, wherein the tagging material has a temperature stability of at least about 350° C. and is present in a sufficient quantity such that the tagging material is detectible via a spectrofluorometer at an excitation wavelength in a range between about 100 nanometers and about 1100 nanometers. Further embodiments of the present invention include a method for identifying a polymer and an article comprising a polymer wherein the polymer contains the aforementioned tagging material.
    Type: Grant
    Filed: December 17, 2003
    Date of Patent: August 31, 2010
    Assignee: Sabic Innovative Plastics IP B.V.
    Inventors: Steven Frederick Hubbard, Radislav Alexandrovich Potyrailo, Philippe Schottland, Verghese Thomas
  • Patent number: RE41694
    Abstract: Methods for roll-to-roll deposition of optically transparent and high conductivity metallic thin films are disclosed. In general, a method according to the present invention comprises: (1) providing a flexible plastic substrate; (2) depositing a multi-layered conductive metallic film on the flexible plastic substrate by a thin-film deposition technique to form a composite film; and (3) collecting the composite film in continuous rolls. Typically, the thin conductive metallic film is an InCeO—Ag—InCeO film. Typically, the thin-film deposition technique is DC magnetron sputtering. Another aspect of the invention is a composite film produced by a method according to the present invention.
    Type: Grant
    Filed: November 1, 2006
    Date of Patent: September 14, 2010
    Inventors: Xiao-Ming He, Ramin Heydarpour