Nitrogen-containing Reactant Contains An Amine Group Patents (Class 528/229)
  • Publication number: 20110318479
    Abstract: Disclosed are metal plating compositions and methods. The metal plating compositions provide good leveling performance and throwing power.
    Type: Application
    Filed: September 6, 2011
    Publication date: December 29, 2011
    Applicant: Rohm and Haas Electronic Materials LLC
    Inventors: Erik REDDINGTON, Gonzalo Urrutia DESMAISON, Zukhra I. NIAZIMBETOVA, Donald E. CLEARY, Mark LEFEBVRE
  • Publication number: 20110318588
    Abstract: The purpose of the present invention is to provide a polyimide resin which exhibits higher heat resistance than that of a conventional polyimide resin by controlling the geometric configuration of the constituent units. Provided is a polyamic acid which comprises repeating units represented by general formula (1), wherein the 1,4-bismethylenecyclohexane skeleton units consist of both trans- and cis-form units, and the contents of the trans- and cis-form units are 60 to 100% and 0 to 40% respectively (with the sum total of the trans- and cis-form units being 100%).
    Type: Application
    Filed: February 26, 2010
    Publication date: December 29, 2011
    Applicant: Mitsu Chemicals Inc,
    Inventors: Kenichi Fukukawa, Masaki Okazaki, Yoshihiro Sakata, Ichiro Fujio, Wataru Yamashita
  • Publication number: 20110275781
    Abstract: A polyimide represented by formula (6) is provided. The polyimide is fabricated by performing a polycondensation reaction with a amine compound shown in formula (4) and a dianhydride compound shown in formula (5) as monomers. In formulas (5) and (6), Ar represents aromatic group, and n represents a positive integer.
    Type: Application
    Filed: October 22, 2010
    Publication date: November 10, 2011
    Applicant: National Taiwan University of Science and Technology
    Inventor: Der-Jang Liaw
  • Patent number: 8030437
    Abstract: A method for forming a polyimide composite article utilizes a polyimide resin system including at least a first prepolymer component and a second prepolymer component. A preform structure is tackified with the first prepolymer component. Using resin infusion or resin transfer molding techniques, the tackified preform structure is contacted with the second prepolymer component. The polyimide resin system is cured under suitable cure conditions so that the first and second prepolymer components mix and react to produce the polyimide composite structure.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: October 4, 2011
    Assignee: General Electric Company
    Inventors: Stephen Mark Whiteker, Lisa Vinciguerra Shafer, Warren Rosal Ronk
  • Patent number: 8008418
    Abstract: It is an object of the present invention to provide a copolymer containing a metal coordination compound that has blue phosphorescence emission with excellent color purity and, furthermore, to provide a copolymer containing a metal coordination compound that has luminescence of various colors from blue to red and a long operating life. The present invention relates to a metal coordination compound-containing copolymer that contains a metal coordination compound monomer unit represented by any one of Formulae (1) to (12): and at least one type of monomer unit selected from the group consisting of a substituted or unsubstituted quinoline monomer unit, a substituted or unsubstituted arylene and/or heteroarylene monomer unit, a substituted or unsubstituted branched monomer unit, and a substituted or unsubstituted conjugated monomer unit.
    Type: Grant
    Filed: June 18, 2004
    Date of Patent: August 30, 2011
    Assignee: Hitachi Chemical Co., Ltd.
    Inventors: Yoshii Morishita, Satoyuki Nomura, Yoshihiro Tsuda
  • Patent number: 7994274
    Abstract: A method for using citraconic anhydride and itaconic anhydride as addition cure end caps in reactions for forming polyamic acid oligomers and polyimide oligomers, is provided. Prepregs and high temperature adhesives made from the resulting oligomers, as well as, high temperature, low void volume composites made from the prepregs, are also provided.
    Type: Grant
    Filed: December 23, 2005
    Date of Patent: August 9, 2011
    Assignee: I.S.T. (MA) Corporation
    Inventors: Gary L. Deets, Jianming Xiong
  • Patent number: 7973119
    Abstract: This invention relates to adhesive systems using imines and salts thereof and precursors to electron deficient olefins.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: July 5, 2011
    Assignee: Loctite (R&D) Limited
    Inventors: Ciaran B. McArdle, Ligang Zhao
  • Publication number: 20110109855
    Abstract: A polyamic acid and a polyimide obtained by reacting a dianhydride and diamines. A substrate having a film of such polyimide or polyamic acid deposited thereon. A liquid crystal display containing a film of such polyimide as an alignment layer. A method for reducing the response times of a liquid crystal display and/or for improving the on-state- and off-state-transmission and/or the voltage holding ratio of a liquid crystal display, the method involving incorporating the polyimide as an alignment layer in the liquid crystal display. A method of producing a liquid crystal display involving depositing a film of the polyimide on a substrate.
    Type: Application
    Filed: October 5, 2010
    Publication date: May 12, 2011
    Applicant: SONY CORPORATION
    Inventors: Pinar KILICKIRAN, Zakir HUSSAIN, David DANNER, Akira MASUTANI, Gabriele NELLES, Shunichi SUWA, Yuichi INOUE, Shuichi SHIMA
  • Publication number: 20110112259
    Abstract: A pharmaceutically-active polymeric compound of the general formula (I), Y-[Yn-LINK B-X]m-LINK B??(I) wherein (i) X is a coupled biological coupling agent of the general formula (II) Bio-LINK A-Bio??(II) wherein Bio is a biologically active agent fragment or precursor thereof linked to LINK A through a hydrolysable covalent bond; and LINK A is a coupled central flexible linear first segment of <2000 theoretical molecular weight linked to each of said Bio fragments; (ii) Y is LINK B-OLIGO; wherein (a) LINK B is a coupled second segment linking one OLIGO to another OLIGO and an OLIGO to X or precursor thereof; and (b) OLIGO is a short length of polymer segment having a molecular weight of less than 5,000 and comprising less than 100 monomeric repeating units; (iii) m is 1-40; and (iv) n is selected from 2-50. The compounds are useful as biomaterials, particularly, providing antibacterial activity in vivo.
    Type: Application
    Filed: June 3, 2010
    Publication date: May 12, 2011
    Applicant: Interface Biologics, Inc
    Inventors: J. Paul SANTERRE, Mei LI
  • Patent number: 7902141
    Abstract: The present invention relates to compositions for treating hard surfaces, comprising a water-soluble or water-dispersible compound as component A which is obtainable by reacting: aa) polyalkylenepolyamines, polyamidoamines, polyamidoamines grafted with ethyleneimine, polyether-amines and mixtures of said compounds, as component Aa; ab) if appropriate at least bifunctional crosslinkers which have, as functional group, a halogenhydrin, glycidyl, aziridine or isocyanate unit or a halogen atom, as component Ab; and ac) monoethylenically unsaturated carboxylic acids, salts, esters, amides or nitriles of monoethylenically unsaturated carboxylic acids, chlorocarboxylic acids and/or glycidyl compounds, such as glycidyl acid, glycidylamide or glycidyl esters; and water; to a process for the preparation of a water-soluble or water-dispersible compound, to water-soluble or water-dispersible compounds preparable by the process according to the invention, and to the use of water-soluble or water-dispersible compounds acco
    Type: Grant
    Filed: January 27, 2005
    Date of Patent: March 8, 2011
    Assignee: BASF Aktiengesellschaft
    Inventors: Heike Becker, Hans-Juergen Degen, Marcus Guzmann, Tanja Gass, Volker Braig
  • Patent number: 7855315
    Abstract: A continuous sheet having a combination of acidic and basic water-absorbing resin particles that are essentially not neutralized and can be continuously manufactured on conventional papermaking apparatus, using a wet, dry, or wet-dry process to manufacture a water-absorbent sheet-like substrate containing 50%-100% by weight of the combination of acidic and basic water-absorbent particles is disclosed.
    Type: Grant
    Filed: June 25, 2007
    Date of Patent: December 21, 2010
    Inventors: Michael A. Mitchell, Mark Anderson, Thomas W. Beihoffer
  • Publication number: 20100273974
    Abstract: An object of the present invention, which was made to solve the problems above, is to provide a polyimide precursor resin composition superior in transparency allowing reduction of the residual volatile material rate during molding and giving a polyimide resin composition (e.g., polyimide film) superior in mechanical properties and transparency even when a cheaper polyamide-imide is used.
    Type: Application
    Filed: September 7, 2008
    Publication date: October 28, 2010
    Applicant: UNITIKA LTD.
    Inventors: Takeshi Yoshida, Akira Shigeta, Yoshiaki Echigo
  • Publication number: 20100152407
    Abstract: Ketimines, enamines and oxazolidines are moisture labile functional groups that in the presence of water undergo hydrolysis to yield free amines. Within the art such latent amines have found utility in curable compositions where it is desirable to initiate cure in the presence moisture. A number of novel polyketimines, polyenamines, polymeric oxazolidines and oxazolidines are disclosed. In particular, polymeric compounds of the above classes derived from C6 cyclic diketones and polyamines are reported. Suitable C6 cyclic diketones include cyclohexanediones and quinones. The invention further relates to the applications of the materials, such as in moisture cure adhesives.
    Type: Application
    Filed: November 19, 2009
    Publication date: June 17, 2010
    Applicant: Loctite (R&D) Limited
    Inventors: David P. Birkett, Matthias Voegler, Louise Gallagher
  • Publication number: 20100147476
    Abstract: Disclosed herein are hydrophobically-modified poly(aminoamides) useful as fixative detackifiers for stickies and pitch control in papermaking processes. These polymers are prepared via modification of amine-containing water-soluble poly(aminoamides) with reactive functional group-containing hydrophobic compounds. In particular, poly(aminoamides) may be modified, under appropriate reaction conditions, with long chain alkyl glycidyl ether, AKD (alkyl ketene dimer), ASA (alkyl succinyl anhydride), or Quab (3-chloro-2-hydroxypropyl-N,N,N-dimethylalkyl ammonium chloride). These novel polymers are effective in inhibiting deposition of organic contaminants in pulp and papermaking systems.
    Type: Application
    Filed: November 18, 2009
    Publication date: June 17, 2010
    Inventors: Qu-Ming GU, Lloyd A. Lobo, Erin A. S. Doherty, Huai N. Cheng
  • Publication number: 20100108954
    Abstract: Polymers comprising a backbone comprising at least one arylamine repeat moiety and at least one linking moiety, wherein the linking moiety does not comprise an aryl moiety. Ink formulations and organic electronic devices such as OLEDs or OPVs can be formed from the polymers and doped polymers. The polymers can be used in a hole injection layer, hole transport layer, a hole extraction layer, or as a host material in an emissive layer. Improved stability can be achieved in organic electronic devices such as OLEDs and OPVs.
    Type: Application
    Filed: October 26, 2009
    Publication date: May 6, 2010
    Inventors: Jessica Benson-Smith, Christopher T. Brown, Venkataramanan Seshadri, Jing Wang
  • Publication number: 20100076546
    Abstract: The invention relates to a coating formulation for preparing a medical coating, which coating formulation comprises (a) at least one multifunctional polymerizable compound according to formula (I), wherein G is a residue of a polyfunctional compound having at least n functional groups, wherein each R1 and each R2 independently represents hydrogen or a group selected from substituted and unsubstituted hydrocarbons which optionally contain one or more heteroatoms, and wherein n is an integer having a value of at least 2; and (b) at least one initiator.
    Type: Application
    Filed: September 13, 2007
    Publication date: March 25, 2010
    Applicant: DSM IP ASSETS B.V.
    Inventors: Aylvin Jorge Angelo Athanasius Dias, Edith Elizabeth M. Van Den Bosch, Peter Bruin, Marnix Rooijmans, Rudolfus Antonius Theodorus Maria Van Benthem
  • Publication number: 20090209725
    Abstract: To provide a polyimide film for molding that is light and has excellent surface smoothness, safety, moldability, heat resistance, and handleability and thus can be used as the reflector base material for illuminating devices. The polyimide film for molding is made of a thermoplastic polyimide obtained from a reaction between an aromatic tetracarboxylic acid or its dianhydride and an aromatic diamine. The lowest viscoelasticity of storage elasticity (E?) of viscoelasticity is 108 Pa or lower, and the tensile elongation at glass transition temperature (E?) A is 150% or higher.
    Type: Application
    Filed: February 9, 2009
    Publication date: August 20, 2009
    Applicant: E.I. DU PONT DE NEMOURS AND COMPANY
    Inventor: TOSHIHIRO TESHIBA
  • Publication number: 20090111965
    Abstract: The present application relates to semiconductor processing compositions comprising at least one compound containing at least one amidoxime functional group and to methods of using these compositions in semiconductor processing. The present application also describes the preparation of amidoximes for a semiconductor processing composition by (a) mixing a cyanoethylation catalyst, a nucleophile and an alpha-unsaturated nitrile to produce a cyanoethylation product; and (b) converting a cyano group in the cyanoethylation product into an amidoxime functional group.
    Type: Application
    Filed: October 29, 2008
    Publication date: April 30, 2009
    Inventor: Wai Mun Lee
  • Publication number: 20090088550
    Abstract: The object of the present invention is to provide a composition for conductive materials from which a conductive layer having a high carrier transport ability can be made, a conductive material formed of the composition and having a high carrier transport ability, a conductive layer formed using the conductive material as a main material, an electronic device provided with the conductive layer and having high reliability, and electronic equipment provided with the electronic device.
    Type: Application
    Filed: October 17, 2005
    Publication date: April 2, 2009
    Applicant: Seiko Epson Corporation
    Inventors: Takashi Shinohara, Yuji Shinohara, Koichi Terao
  • Publication number: 20090062502
    Abstract: The present invention provides a resin having both an aromatic ketone structure and a benzoxazine structure, having a repeat unit represented by following general formula (1) —[B—C(?O)—B-A]n- ??formula (1): (wherein A represents a directly coupling single bond or a diamine residue, B represents a group that contains a benzoxazine structure and is bonded by an aromatic part of the benzoxazine structure to the —C(?O)—, and n represents an Integer in a range of from 3 to 30).
    Type: Application
    Filed: August 27, 2007
    Publication date: March 5, 2009
    Applicant: Sekisui Chemical Co., Ltd.
    Inventors: Hatsuo Ishida, Masanori Nakamura
  • Publication number: 20080249049
    Abstract: A composition for the delivery of nucleic acid to target cells or tissues, which comprises polycationically charged polymer as a carrier of nucleic acid is provided. Said polycationically charged polymer is a polymer which may comprise a charged polymer segment having a main chain based on poly(amino acid), polysaccharide, polyester, polyether, polyurethane or vinyl polymer and having, as a side chain, a group of formula —NH—(CH2)a—(NH(CH2)2)e—NH2 (wherein a and e independently denote an integer of 1 to 5) which is connected to said main chain either directly or via a linker. This composition is low-toxic, and has a high efficiency in introducing nucleic acid into cells.
    Type: Application
    Filed: February 8, 2006
    Publication date: October 9, 2008
    Inventors: Kazunori Kataoka, Keiji Itaka, Nobuhiro Nishiyama, Shigeto Fukushima, Woo-Dong Jang, Kanjiro Miyata, Masataka Nakanishi, Shunsaku Asano, Naoki Kanayama
  • Publication number: 20080132670
    Abstract: Metal complexing agents are used to purify polymers including conducting polymers to provide very low metal content. The process comprises precipitating the polymer in solution into a solvent system comprising the metal complexing agent. Very low levels including undetectable levels of metals such as nickel and magnesium can be achieved. High purity polymers are used in electronics and photovoltaic applications.
    Type: Application
    Filed: August 31, 2007
    Publication date: June 5, 2008
    Inventors: Richard D. Mccullough, Mihaela C. Iovu
  • Patent number: 7307138
    Abstract: A sulfonated aromatic polyether ketone of the formula (II) [Ar—O—Ar?—CO—Ar?—O—Ar—CO—Ar?—CO—] ??(II) in which from 1% to 100% of the O-phenylene-CO units are substituted with an SO3M group and sulfonated and unsulfonated O-phenylene-CO units can be in any desired sequence with respect to one another, the radicals Ar, Ar? and Ar? independently of one another are substituted or unsubstituted 1,2-, 1,3- or 1,4-phenylene rings, and M, taking into account the ionic valencies, comprises one or more elements selected from the following group: H, NR4+, where R is H or C1-C4-alkyl, or an alkali metal or alkaline earth metal or a metal from subgroup 8, and is preferably H, NR4+, Li, Na, K, Ca, Mg, Fe or Pt.
    Type: Grant
    Filed: January 14, 2005
    Date of Patent: December 11, 2007
    Inventors: Joachim Clauss, Gregor Deckers, Arnold Schneller, Helmut Witteler
  • Patent number: 7265196
    Abstract: The present invention relates to a controllable crosslinking polyaryletherketone with improved properties such as stiffness, heat resistance, and stability as shown by any one of the following structures:
    Type: Grant
    Filed: July 7, 2004
    Date of Patent: September 4, 2007
    Assignee: Jilin University
    Inventors: Wanjin Zhang, Chunhai Chen, Xincai Liu, Xiaogang Zhao, Youhai Yu, Zihong Gao, Xiaoqing Yang, Zhongwen Wu
  • Patent number: 7226981
    Abstract: An epoxy resin curing agent composition containing a ketimine compound prepared by the reaction between a polyoxypropylenediamine component and a ketone compound, wherein (1) the polyoxypropylenediamine component is a 9/1 to 6/4 (by weight) mixture of polyoxypropylenediamine having a molecular weight of 200 and 500 and polyoxypropylenediamine having a molecular weight of 1000 to 3000, (2) the ketimine compound has a degree of ketimination of 90% or higher, or (3) the reaction is carried out in the presence of a catalyst selected from (i) a combination of a tertiary amine and a sulfonic acid and (ii) a salt between a tertiary amine and a sulfonic acid.
    Type: Grant
    Filed: May 17, 2004
    Date of Patent: June 5, 2007
    Assignee: Asahi Denka Co., Ltd.
    Inventors: Naohiro Fujita, Ryo Ogawa, Shoji Kusano
  • Patent number: 7211203
    Abstract: Disclosed are a polymer electrolyte having improved hot water resistance and radical resistance, a proton conductive membrane comprising the polymer electrolyte, and a membrane-electrode assembly including the proton conductive membrane. The polymer electrolyte comprises at least one polymer selected from polyether, polyketone, polyetherketone, polysulfone, polyethersulfone, polyimide, polyetherimide, polybenzimidazole, polybenzothiazole, polybenzoxazole and the like. The polymer comprises a repeating structural unit with either or both of an aromatic ring and a heterocyclic ring, and a repeating structural unit represented by the formula (1): wherein X is a single bond, an electron-withdrawing group or an electron-donating group; R is a single bond, —(CH2)q— or —(CF2)q— where q ranges from 1 to 10; m is from 0 to 10; k is from 0 to 5; l is from 0 to 4; and k+1?1.
    Type: Grant
    Filed: February 2, 2004
    Date of Patent: May 1, 2007
    Assignees: Honda Motor Co., Ltd., JSR Corporation
    Inventors: Toshihiro Otsuki, Nagayuki Kanaoka, Masaru Iguchi, Naoki Mitsuta, Hiroshi Soma
  • Patent number: 7189770
    Abstract: An amine curing component which can be used with various types of prepolymers including a urethane prepolymer having a reactive functional group of highly reactivity is provided. Also provided is a curable resin composition containing such curing component. This curable resin composition exhibits good surface and depth curability in the curing, and adjustment of pot life is also easy. The curing component contains an amino group-containing compound (A), a ketone compound (B), a ketimine compound (C), and water (D), and the curable resin composition contains this curing component.
    Type: Grant
    Filed: November 21, 2003
    Date of Patent: March 13, 2007
    Assignee: The Yokohama Rubber Co., Ltd.
    Inventors: Hiroyuki Okuhira, Akihito Kanemasa, Hiroyuki Hosoda
  • Patent number: 7186454
    Abstract: A material for dielectric films is a polymerizable composition containing an organic solvent, and an adamantanepolycarboxylic acid derivative represented by following Formula (1): wherein X is hydrogen atom, a hydrocarbon group or R4; R1, R2, R3 and R4 and are each independently a protected or unprotected carboxyl group, etc.; and Y1, Y2, Y3 and Y4 are each independently a single bond or a bivalent aromatic cyclic group; and an aromatic polyamine derivative represented by following Formula (2): wherein Ring Z is a monocyclic or polycyclic aromatic ring; and R5, R6, R7 and R8 are each a substituent bound to Ring Z and are each independently a protected or unprotected amino group, etc., dissolved in the organic solvent.
    Type: Grant
    Filed: March 24, 2004
    Date of Patent: March 6, 2007
    Assignee: Daicel Chemical Industries, Ltd.
    Inventors: Shinya Nagano, Jiichiro Hashimoto, Kiyoharu Tsutsumi, Yoshinori Funaki
  • Patent number: 7169878
    Abstract: A diamine compound represented by the formula (1): wherein R1 is a trivalent organic group, each of X1 and X2 is a bivalent organic group, X3 is an alkyl or fluoroalkyl group having from 1 to 22 carbon atoms, or a cyclic substituent selected from aromatic rings, aliphatic rings, heterocyclic rings and their substituted groups, and n is an integer of from 2 to 5. And, a polyimide precursor and a polyimide synthesized by using the diamine compound; and a treating agent for liquid crystal alignment containing the polyimide precursor and/or the polyimide.
    Type: Grant
    Filed: December 26, 2001
    Date of Patent: January 30, 2007
    Assignee: Nissan Chemical Industries, Ltd.
    Inventors: Kazuyoshi Hosaka, Hideyuki Nawata
  • Patent number: 7148314
    Abstract: A method for preparation of a sulfonic and or sulfonic acid salt containing polyimide resins comprising melt reaction of a polyimide resin with an organic compound, wherein the organic compound contains at least one aliphatic primary amine functionality and at least one other functionality selected from the group consisting of sulfonic acids, sulfonic acid salts or mixtures thereof.
    Type: Grant
    Filed: July 7, 2004
    Date of Patent: December 12, 2006
    Assignee: General Electric Company
    Inventors: Robert R. Gallucci, Tara J. Smith
  • Patent number: 7129318
    Abstract: Polyimide resins that are suitable for processing by resin transfer molding (RTM) and resin infusion (RI) methods at reduced processing temperatures are provided. The inventive RTM and RI processable polyimide resins exhibit melting at temperatures of less than about 200° C. and melt viscosities at 200° C. of less than about 3000 centipoise. A process for synthesizing the inventive resins is also provided, as is a fiber-reinforced composite material. The fiber-reinforced composite material employs the inventive polyimide resin as its resin matrix and demonstrates good heat resistance and mechanical properties.
    Type: Grant
    Filed: August 30, 2004
    Date of Patent: October 31, 2006
    Assignee: I.S.T. (MA) Corporation
    Inventors: Gary L. Deets, Jianming Xiong
  • Patent number: 7090925
    Abstract: A material for dielectric films is a polymerizable composition containing an adamantanepolycarboxylic acid represented by following Formula (1): wherein X is a hydrogen atom, a carboxyl group or a hydrocarbon group; and Y1, Y2, Y3 and Y4 are the same as or different from one another and are each a single bond or a bivalent aromatic cyclic group; an aromatic polyamine represented by following Formula (2): wherein Ring Z is a monocyclic or polycyclic aromatic ring; and R1 and R2 are each a substituent bound to Ring Z, are the same as or different from each other and are each an amino group, a mono-substituted amino group, a hydroxyl group or a mercapto group; and a solvent other than ketones and aldehydes, in which the adamantanepolycarboxylic acid and aromatic polyamine are dissolved in the solvent
    Type: Grant
    Filed: March 24, 2004
    Date of Patent: August 15, 2006
    Assignee: Daicel Chemical Industries, Ltd.
    Inventors: Shinya Nagano, Jiichiro Hashimoto, Kiyoharu Tsutsumi, Yoshinori Funaki
  • Patent number: 7078477
    Abstract: In the process of the present invention, a solvent-soluble polyimide is produced by polycondensing at least one tetracarboxylic acid component with at least one diamine component in a solvent in the presence of a tertiary amine. The tetracarboxylic acid component is selected from the group consisting of tetracarboxylic dianhydrides represented by the following formula 1: wherein R is as defined in the specification, and tetracarboxylic acids and their derivatives represented by the following formula 2: wherein R and Y1 to Y4 are as defined in the specification. Unlike the conventional techniques using an excessively large amount of a chemical imidation agent such as acetic anhydride and a chemical imidation catalyst such as triethylamine, in the process of the present invention, the solvent-soluble polyimide having a high polymerization degree is easily produced in a solvent with good productivity by using only a catalytic amount of the tertiary amine.
    Type: Grant
    Filed: June 25, 2004
    Date of Patent: July 18, 2006
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Hiroki Oguro, Shuta Kihara, Tsuyoshi Bito
  • Patent number: 7074882
    Abstract: The present invention provides a polyimide resin for an electrical insulating material which comprises a polyimide resin having a repeating unit represented by general formula (I): wherein R1 represents a bivalent organic group.
    Type: Grant
    Filed: July 2, 2004
    Date of Patent: July 11, 2006
    Assignee: Nitto Denko Corporation
    Inventors: Takami Hikita, Hisae Sugihara, Amane Mochizuki
  • Patent number: 7074880
    Abstract: A preparation process of polyimide aerogels that composed of aromatic dianhydrides and aromatic diamines or a combined aromatic and aliphatic diamines is described. Also descried is a process to produce carbon aerogels derived from polyimide aerogel composed of a rigid aromatic diamine and an aromatic dianhydride. Finally, the processes to produce carbon aerogels or xerogel-aerogel hybrid, both of which impregnated with highly dispersed transition metal clusters, and metal carbide aerogels, deriving from the polyimide aerogels composed of a rigid aromatic diamine and an aromatic dianhydride, are described. The polyimide aerogels and the polyimide aerogel derivatives consist of interconnecting mesopores with average pore size at 10 to 30 nm and a mono-dispersed pore size distribution. The gel density could be as low as 0.008 g/cc and accessible surface area as high as 1300 m2/g.
    Type: Grant
    Filed: July 22, 2003
    Date of Patent: July 11, 2006
    Assignee: Aspen Aerogels, Inc.
    Inventors: Wendell Rhine, Jing Wang, Redouane Begag
  • Patent number: 7071282
    Abstract: Disclosed herein are polyetherimide compositions comprising structural units of the formula: derived from at least one benzimidazole diamine, wherein R1 and R2 are independently selected from hydrogen and C1–C6 alkyl groups; “A” comprises structural units of the formulae: or mixtures of the foregoing structural units; wherein “D” is a divalent aromatic group, R3 and R10–R12 are independently selected from hydrogen, halogen, and C1–C6 alkyl groups; “q” is an integer having a value of 1 up to the number of positions available on the aromatic ring for substitution; and “W” is a linking group; and “B” comprises substituted and unsubstituted arylene groups having from about 6 to about 25 carbon atoms. Methods for producing the polyetherimide compositions are also disclosed herein.
    Type: Grant
    Filed: June 3, 2003
    Date of Patent: July 4, 2006
    Assignee: General Electric Company
    Inventors: Havva Acar, Daniel Joseph Brunelle
  • Patent number: 7053168
    Abstract: A method for preparing a polyimide includes introducing a mixture of an oligomer and a solvent to an extruder, removing solvent via at least one extruder vent, and melt kneading the oligomer to form a polyimide. The polyimide has a low residual solvent content. The method is faster than solution polymerization of polyimides, and it avoids the stoichiometric inaccuracies associated with reactive extrusion processes that use monomers as starting materials.
    Type: Grant
    Filed: October 10, 2003
    Date of Patent: May 30, 2006
    Assignee: General Electric Company
    Inventors: Norberto Silvi, Mark Howard Giammattei, Paul Edward Howson, Farid Fouad Khouri
  • Patent number: 7041778
    Abstract: A novel polyimide resin consisting essentially of 3,3?,4,4?-benzophenonetetracarboxylic dianhydride (BTDA), 3,4,3?,4?-biphenyltetracarboxylic dianhydride (BPDA), 2,2 bis (3?,4?-dicarboxy phenyl) hexafluoro propane dianhydride (6FDA), 2-(3,4-dicarboxyphenyl)-1-phenylacetylene anhydride (4-PEPA) and an aromatic diamine.
    Type: Grant
    Filed: May 18, 2004
    Date of Patent: May 9, 2006
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: David B. Curliss, Jason E. Lincoln, Katie E. Thorp
  • Patent number: 7026436
    Abstract: The present invention relates to a polyimide adhesive composition having a polyimide derived from an aromatic dianhydride and a diamine component, where the diamine component is preferably about 50 to 90 mole % of an aliphatic diamine and about 10 to 50 mole % of an aromatic diamine. In one embodiment, the aliphatic diamine has the structural formula H2N—R—NH2 wherein R is hydrocarbon from C4 to C16 and the polyimide adhesive has a glass transition temperature in the range of from 150° C. to 200° C. The present invention also relates to compositions comprising the polyimide adhesive of the present invention, including polyimide metal-clad laminate useful as flexible circuit when metal traces are formed out of the metal used in flexible, rigid, or flex-rigid circuit applications.
    Type: Grant
    Filed: November 26, 2002
    Date of Patent: April 11, 2006
    Assignee: E.I. du Pont de Nemours and Company
    Inventor: Kuppusamy Kanakarajan
  • Patent number: 7022810
    Abstract: A new class of hybrid organic-inorganic materials, and methods of synthesis, that can be used as a proton exchange membrane in a direct methanol fuel cell. In contrast with Nafion® PEM materials, which have random sulfonation, the new class of materials have ordered sulfonation achieved through self-assembly of alternating polyimide segments of different molecular weights comprising, for example, highly sulfonated hydrophilic PDA-DASA polyimide segment alternating with an unsulfonated hydrophobic 6FDA-DAS polyimide segment. An inorganic phase, e.g., 0.5–5 wt % TEOS, can be incorporated in the sulfonated polyimide copolymer to further improve its properties. The new materials exhibit reduced swelling when exposed to water, increased thermal stability, and decreased O2 and H2 gas permeability, while retaining proton conductivities similar to Nafion®. These improved properties may allow direct methanol fuel cells to operate at higher temperatures and with higher efficiencies due to reduced methanol crossover.
    Type: Grant
    Filed: December 18, 2003
    Date of Patent: April 4, 2006
    Assignee: Sandia Corporation
    Inventor: Christopher J. Cornelius
  • Patent number: 7022214
    Abstract: Carboxylic acid-substituted polyalkylene polyamines in which amine nitrogen atoms on the polyamine backbone structure are replaced by guanidine groups provide a pH range extending into high pH values. These substances are useful as carrier ampholytes in isoelectric focusing.
    Type: Grant
    Filed: January 21, 2004
    Date of Patent: April 4, 2006
    Assignee: Bio-Rad Laboratories, Inc.
    Inventor: Lee Olech
  • Patent number: 7022809
    Abstract: The present invention relates to novel polyimides derived from 6FDA and from 3,3-dihydroxy-4,4?-diaminobiphenyl and novel polyimides derived from PMDA and from Bis-AP-AF, having alkyl, arylalkyl, heteroarylalkyl, (cycloalkyl)alkyl, fluoroalkyl or siloxane side groups. The present invention also relates to a method of producing nematic liquid-crystal devices, which comprises the steps consisting in: depositing one of the polyimides according to the invention on a substrate; annealing the polyimide in one or more steps; and defining an azimuthal orientation of the polyimide coating.
    Type: Grant
    Filed: May 30, 2002
    Date of Patent: April 4, 2006
    Assignee: Nemoptic
    Inventors: Sandrine Lamarque, Jean-Claude Dubois, Didier Gallaire
  • Patent number: 7019104
    Abstract: An object of present invention is to provide a diamine and an acid dianhydride having photoreactivity and thermoreactivity and a polyimide composition containing the diamine and the acid dianhydride as monomer components, and specifically to synthesize a diamine and an acid dianhydride having a photoreactive and thermoreactive group containing a double bond or triple bond such as cinnamic acid, chalcone, benzalacetophenone, stilbene, coumarin, pyrone, allyl, propargyl, and acetylene or a derivative skeleton thereof so as to exhibit photoreactivity and thermoreactivity specific to the reactive group, thereby providing a polyimide composition containing the diamine and the acid dianhydride.
    Type: Grant
    Filed: November 1, 2000
    Date of Patent: March 28, 2006
    Assignee: Kaneka Corporation
    Inventors: Koji Okada, Shoji Hara, Hitoshi Nojiri
  • Patent number: 7019103
    Abstract: A terminal-crosslinkable polyamic acid oligomer having 1) heat resistance indicated by Tg of 300° C. or more and a pyrolysis temperature of 500° C. or more, 2) toughness, and 3) capability of allowing an increase in concentration. The polyamic acid oligomer is obtained by reacting an aromatic tetracarboxylic dianhydride including 2,2?,3,3?-biphenyltetracarboxylic dianhydride, an aromatic diamine compound, and a reactive crosslinking agent including an amino group or acid anhydride group and a crosslinkable group in the molecule, and includes a crosslinkable group at the molecular terminal.
    Type: Grant
    Filed: May 5, 2004
    Date of Patent: March 28, 2006
    Assignees: JSR Corporation, Ube Industries, Ltd.
    Inventors: Rikio Yokota, Kohei Goto, Hideki Ozawa
  • Patent number: 7015304
    Abstract: This invention relates to the composition and a solvent-free process for preparing novel imide oligomers and polymers specifically formulated with effective amounts of a dianhydride such as 2,3,3?,4-biphenyltetra carboxylic dianydride (a-BPDA), at least one aromatic diamine and an endcapped of 4-phenylethynylphthalic anhydride (PEPA) or nadic anhydride to produce imide oligomers that possess a low-melt viscosity of 1–60 poise at 260–280° C. When the imide oligomer melt is cured at about 371° C. in a press or autoclave under 100–500 psi, the melt resulted in a thermoset polyimide having a glass transition temperature (Tg) equal to and above 310° C. A novel feature of this process is that the monomers; namely the dianhydrides, diamines and the endcaps, are melt processable to form imide oligomers at temperatures ranging between 232–280° C. (450–535° F.) without any solvent.
    Type: Grant
    Filed: July 23, 2004
    Date of Patent: March 21, 2006
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Chun-Hua Chuang
  • Patent number: 7001606
    Abstract: The invention relates to biocidal polymers based on guanidine salts characterized in that they are representatives of a number of polyoxyalkylene guanidines and their salts and are a product of a polycondensation of guanidine salts with diamines which include two amino groups and polyoxyalkylene chains therebetween. In addition to a high bactericidity, these new polymer products are provided with a relatively low toxicity, an increased hydrophily, a quick and complete dilution in water, increased values of relative molar mass, and distinct characteristics of polymer surface active substances.
    Type: Grant
    Filed: May 8, 2001
    Date of Patent: February 21, 2006
    Assignee: P.O.C. Oil Industry Technology Beratungsges m.b.H.
    Inventors: Oskar J. Schmidt, Andreas Schmidt, Dimitri Toptchiev
  • Patent number: 6984714
    Abstract: This invention relates to a siloxane-modified polyimide resin which shows excellent adhesiveness and can be bonded by thermocompression at high temperature even after subjection to thermal hysteresis in the manufacturing step for electronic parts. This polyimide resin is obtained from an aromatic tetracarboxylic acid dianhydride (A) and a diamine (B) comprising 30–95 mol % of a bis(4-aminophenoxy)alkane (B1) and 5–70 mol % of a siloxanediamine (B2) as essential components.
    Type: Grant
    Filed: April 23, 2003
    Date of Patent: January 10, 2006
    Assignee: Nippon Steel Chemical Co., Ltd.
    Inventors: Kiwamu Tokuhisa, Hongyuan Wang
  • Patent number: 6979721
    Abstract: This invention relates to polyimides having improved thermal-oxidative stability, to the process of preparing said polyimides, and the use of polyimide prepolymers in the preparation of prepregs and composites. The polyimides are particularly useful in the preparation of fiber-reinforced, high-temperature composites for use in various engine parts including inlets, fan ducts, exit flaps and other parts of high speed aircraft.
    Type: Grant
    Filed: October 23, 2003
    Date of Patent: December 27, 2005
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Mary Ann B. Meador, Aryeh A. Frimer
  • Patent number: 6956098
    Abstract: The substrates of the present invention comprise a polyimide base polymer derived at least in part from collinear monomers together with crankshaft monomers. The resulting polyimide material has been found to provide advantageous properties, particularly for electronics type applications.
    Type: Grant
    Filed: September 20, 2002
    Date of Patent: October 18, 2005
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: John Donald Summers, Richard Frederich Sutton, Jr., Brian Carl Auman
  • Patent number: 6949618
    Abstract: Provided are polyimide and a thin film thereof which have a three-dimensional structure and therefore are excellent in a mechanical strength and a heat resistance as compared with those of conventional linear polyimide. The polyimide is obtained from a salt of multifunctional amine represented by Formula (1): (wherein A represents a tetravalent organic group, and n represents an integer of 0 to 3) and tetracarboxylic diester represented by Formula (2): (wherein B represents a tetravalent organic group having 1 to 20 carbon atoms, and R1 and R2 each represent independently an alkyl group having 1 to 5 carbon atoms).
    Type: Grant
    Filed: October 29, 2002
    Date of Patent: September 27, 2005
    Assignee: Chisso Corporation
    Inventor: Takashi Kato