Nitrogen-containing Reactant Patents (Class 528/288)
  • Patent number: 11446359
    Abstract: Methods, devices and systems are described for decreasing the activity of the sympathetic nervous innervation to and from the lungs and the vessels supplying the lungs to treat pulmonary medical conditions such as asthma. In one embodiment, the method may involve advancing an intravascular instrument to a target location in a blood vessel within the intercostal vasculature to ablate either or both the sympathetic afferent and efferent nerves lying within the paravertebral gutter including the visceral fibers that travel to the cardiothoracic cavity and abdominopelvic viscera and the T1 to T4/5 sympathetic chain. In another embodiment, an intravascular instrument may be advanced to the bronchial vessels to ablate either or both the sympathetic afferent and efferent nerves in and around the posterior pulmonary plexus. In one embodiment the ablative agent is a neurolytic agent delivered in a gel. This approach may be utilized to treat other cardiac and pulmonary diseases.
    Type: Grant
    Filed: February 13, 2019
    Date of Patent: September 20, 2022
    Assignee: Tulavi Therapeutics, Inc.
    Inventor: Corinne Bright
  • Patent number: 11242456
    Abstract: The present application discloses interlayers comprising novel polyesteramides comprising diols with tunable properties based on the monomers and monomer ratios used to prepare the polyesteramides and varying the reaction conditions. The interlayers have improved properties and can be used in many different applications.
    Type: Grant
    Filed: January 23, 2019
    Date of Patent: February 8, 2022
    Assignee: Solutia Inc.
    Inventors: Aristotelis Karagiannis, Paul Hastings, Pu Zhang, Pinguan Zheng, Emmett Dudley Crawford, Scott Ellery George, Aireal Denise Pressley, Khanh Duc Tran
  • Patent number: 11208528
    Abstract: The invention relates to a multilayer biaxially oriented polyester film comprising a base layer B, an amorphous outer layer A and a further outer layer C, where this polyester film is suitable for lamination with metal sheets. The invention in particular relates to a polyester film which comprises (based on the mass of polyester) from 2 to 15% by weight of isophthalate-derived units in the base layer and which comprises more than 19% by weight of isophthalate-derived units in the amorphous layer A, and which has a silane-based coating on the outer layer A. The invention further relates to a process for the production of these films.
    Type: Grant
    Filed: April 6, 2017
    Date of Patent: December 28, 2021
    Assignee: Mitsubishi Polyester Film GmbH
    Inventors: Matthias Konrad, Bodo Kuhmann, David Ehrhardt, Thiemo Herbst, Holger Kliesch, Cynthia Bennett
  • Patent number: 10920016
    Abstract: The present application relates to a polymerizable composition, a prepolymer, a phthalonitrile resin, a composite, a method for producing the same, and a use thereof. The present application can provide a polymerizable composition, a prepolymer and a phthalonitrile resin capable of forming a composite showing proper curing property, melting temperature and process window and having excellent physical properties such as heat resistance and rigidity.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: February 16, 2021
    Assignee: LG CHEM, LTD.
    Inventors: Sang Woo Kim, Seung Hee Lee, Ki Ho Ahn, Yulliana Kim
  • Patent number: 10873027
    Abstract: A process for the manufacture of a multilayer structure suitable for forming part of an organic electronic device having a cathode and an anode wherein liquid compositions with solvent systems comprising organic compounds with ionizable groups are deposited out of solution. Organic electronic devices can be made with use of the process including transistors, diodes, and photovoltaic devices, including organic light emitting diodes (OLEDs).
    Type: Grant
    Filed: December 10, 2013
    Date of Patent: December 22, 2020
    Assignee: Nissan Chemical Industries, Ltd.
    Inventor: Roland Martin
  • Patent number: 10662285
    Abstract: The present invention provides a polyester resin composition excellent in transparency and flexibility, high in heat resistance, undergoes the bleeding-out of an oligomer at a reduced level, and can be formed into a formed or molded article or pellets that are rarely agglutinated. A polyester resin composition includes a polyester resin, made by a polymerization reaction of a dicarboxylic acid component containing (a) 75 to 98 mol% of an alicyclic dicarboxylic acid, preferably having 5 to 30 carbon atoms, and (b) 2 to 25 mol% of a dimer acid, preferably having 36 or 44 carbon atoms, with (c) a diol component containing 75 mol% or more of an alicyclic diol. The proportion of the trans-form relative to the total amount of the trans-form and the cis-form of the alicyclic dicarboxylic acid unit contained in the polyester resin composition is desirably 80% or more.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: May 26, 2020
    Assignees: DAIWA CAN COMPANY, Bell Polyester Products, Inc.
    Inventors: Masaya Okimoto, Keita Katsuma, Hideaki Tomura
  • Patent number: 10072106
    Abstract: The present disclosure relates to the field of decontamination and biocidal agents. More specifically, the invention relates to novel N-halamine melamine derivatives, compositions comprising them, processes for their production, and methods using the same.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: September 11, 2018
    Assignee: State of Israel, Prime Minister's Office, Israel Insitute For Biological Research
    Inventors: Dana M. Mizrahi, Ishay Columbus
  • Patent number: 9962922
    Abstract: A polyesteramide for use in 3D printing includes about 1 to about 30 mole percent of a diamine monomer unit, a diol monomer unit, and a terephthalate monomer unit, the polyesteramide having a glass transition temperature (Tg) in a range from about 50° C. to about 95° C.
    Type: Grant
    Filed: April 24, 2015
    Date of Patent: May 8, 2018
    Assignee: XEROX CORPORATION
    Inventors: Guerino G. Sacripante, Ke Zhou, Tasnim Abukar
  • Patent number: 9528015
    Abstract: A phase change ink composition comprising an amorphous component, a crystalline material, and optionally, a colorant, which are suitable for ink jet printing, including printing on coated paper substrates and are suitable for fast printing processes. In particular, the crystalline component comprises a diurethane compound or derivatives thereof.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: December 27, 2016
    Assignee: XEROX CORPORATION
    Inventors: Naveen Chopra, Jeffrey H. Banning, Jennifer L. Belelie, Gabriel Iftime, Kentaro Morimitsu, Peter G. Odell
  • Patent number: 9453107
    Abstract: The object of the invention is a method for preparing a polyamide from one or several monomers adapted for the preparation of polyamide characterized in that the selected monomer(s), is(are) introduced without any preliminary reaction and without any preliminary preparation of the corresponding salt, in an extruder including at least two conveying screws rotating co-rotatively and in that all the reaction and polycondensation steps, initially starting from the selected monomer(s), and giving the possibility of ending up with the desired polyamide, are conducted in an extruder including at least two conveying screws rotating co-rotatively, and polycondensation is achieved by carrying out at least two operations for discharging the by-product(s) formed by the polycondensation reaction.
    Type: Grant
    Filed: July 25, 2013
    Date of Patent: September 27, 2016
    Assignee: SETUP PERFORMANCE
    Inventors: Didier Lagneaux, Jerome Gimenez, Anne-Carine Brosse, Laurent Goujard, Henri Sautel
  • Patent number: 9407320
    Abstract: In one embodiment, the presence of double talk (DT) is detected in a telecommunications network having a near-end user and a far-end user. The energies of both (1) a signal received from the far-end user by the near-end user and (2) a signal to be communicated from the near-end user to the far-end user are computed. An echo return loss (ERL) estimate is calculated based on the energy calculations, and a preliminary decision is made as to whether DT is present based on the ERL estimate and the energy calculations. If DT is detected, then a counter is set to a hangover value. If DT is not detected, then the counter is reduced. This process is repeated, and, for each iteration, a final decision as to whether DT is present is made based on the counter value.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: August 2, 2016
    Assignee: Intel Corporation
    Inventor: Mizhou Tan
  • Patent number: 9228133
    Abstract: A method for refining oil includes contacting an oil with hydrogen to perform a hydrodeoxygenation reaction using iron oxide as a catalyst. The iron oxide comprises ferrous oxide (FeO), ferrum dioxide (FeO2), ferric oxide (Fe2O3), ferroferric oxide (Fe3O4), or combinations thereof.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: January 5, 2016
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chiung-Fang Liu, Ching-I Juch, Chih-Hao Chen, Chih-Ching Chen, Ju-Shiou Chen, Ying-Hsi Chang, Hou-Peng Wan, Hom-Ti Lee
  • Patent number: 9012566
    Abstract: A polyamide molding composition is described comprising the following components (A)-(C) in the following composition, where the entirety of components (A), (B) and (C) gives 100% by weight: (A) from 25 to 75% by weight of at least one transparent copolyamide composed of (a) from 50 to 90 mol % of a cycloaliphatic diamine selected from the group consisting of: bis(4-amino-3-methylcyclohexyl)methane (MACM), bis(4-aminocyclohexyl)methane (PACM), bis(4-amino-3-ethylcyclohexyl)methane (EACM), bis(4-amino-3,5-dimethylcyclohexyl)methane (TMACM) and mixtures thereof and (b) from 10 to 50 mol % of an unbranched, aliphatic diamine, based in each case on the total amount of diamines, and also (c) of one or more aliphatic and cycloaliphatic dicarboxylic acid(s), (B) from 25 to 75% by weight of at least one further polyamide of PAXY type, where X and Y can assume, independently of one another, the values from 9 to 14, (C) from 0 to 10% by weight of additives.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: April 21, 2015
    Assignee: EMS-Patent AG
    Inventors: Friedrich Severin Bühler, Sepp Bass
  • Patent number: 9000102
    Abstract: The invention is directed to a process for preparing a linear or branched amine-modified thermoplastic resin with high flowability using as starting materials a linear or branched polyester and a primary or secondary aliphatic amine. The process does not require that the amine and polyester be combined in a liquid organic solvent during the process, and can be performed readily at ambient pressure. The amine-modified resins can be extruded and pelletized using normal operating conditions, making this process a versatile option for achieving a wide variety of viscosities in a simple, low cost, continuous operation.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: April 7, 2015
    Assignee: SABIC Global Technologies B.V.
    Inventor: Robert R. Gallucci
  • Publication number: 20150094447
    Abstract: The invention relates to polymers comprising NOS agonists and one or more monomers selected from the group consisting of lactide, glycolide and epsiloncaprolactone, wherein the NOS agonist is incorporated as repeating monomer units into the body or backbone of the polymer are disclosed. The NOS agonist may comprise one or more carboxylic acid groups and one or more alkylhydroxy groups. In another embodiment, the NOS agonist may comprise a carboxylic acid group and an alkylhydroxy group that can be joined to form a lactone containing cyclic ring. In another embodiment, the NOS agonist comprises HMG CoA reductase inhibitor or statin.
    Type: Application
    Filed: November 14, 2014
    Publication date: April 2, 2015
    Applicant: PALMETTO PHARMACEUTICALS LLC
    Inventor: Wayne H. KAESEMEYER
  • Patent number: 8993686
    Abstract: Biodegradable saturated and unsaturated polyester amides (PEA)s made from multiamino acid monomers and methods of making biodegradable saturated and unsaturated PEAs.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: March 31, 2015
    Assignee: Cornell University
    Inventors: Chih-Chang Chu, Mingxiao Deng
  • Patent number: 8981037
    Abstract: A polyester resin that includes a furandicarboxylate, has excellent heat resistance, and can be used for producing a molding product. The polyester resin is provided by copolymerizing a diol having an amino group. The polyester resin includes a structural unit represented by formulae formula (1) and a structural unit represented by formula (2) that has an amide bond: where: R1 represents an aromatic hydrocarbon group which may be substituted, or an aliphatic hydrocarbon group which may be substituted; and A represents a furandicarboxylic acid residue of formula (3): wherein the polyester resin contains the structural unit represented by the formula (2) in an amount from 3.8 mol % to 9.7 mol % with respect to a total of the structural units represented by the formulae (1) and (2).
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: March 17, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventors: Shinji Eritate, Toshinari Miura, Takeshi Komuro, Kie Yutaka
  • Patent number: 8971766
    Abstract: The present invention provides an electrophotographic member capable of more definitely suppressing occurrence of a C set image. The electrophotographic member has a surface layer including a modified polysiloxane having a structure represented by the following formula (1). In the formula (1), G represents a bivalent group having an ethylene oxide chain represented by (—O—C2H4—) and L represents polysiloxane having at least a SiO4/2(Q) unit or a SiO3/2(T) unit.
    Type: Grant
    Filed: June 4, 2013
    Date of Patent: March 3, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventors: Tomohito Taniguchi, Hiroshi Mayuzumi, Yusuke Yagisawa
  • Patent number: 8952122
    Abstract: A polyamide modified by a compound including a sulfonate group, as well as a method for preparing the polyamide and to articles obtained from said modified polyamide are described. A modified polyamide obtained from a mono-functional aromatic sulfonate compound is also described.
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: February 10, 2015
    Assignee: Rhodia Operations
    Inventors: Franck Touraud, Stéphane Jeol
  • Publication number: 20150021274
    Abstract: There is disclosed certain hyperbranched polyester amides with a cloud point of at least 50° C. in water with end groups selected from: two or more i] tertiary amine functional end groups ii) ammonium functional end groups, iii) polyalkylene glycol functional end groups; iv) quaternary ammonium zwitterionic end groups and/or v) other ionic groups (such as phosphate or sulfate), that are useful in various end uses such as a flocculant.
    Type: Application
    Filed: December 20, 2012
    Publication date: January 22, 2015
    Inventors: Henricus Johannes Arts, Franciscus Johannes Marie Derks, Wendy Hyett, Stijn Witters
  • Publication number: 20150011680
    Abstract: Biosourced epoxide resins are provided, including the product of the reaction of one or more biosourced epoxide lipid derivatives with at least one cross-linking agent in the presence of at least one co-reagent selected from among the glycidyl ether derivatives of biosourced polyols or the product of the reaction of one or more glycidyl ether derivatives of biosourced polyols with at least one cross-linking agent.
    Type: Application
    Filed: February 18, 2013
    Publication date: January 8, 2015
    Inventors: Jean-Pierre Habas, Vincent Lapinte, Amelia Ulloa Habas, Olivia Giani
  • Patent number: 8927681
    Abstract: In a first aspect, organic coating compositions are provided, particularly spin-on antireflective coating compositions, that contain a polyester resin component. In a further aspect, coating compositions are provided that contain a resin component obtained by polymerization of a multi-hydroxy compound. Coating compositions of the invention are particularly useful employed in combination with an overcoated photoresist layer to manufacture integrated circuits.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: January 6, 2015
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Gerald B. Wayton, Peter Trefonas, III, Suzanne Coley, Tomoki Kurihara
  • Patent number: 8916187
    Abstract: The current invention relates to poly(amide) and poly(ester-amide) polymers, coatings including the polymers, and narrow polydispersity drug delivery particles including the polymers.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: December 23, 2014
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Michael Huy Ngo, Mikael O. Trollsas, Thierry Glauser, Jinping Wan, Bozena Zofia Maslanka
  • Publication number: 20140357832
    Abstract: A polyamide ester resin is a polymer of: a dicarboxylic acid; a diamine; and a linear aliphatic diol, wherein, based on a total amount of the diamine and the linear aliphatic diol, the diamine is present in an amount of about 75 mol % to about 99 mol % and the linear aliphatic diol is present in an amount of about 1 mol % to about 25 mol %, and wherein the polyamide ester resin has a melting point (Tm) from about 280° C. to about 320° C. and a crystallization temperature (Tc) from about 260° C. to about 290° C. The polyamide ester resin can exhibit excellent heat resistance, discoloration resistance, and moldability.
    Type: Application
    Filed: December 12, 2013
    Publication date: December 4, 2014
    Applicant: Cheil Industries Inc.
    Inventors: Eun Ju LEE, So Young KWON, Joon Sung KIM, Sang Kyun IM, Sung Chul CHOI, Ki Yon LEE, Suk Min JUN
  • Publication number: 20140341835
    Abstract: The present invention relates to a process for producing a hydroxy amino polymer comprising the steps: a) Reaction of an H functional starter compound bearing at least one Zerewitinoff active H atom with an unsaturated, cyclical carboxylic acid anhydride and at least one alkylene oxide compound for obtaining a prepolymer bearing hydroxyl groups, b) Addition of a primary amine and/or of ammonia to the double bond(s) of the prepolymer bearing hydroxyl groups obtained according to step a) for obtaining the hydroxy amino polymer, wherein the ratio of added amino groups to hydroxyl groups in a hydroxy amino polymer is at least 0.6. Furthermore, the invention relates to a hydroxy amino polymer, which can be achieved according to this process as well as a polyurea/polyurethane system, which contains such a hydroxy amino polymer.
    Type: Application
    Filed: December 17, 2012
    Publication date: November 20, 2014
    Inventors: Heike Heckroth, Christoph Eggert, Jörg Hofmann, Klaus Lorenz, Edward Browne, Hartmut Nefzger
  • Publication number: 20140342628
    Abstract: The invention relates to navel thermoplastic (co)polyimides and to the methods of synthesis thereof. The invention specifically relates to semi-aromatic thermoplastic (co)polyimides obtained by polymerisation of at least one aromatic compound comprising two anhydride functions and/or the derivatives thereof, especially carboxylic acid and/or ester, and at least one diamine of formula (I) NH2—R—NH2 wherein R is a saturated aliphatic hydrocarbonated divalent radical, the two amine functions thereof being separated by 4 to 6 carbon atoms, and 1 or 2 hydrogen atoms of the divalent radical being substituted by 1 or 2 methyl and/or ethyl groups. Said (co)polyimides can be transformed into plastic items by various methods such as extrusion, moulding or blowing.
    Type: Application
    Filed: September 18, 2012
    Publication date: November 20, 2014
    Inventor: Stéphane Jeol
  • Patent number: 8889821
    Abstract: A polyester amide compound having a polycarboxylic acid unit in an amount of 25 to 50 mol %, the polycarboxylic acid unit containing an aromatic dicarboxylic acid unit represented by the following formula (I) in an amount of 70 mol % or more; a polyhydric alcohol unit in an amount of 25 to 50 mol %, the polyhydric alcohol unit containing an aliphatic diol unit represented by the following formula (II) in an amount of 70 mol % or more; and a structural unit represented by the following formula (III) in an amount of 0.1 to 50 mol %: wherein, in formula (I), Ar represents an arylene group; in formula (II), X represents a C2 to C20 alkylene group; and in formula (III), R represents a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: November 18, 2014
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Ryoji Otaki, Tsuneaki Masuda, Takafumi Oda
  • Patent number: 8865313
    Abstract: The present invention relates generally to the field of organic chemistry and particularly to the optical retardation films for liquid crystal displays. The present invention provides an optical film comprising a substrate having front and rear surfaces, and at least one solid retardation layer on the front surface of the substrate.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: October 21, 2014
    Assignee: Crysoptix K.K.
    Inventor: Ellina Kharatiyan
  • Patent number: 8853325
    Abstract: The present invention is directed to alkanal derivatives of water-soluble polymers such as poly(ethylene glycol), their corresponding hydrates and acetals, and to methods for preparing and using such polymer alkanals. The polymer alkanals of the invention are prepared in high purity and exhibit storage stability.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: October 7, 2014
    Assignee: Nektar Therapeutics
    Inventor: Antoni Kozlowski
  • Patent number: 8835492
    Abstract: Disclosed is a block copolymer formed by coupling the following components with each other: (a) a copolymer (A) of a polyethylene glycol (PEG) type compound with a biodegradable polymer; and (b) at least one oligomer (B) selected from the group consisting of poly(?-amino ester) and poly(amido amine). A method for preparing the same block copolymer, and a polymeric hydrogel type drug composition comprising the temperature and pH-sensitive block copolymer and a physiologically active substance that can be encapsulated with the block copolymer are also disclosed. The multiblock copolymer is obtained by copolymerization of a pH-sensitive poly(?-amino ester) and/or poly(amido amine) type oligomer, a hydrophilic and temperature-sensitive polyethylene glycol type compound and a hydrophobic and biodegradable polymer.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: September 16, 2014
    Assignee: Sungyunkwan University Foundation for Corporate Collaboration
    Inventors: Doo Sung Lee, Min Sang Kim, Je Sun You, Huynh Dai Phu, Bong Sup Kim, Minh Khanh Nguyen
  • Patent number: 8809486
    Abstract: Disclosed is a method for producing a purified 2-aryl-3,3-bis(4-hydroxyaryl)phthalimidine of formula (I) wherein R1 is hydrogen or a C1-25 hydrocarbyl group and R2 is a hydrogen, a C1-25 hydrocarbyl group, or a halogen, and wherein the method comprises dissolving a crude phthalimidine compound in an aqueous base solution; precipitating the dissolved, crude phthalimidine compound from the aqueous base solution by adding an acid in an amount effective to lower the pH of the solution to 9.0 to 12.0, to provide a semicrude phthalimidine compound; and isolating the semicrude phthalimidine compound from the aqueous base solution, to provide the purified 2-aryl-3,3-bis(4-hydroxyaryl)phthalimidine of formula (I), and having a phenolphthalein compound content of less than 2,500 ppm, based on the weight of the purified 2-aryl-3,3-bis(4-hydroxyaryl)phthalimidine.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: August 19, 2014
    Assignee: Sabic Innovative Plastics IP B.V.
    Inventors: Venkata Rama Narayanan Ganapathy Bhotla, Balakrishnan Ganesan, Kishan Gurram, Salkod Parameshwar Mallika, Kumar Arun Satyanarayana, Swaminathan Shubashree
  • Patent number: 8809488
    Abstract: A film of a carboxylated polymer of formula (I): wherein the sum of x, y and z is an integer from 10 to 10,000 and degree of hydrolysis is 0.05 or greater provides gas separation materials in which the degree of hydrolysis may be used to tune the selectivity of the gases to an optimal required range. Such films may be prepared by casting a film of a polymer of formula (II): wherein n is an integer from 10 to 10,000, and hydrolyzing all or a portion of the —CN groups to form —COOH groups.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: August 19, 2014
    Assignee: National Research Council of Canada
    Inventors: Naiying Du, Michael D. Guiver, Gilles P. Robertson, Jingshe Song
  • Patent number: 8772437
    Abstract: Disclosed herein is a biodegradable nitric oxide-generating polymer comprising a nitric oxide-releasing N2O231 (NONOate) functional group. The polymer can be applied to various medical devices for the treatment of various diseases such as thrombosis and restenosis.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: July 8, 2014
    Assignee: Northwestern University
    Inventors: Guillermo Ameer, Melina Kibbe, Haichao Zhao
  • Publication number: 20140187739
    Abstract: A crystalline polyamide ester resin is prepared by copolymerizing (A) a dicarboxylic acid component, (B) a diamine component, and (C) a cyclic aliphatic diol component, and has a structure in which a dicarboxylic acid moiety derived from the dicarboxylic acid component (A), a diamine moiety derived from the diamine component (B) and a cyclic aliphatic diol moiety derived from the cyclic aliphatic diol component (C) are repeated. A molar ratio ((B):(C)) of the diamine component (B) to the cyclic aliphatic diol component (C) is about 80 to about 99:about 1 to about 20. The crystalline polyamide ester resin has a melting point (Tm) ranging from about 280° C. to about 320° C. and a crystallization temperature (Tc) ranging from about 260° C. to about 290° C. The crystalline polyamide ester resin can have excellent heat resistance, discoloration resistance and moldability.
    Type: Application
    Filed: July 23, 2013
    Publication date: July 3, 2014
    Inventors: So Young KWON, Jin Kyu KIM, Seung Youb BANG, Sang Kyun IM, Jin A. JE, Ki Yon LEE, Suk Min JUN, Sung Chul CHOI
  • Patent number: 8765902
    Abstract: In a process for preparing a polyamide based on dicarboxylic acids and diamines in an extruder, a solid mixture comprising a monomer mixture composed of 50 mol % of dicarboxylic acid mixture composed of from 60 to 88 % by weight of terephthalic acid and from 12 to 40% by weight of isophthalic acid, in which up to 20% by weight of the dicarboxylic acid mixture may also be replaced by other dicarboxylic acids, and 50 mol % of hexamethylenediamine which may be up to 20% by weight replaced by other C2-30-diamines, in a corotatory twin-screw extruder for a residence time of from 10 seconds to 30 minutes, is heated to a temperature in the range from 150 to 400° C. while removing steam and if appropriate diamines through venting orifices.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: July 1, 2014
    Assignee: BASF SE
    Inventors: Philippe Desbois, Michael Kopietz, Ralf Neuhaus, Hagen Stawitzki, Hans-Joachim Weis, Jochen Engelmann
  • Publication number: 20140179889
    Abstract: Elevated temperature electrospinning apparatus comprises a pump upstream of or containing a resistance heater, means to shield applied electrostatic field from the resistance heater, and a temperature modulator for modulating temperature in the spinning region.
    Type: Application
    Filed: February 28, 2014
    Publication date: June 26, 2014
    Applicant: Cornell University
    Inventors: Yong Lak JOO, Huajun ZHOU
  • Patent number: 8734952
    Abstract: The present invention relates generally to the field of organic chemistry and particularly to the optical retardation films for liquid crystal displays. The present invention provides an optical film comprising a substrate having front and rear surfaces, and at least one solid retardation layer on the front surface of the substrate.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: May 27, 2014
    Assignee: Crysoptix KK
    Inventor: Ellina Kharatiyan
  • Patent number: 8730437
    Abstract: A method for making a treated polymer for a liquid crystal alignment agent includes the steps of: subjecting a tetracarboxylic dianhydride compound and a diamine compound to conduct a polymerization reaction to obtain an untreated polymer; preparing a co-precipitating solvent for the untreated polymer which includes a major amount of a poor solvent and a minor amount of a good solvent; and subjecting the untreated polymer to a treatment with the co-precipitating solvent such that at least a significant amount of a polymer fraction having a molecular weight not larger than 3,000 is removed from the untreated polymer to obtain the treated polymer. A treated polymer for a liquid crystal alignment agent, a liquid crystal alignment agent including the treated polymer, a liquid crystal alignment film formed of the liquid crystal alignment agent, and a liquid crystal display element including the liquid crystal alignment film are also disclosed.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: May 20, 2014
    Assignee: Chi Mei Corporation
    Inventor: Huai-Pin Hsueh
  • Patent number: 8691899
    Abstract: An antimicrobial composition and a medical device having that antimicrobial composition that includes a complex of an anionic polyester with a monomeric amidoamine having at least one amide group and at least one amine group, wherein the amine group is either a primary amine, or a secondary amine, or a tertiary amine, or a quaternary amine, or a combination thereof and the anionic polyester has at least one carboxylic group.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: April 8, 2014
    Assignee: Ethicon, Inc.
    Inventors: Modesto Erneta, Joerg Priewe
  • Patent number: 8686090
    Abstract: The thermosetting, non-polymeric coating composition includes at least one monomeric material having a plurality of carbamate and/or urea groups, at least one crosslinker reactive with the at least one monomeric material, and a sag control agent that is a crystalline reaction product of an amine and an isocyanate.
    Type: Grant
    Filed: December 10, 2003
    Date of Patent: April 1, 2014
    Assignee: BASF Coatings GmbH
    Inventors: Marvin L. Green, Swaminathan Ramesh, Walter H. Ohrbom
  • Patent number: 8658743
    Abstract: A cage 1,2,3,4-cyclopentanetetracarboxylic acid (1,3:2,4)-dianhydride compound represented by formula [1], and a polyimide obtained by condensing the compound with a diamine. With the compound, it is possible to provide a polyimide which shows no absorption in the ultraviolet region and is highly transparent to light, has high insulating properties, has improved heat resistance and processability, and has excellent solubility in organic solvents. (In formula [1], R1 and R2 each independently represents a hydrogen atom, a halogen atom, or a C1-10 alkyl.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: February 25, 2014
    Assignee: Nissan Chemical Industries, Ltd.
    Inventors: Hideo Suzuki, Takahiro Noda
  • Patent number: 8637610
    Abstract: Novel, crosslinked polymers using biomass derived materials, such as aldaric acids and derivatives, are provided. The polymers can be used as hydrogels and in antimicrobial compositions.
    Type: Grant
    Filed: July 16, 2013
    Date of Patent: January 28, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventors: Mark Allen Andrews, Garret D Figuly, Henry Keith Chenault
  • Patent number: 8629207
    Abstract: An aqueous coating formulation for tannin-containing substrates can include a substituted C2-C4 polyalkyleneimine. Reacting a C2-C4 polyalkyleneimine having a weight-average molecular weight of from 500 to 10,000 g/mol with a carboxylic acid derivative can produce the substituted polyalkyleneimine. The carboxylic acid derivative includes at least one C1 to C30 alkyl group or C3 to C30 alkenyl group. Substrates that contain tannin and are coated with this aqueous coating formulation exhibit outstanding resistance with respect to color runs and color strikethrough.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: January 14, 2014
    Assignee: BASF SE
    Inventors: Audrey Cosyns, Arno Tuchbreiter, Robert Feuerhake, Jörg Nieberle
  • Patent number: 8603634
    Abstract: This invention relates to poly(ester amide)s (PEAs) comprising inactivated terminal amino and carboxyl groups, methods of synthesizing the inactivated PEAs and uses for them in the treatment of vascular diseases.
    Type: Grant
    Filed: March 23, 2009
    Date of Patent: December 10, 2013
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Jessica Renee DesNoyer, Stephen Dirk Pacetti, Vidya Nayak, Lothar Kleiner
  • Publication number: 20130313468
    Abstract: The thermoplastic resin in accordance with the present invention includes a unit (A) by 25 mol % to 60 mol %, the unit (A) having a biphenyl group, a linear unit (e.g., a linear aliphatic hydrocarbon chain) (B) by 25 mol % to 60 mol %, and a unit (C) by 1 mol % to 25 mol %, the unit (C) having a substituent selected from the group consisting of non-fused aromatic groups, fused aromatic groups, heterocyclic groups, alicyclic groups, and alicyclic heterocyclic groups, each of which has an effect of folding a main chain.
    Type: Application
    Filed: February 7, 2012
    Publication date: November 28, 2013
    Applicant: KANEKA CORPORATION
    Inventors: Mitsuru Nakamura, Shusuke Yoshihara
  • Publication number: 20130317118
    Abstract: The present invention relates to compounds of formula I and II, which are functionalized amino acids, and polymers formed from the same. Polymers formed from the functionalized amino acids are expected to have controllable degradation profiles, enabling them to release an active component over a desired time range. The polymers are also expected to be useful in a variety of medical applications.
    Type: Application
    Filed: July 25, 2013
    Publication date: November 28, 2013
    Applicant: BEZWADA BIOMEDICAL, LLC
    Inventor: Rao S Bezwada
  • Patent number: 8580912
    Abstract: Disclosed herein is a biodegradable nitric oxide-generating polymer comprising a nitric oxide-releasing N2O2? (NONOate) functional group. The polymer can be applied to various medical devices for the treatment of various diseases such as thrombosis and restenosis.
    Type: Grant
    Filed: September 21, 2009
    Date of Patent: November 12, 2013
    Assignee: Northwestern University
    Inventors: Guillermo Ameer, Melina Kibbe, Haichao Zhao
  • Patent number: 8575303
    Abstract: Described herein are methods, compositions and articles of manufacture involving neutral conjugated polymers including methods for synthesis of neutral conjugated water-soluble polymers with linkers along the polymer main chain structure and terminal end capping units. Such polymers may serve in the fabrication of novel optoelectronic devices and in the development of highly efficient biosensors. The invention further relates to the application of these polymers in assay methods.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: November 5, 2013
    Assignee: Sirigen Group Limited
    Inventors: Brent S. Gaylord, Jean M. Wheeler, Glenn P. Bartholomew, Yongchao Liang, Janice W. Hong, William H. Huisman, Frank Peter Uckert, Lan T. Tran, Adrian Charles Vernon Palmer, Trung Nguyen, Russell A. Baldocchi
  • Patent number: 8546517
    Abstract: The present invention generally relates to a poly(bisoxalamide) and a process for preparing and article comprising the poly(bisoxalamide).
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: October 1, 2013
    Inventors: Rene Broos, Niels Jurrian Sijbrandi, Pieter Jelle Dijkstra, Jan Feijen
  • Patent number: 8541109
    Abstract: The invention relates to a biodegradable polyester, particularly suitable for extrusion coating, comprising units deriving from at least a diacid and at least a diol, with long chain branches (isometric with respect to the main chains of the polyester) and essentially gel-free, characterized by optimum adhesion to paper, excellent sealability and processability in extrusion coating systems. Said biodegradable polyester is obtainable through a reactive extrusion process starting from a substantially linear polyester precursor with defined viscosity and concentration of reactive sites which allow transformation of a few chains of the polyester precursor into isometric branches of this polyester. A further object of the present invention is a laminate product composed of at least a backing, preferably paper, and of at least a first layer composed of polyester according to the invention.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: September 24, 2013
    Assignee: Novamont S.p.A.
    Inventors: Catia Bastioli, Angelos Rallis