Cycloaliphatic Ring-containing Reactant (other Than Aryl) Patents (Class 528/307)
  • Patent number: 8501287
    Abstract: The invention is generally directed to baby bottles and other articles produced by blow molding from polymeric materials having glass transition temperatures ranging from 100° C. to 130° C., as well as to processes for producing them. These articles can be exposed to boiling water and can be produced by using a suitable combination of a stretch ratio of less than 3 and a preform temperature at least 20° C. greater than the glass transition temperature (Tg) of the polymeric material.
    Type: Grant
    Filed: September 23, 2010
    Date of Patent: August 6, 2013
    Assignee: Eastman Chemical Company
    Inventors: Thomas Joseph Pecorini, Spencer Allen Gilliam, Alan Keith Phillips, Robert Ellis McCrary
  • Patent number: 8497343
    Abstract: A polyarylate composition comprising: structural units derived at least one substituted or unsubstituted diacid, at least one aromatic dihydroxy compound, and an unsaturated compound. The composition possesses good optical properties, flow, stability and mechanical property. Also disclosed is a process to prepare these compositions and articles therefrom.
    Type: Grant
    Filed: April 6, 2005
    Date of Patent: July 30, 2013
    Assignee: Sabic Innovative Plastics IP B.V.
    Inventors: Abbas Alli Ghudubhai Shaikh, Govind Subbanna Wagle, Ramesh Rajeswaran, Ganesh Kannan, Kyle Patrick Starkey, Michael Stephen Donovan
  • Patent number: 8466133
    Abstract: The present invention provides compositions and methods relating to polylactides which may be used for drug delivery (e.g., parenteral delivery), wherein an organic solvent is not required.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: June 18, 2013
    Assignee: University of Geneva
    Inventors: Michael Moller, Thomas Trimaille, Robert Gurny
  • Patent number: 8465842
    Abstract: The present invention relates to a biaxial oriented polyester film and process for preparing the same, the said film is having an average ellipticity of not more than 0.6, Poisson ratio of not more than 0.7 (at elongation greater than 25%) all along the width of web and residual enthalpy in the range of 12% to 20%, a continuous reduction in residual film area up to an elongation of 100%.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: June 18, 2013
    Assignee: Polyplex Corporation Limited
    Inventors: Bidhan Krushna Mohanty, Krishna Reddy
  • Patent number: 8430948
    Abstract: The present invention relates to a condensation and washing device with which in particular the process vapors which occur during the production of polylactide can be processed and cleaned. Furthermore, the present invention relates to a polymerization device for the production of polylactide and also to a method for processing process vapors which occur during the production of polylactide; possibilities for use of both the condensation and washing devices and of the method are likewise mentioned.
    Type: Grant
    Filed: August 5, 2008
    Date of Patent: April 30, 2013
    Assignee: Uhde Inventa-Fischer GmbH
    Inventors: Rainer Hagen, Udo Muhlbauer
  • Publication number: 20130095270
    Abstract: Described are polyesters comprising (a) a dicarboxylic acid component comprising 2,5-furandicarboxylic acid residues; optionally, aromatic dicarboxylic acid residues and/or modifying aliphatic dicarboxylic acid residues, 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues and 1,4-cyclohexanedimethanol. The polyesters may be manufactured into articles such as fibers, films, bottles, coatings, or sheets.
    Type: Application
    Filed: October 10, 2012
    Publication date: April 18, 2013
    Applicant: EASTMAN CHEMICAL COMPANY
    Inventor: EASTMAN CHEMICAL COMPANY
  • Patent number: 8420769
    Abstract: Provide are a novel polyester resin that can be used for producing a molded article excellent in impact resistance, and a method of producing the polyester resin. The polyester resin has structural units represented by the following general formulae (1) and (2), and contains the structural unit represented by the general formula (2) at a content of 50.1 mol % or more to 99.9 mol % or less with respect to the total of the structural units represented by the general formulae (1) and (2). The method of producing a polyester resin, includes copolymerizing a furandicarboxylic acid or an ester thereof with ethylene glycol and diethylene glycol. In the formula, R1 represents an aromatic hydrocarbon group which may be substituted, or an aliphatic hydrocarbon group which may be substituted.
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: April 16, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventor: Shinji Eritate
  • Patent number: 8415450
    Abstract: Described are polyester compositions comprising at least one polyester which comprises terephthalic acid residues, 2,2,4,4-tetramethyl-l,3-cyclobutanediol, and 1,4-cyclohexanedimethanol, wherein the inherent viscosity of said polyester is from 0.55 to 0.68 dL/g as determined in 60/40(wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; wherein said polyester has a Tg from 110 to 160° C.; wherein the polyester composition comprises no polycarbonate; wherein the melt viscosity of the polyester is less than 10,000 poise as measured at 1 radian/second on a rotary melt rheometer at 290° C.; and wherein the polyester has a notched Izod impact strength, of at least 7.5 ft-lb/in.ch at 23° C. according to ASTM D256 with a 10-mil notch in a ? inch thick bar. The polyesters may be manufactured into articles of manufacture as fibers, films, bottles or sheets.
    Type: Grant
    Filed: January 12, 2012
    Date of Patent: April 9, 2013
    Assignee: Eastman Chemical Company
    Inventors: Emmett Dudley Crawford, Thomas Joseph Pecorini, Douglas Stephens McWilliams, David Scott Porter, Gary Wayne Connell
  • Publication number: 20130084312
    Abstract: Biocompatible polymeric nanoparticles for delivery of bioactive agents, and methods for preparing the particles, are described. Polyoxalate nanoparticles of the subject technology show desired particle sizes suitable for use in drug delivery and a substantially uniform or narrow particle size distribution. The polyoxalate nanoparticles can contain water-soluble, poorly water-soluble, or water-insoluble drugs. The nanoparticles are nontoxic and are generally safe for use in humans. After being administered into the body, the nanoparticles with a high content of a bioactive agent entrapped therein can safely deliver the agent to target sites and stably release the drug at a controlled rate.
    Type: Application
    Filed: June 12, 2012
    Publication date: April 4, 2013
    Applicant: ROSE PHARMACEUTICALS, LLC
    Inventors: Gregory A. CAPUTO, Yaquan SUN, Lei YU, Sireesh APPAJOSYULA
  • Patent number: 8404335
    Abstract: A laminated film includes a structure where each 200 layers or more of a layer composed of a resin A (A layer) and a layer composed of a resin B (B layer) are alternately laminated, wherein a relative reflectance in a wavelength range of 400 nm to 1000 nm is 30% or more, tensile stresses at 100% elongation in a longitudinal direction and a width direction of the film are 3 MPa or more and 90 MPa or less in a tensile test at 150° C., and the number of layers with a layer pair-thickness of 120 nm or more and less than 220 nm is 1.05 times or more to 2.5 times or less the number of layers with a layer-thickness of 220 nm or more and 320 nm or less.
    Type: Grant
    Filed: January 3, 2012
    Date of Patent: March 26, 2013
    Assignee: Toray Industries, Inc.
    Inventors: Syunichi Osada, Wataru Gouda
  • Patent number: 8398600
    Abstract: Provided is a prefilled syringe comprising, as a resin constituting at least a barrel and a joint, a polyester resin that contains a diol unit having a cyclic acetal skeleton in an amount of from 1 to 30% by mol based on diol units and a dicarboxylic acid unit having a naphthalene skeleton in an amount of 70% by mol or more based on dicarboxylic acid units, and satisfies the following parameters: (i) a glass transition temperature of 110° C. or more measured with a differential scanning calorimeter, (ii) a moisture permeation coefficient of 1 g·mm/m2/day or less, and (iii) an oxygen permeation coefficient of 10 cc·mm/m2/day/atm or less.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: March 19, 2013
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Takeshi Hirokane, Yoshio Aoki
  • Patent number: 8389666
    Abstract: The disclosed is a copolymer having a formula as: R1 is a combination of naphthalene, phenylene, butyl, and hexyl. R2 is a combination of ethylene, cyclohexlene, 2-methylpropyl, and neopentyl. n is a number of 1500 to 3000. The copolymer has a transparency greater than 80%, a thermal resistance greater than 100° C., a moisture absorption less than 0.5 wt %, and yellowing under UV/climate resistance greater than 1000 hours.
    Type: Grant
    Filed: January 3, 2011
    Date of Patent: March 5, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Chih-Hsiang Lin, Ya-Lan Chuang, Pei-Jung Tsat, Shu-Ling Yeh, Chin-Lang Wu, Cing-Jiuh Kang, Hsin-Ching Kao
  • Patent number: 8354491
    Abstract: Described are container(s) comprising polyesters comprising (a) a dicarboxylic acid component comprising terephthalic acid residues; optionally, aromatic dicarboxylic acid or aliphatic dicarboxylic acid residues; and (b) a glycol component comprising 15 to 50 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues and 50 to 85 mole % 1,4-cyclohexanedimethanol residues; wherein the total mole % of said dicarboxylic acid component is 100 mole %, and the total mole % of said glycol component is 100 mole %; wherein the inherent viscosity of the polyester is from 0.50 to 0.75 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; wherein said polyester has a notched Izod impact strength of at least 7.5 ft-lb/inch at 23° C. according to ASTM D256 with a 10-mil notch in a 1/8-inch thick bar; and wherein the melt viscosity of said polyester is less than 10,000 poise as measured at 1 radian/second on a rotary melt rheometer at 290° C.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: January 15, 2013
    Assignee: Eastman Chemical Company
    Inventors: Emmett Dudley Crawford, Thomas Joseph Pecorini, David Scott Porter, Gary Wayne Connell, Michael James Keegan
  • Publication number: 20130011631
    Abstract: A laminate film including at least one bio-based polyester layer. The polyester layer has a radiocarbon (14C) content of at least 21.5 pMC. The laminate film may further have additional layers such as a second bio-based polyester resin-containing layer of at least about 21.5 pMC radiocarbon content, a metal layer, or combinations thereof.
    Type: Application
    Filed: July 8, 2011
    Publication date: January 10, 2013
    Applicant: TORAY PLASTICS (AMERICA), INC.
    Inventors: Stefanos L. SAKELLARIDES, Keunsuk P. CHANG
  • Publication number: 20120328815
    Abstract: The invention is generally directed to baby bottles and other articles produced by blow molding from polymeric materials having glass transition temperatures ranging from 100° C. to 130° C., as well as to processes for producing them. These articles can be exposed to boiling water and can be produced by using a suitable combination of a stretch ratio of less than 3 and a preform temperature at least 20° C. greater than the glass transition temperature (Tg) of the polymeric material.
    Type: Application
    Filed: August 28, 2012
    Publication date: December 27, 2012
    Applicant: EASTMAN CHEMICAL COMPANY
    Inventors: Thomas Joseph Pecorini, Spencer Allen Gilliam, Alan Keith Phillips
  • Patent number: 8299204
    Abstract: Described as one aspect of the invention are polyester compositions containing: (I) at least one polyester which comprises: (a) dicarboxylic acid component comprising: (i) 70 to 100 mole % of terephthalic acid residues; (ii) 0 to 30 mole % of aromatic dicarboxylic acid residues having up to 20 carbons atoms; and (iii) 0 to 10 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and (b) a glycol component comprising: (i) 1 to 99 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and (ii) 1 to 99 mole % of cyclohexanedimethanol residues; and (II) at least one thermal stabilizer chosen from at least one alkyl phosphate esters, aryl phosphate esters, mixed alkyl aryl phosphate esters, reaction products thereof, and mixtures thereof; wherein the total mole % of the dicarboxylic acid component is 100 mole %, and wherein the total mole % of the glycol component is 100 mole %.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: October 30, 2012
    Assignee: Eastman Chemical Company
    Inventors: Ted Calvin Germroth, Gary Wayne Connell, Emmett Dudley Crawford, Thomas Joseph Pecorini, Douglas Stephen McWilliams, Benjamin Fredrick Barton, Damon Bryan Shackelford
  • Patent number: 8287991
    Abstract: Disclosed are laminated articles comprising a first polymer layer and a second polymer layer having an inclusion embedded between the layers, wherein at least one layer comprises a branching agent to improve dimensional stability during the lamination process. Disclosed are laminated articles comprising a first polymer layer and a second polymer layer having an inclusion embedded between the layers, wherein at least one layer comprises a copolyester comprising a branching agent to improve dimensional stability during the lamination process. Also disclosed are methods of laminating a first layer and a second layer with an inclusion between the layers to form a laminated article with an embedded inclusion, wherein at least one layer comprises a copolyester comprising a branching agent.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: October 16, 2012
    Assignee: Eastman Chemical Company
    Inventors: Michael Eugene Donelson, Ryan Thomas Neill, James Collins Maine, Bryan Steven Bishop, Robert Erik Young
  • Patent number: 8287970
    Abstract: The invention is generally directed to baby bottles and other articles produced by blow molding from polymeric materials having glass transition temperatures ranging from 100° C. to 130° C., as well as to processes for producing them. These articles can be exposed to boiling water and can be produced by using a suitable combination of a stretch ratio of less than 3 and a preform temperature at least 20° C. greater than the glass transition temperature (Tg) of the polymeric material.
    Type: Grant
    Filed: November 20, 2008
    Date of Patent: October 16, 2012
    Assignee: Eastman Chemical Company
    Inventors: Thomas Joseph Pecorini, Spencer Allen Gilliam, Alan Keith Phillips
  • Patent number: 8263731
    Abstract: The present invention relates to multilayer optical films and birefringent copolyester films. The birefringent copolyester optical layer or birefringent copolyester film comprises a major amount of naphthalate units, ethylene units, and a minor amount of branched or cyclic C4 to C10 alkyl units. Also described are certain copolyester polymeric materials further comprising subunits of a phthalate ionomer such as dimethyl sulfosodium isophthalate ionomer.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: September 11, 2012
    Assignee: 3M Innovative Properties Company
    Inventors: Yufeng R. Liu, David T. Yust, Stephen A. Johnson, Kristopher J. Derks
  • Publication number: 20120161358
    Abstract: The invention relates to a process for making polyethylene terephthalate (PET) from ethylene glycol (EG), purified terephthalic acid (PTA) and optionally up to 6 mol % comonomer, using a mixed metal catalyst system and comprising the steps of a) esterifying EG and PTA to form diethyleneglycol terephthalate and oligomers (DGT), and b) melt-phase polycondensing DGT to form PET and EG, wherein the catalyst system substantially consists of 70-160 ppm of Sb-compound, 20-70 ppm of Zn-compound, and 0.5-20 ppm of Ti-glycolate as active components (ppm metal based on PET). With this process that applies reduced amount of metal catalyst components PET can be obtained with high productivity, which polyester shows favourable colour and optical clarity, also if recycling of EG is applied within the process.
    Type: Application
    Filed: August 17, 2010
    Publication date: June 28, 2012
    Applicant: SAUDI BASIC INDUSTRIES CORPORATION
    Inventors: Munif Al-Munif, Mummaneni Venkateswara Rao, Zahir Bashir, Suresh Padmanabhan
  • Publication number: 20120148840
    Abstract: The fiber-reinforced polymer material, in particular for processing in the injection molding and extrusion method, is composed of granular materials having integrated long-fiber reinforcement. The granular materials are designed as wound elements (5), which have continuous fiber strands (3) including continuous reinforcing fibers (1) impregnated with polymer material (2). The wound elements (5) contain more than one turn (6) of the impregnated continuous fiber strands (3), wherein the turns (6) at least partially overlap each other such that the turns are arranged over each other and/or next to each other. The wound elements (5) can be continuously produced by winding and solidifying the impregnated continuous fiber strands (3) around a winding axis (23) or on a winding core (22) and subsequently separating the wound elements from each other, in particular by means of a winding core moved in an oscillating (+x1, ?x1) manner and using melted thermoplastic polymer material (2).
    Type: Application
    Filed: August 23, 2010
    Publication date: June 14, 2012
    Inventor: David Stirnemann
  • Patent number: 8193302
    Abstract: Described as one aspect of the invention are polyester compositions containing: (I) at least one polyester which comprises: (a) a dicarboxylic acid component comprising: (i) 70 to 100 mole % of terephthalic acid residues; (ii) 0 to 30 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and (iii) 0 to 10 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and (b) a glycol component comprising: (i) 1 to 99 mole % of 2,2,4,4-tetramethyl-1,3 -cyclobutanediol residues; and (ii) 1 to 99 mole % of cyclohexanedimethanol residues; and (II) at least one thermal stabilizer chosen from at least one of alkyl phosphate esters, aryl phosphate esters, mixed alkyl aryl phosphate esters, reaction products thereof, and mixtures thereof; wherein the total mole % of the dicarboxylic acid component is 100 mole %, and wherein the total mole % of the glycol component is 100 mole %.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: June 5, 2012
    Assignee: Eastman Chemical Company
    Inventors: Ted Calvin Germroth, Gary Wayne Connell, Emmett Dudley Crawford, Thomas Joseph Pecorini, Douglas Stephens McWilliams, Benjamin Fredrick Barton, Damon Bryan Shackelford
  • Patent number: 8173765
    Abstract: A polymer having a number average molecular weight (Mn) of about 10 000 g/mol comprising a monomeric rigid moiety R and a monomeric flexible moiety F, wherein R comprises a main-chain polycyclic core and F has a main chain comprising a number of atoms sufficient for the transition temperature of the polymer to be lower than the degradation temperature of the polymer is provided. A method of manufacturing of same is also provided. Biomedical devices, scaffolds and supports for tissue engineering, delivery devices, textiles, moulds, vehicle parts, tubes, active disassembly devices, microactuators, toys and inflatable membranes comprising same are also described.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: May 8, 2012
    Assignee: Valorisation-Recherche, Limited Partnership
    Inventors: Xiao-Xia Zhu, Julien Gautrot, Jie Zhang, Yu Shao
  • Publication number: 20120108784
    Abstract: A nongelling and noncrosslinked, highly branched or hyperbranched polyester, obtained by reacting at least one selected from the group consisting of a monocarboxylic acid, a dicarboxylic acid, a tricarboxylic acid, a polycarboxylic acid, and a derivative thereof with at least one selected from the group consisting of a monoalcohol, a diol, a triol, a tetraol, and a polyol, wherein an average functionality of the carboxyl groups (f.A) and the hydroxyl groups (f.B) in a notionally hydrolyzed polyester satisfies a relation: f.A+f.B>4, a mole fraction of the carboxyl groups (x.A) in the notionally hydrolyzed polyester satisfies a relation: f.A/[(f.A*f.B)+f.A]?x?(f.A*f.B)/[(f.A*f.B)+f.B], and a degree of conversion (U) of the deficit functionality satisfies a relation: U.min?U?U.max.
    Type: Application
    Filed: January 6, 2012
    Publication date: May 3, 2012
    Applicant: BASF SE
    Inventors: Joachim Clauss, Marta Martin-Portugues, Harald Schäfer, Daniel Schönfelder, Bernd Bruchmann
  • Patent number: 8143368
    Abstract: Hydrolytically degradable polymers in the form of biodegradable disposable medical devices for use in medicine and laboratories such as syringes, test tubes, catheters, tubing, trays, medical fabrics, and gloves are described. The devices are formed in whole or in part of a hydrolytically degradable polymer. In the preferred embodiment, the devices or structural components thereof degrade in a period of weeks to months, preferably within a year and more preferably within six months of exposure to aqueous solutions. Conventional hydrolytically degradable polymers may be utilized or these may be modified to increase mechanical or processing characteristics, for example, using a polyfunctional branching agent and/or a chain extending agent. In one embodiment, the hydrolytically degradable polymer is a member of a new class of polyesters comprising an aliphatic dicarboxylic acid, an aliphatic diol and optionally, one or more bifunctional fatty acids such as ricinoleic acid and/or castor oil.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: March 27, 2012
    Assignee: Massachusetts Institute of Technology
    Inventors: Abraham J. Domb, Robert S. Langer
  • Patent number: 8133967
    Abstract: Described are restaurant smallware, comprising polyester based composition, comprising dicarboxylic acid component as terephthalic acid residues and optionally, aromatic dicarboxylic acid residues or aliphatic dicarboxylic acid residues and glycol component, comprising 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues and cyclohexanedimethanol residues. The polyester composition has the inherent viscosity from 0.55 to 0.0.68 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C., glass transition temperature Tg of 110° C. to 160° C., notched Izod impact strength of at least 7.5 ft-lb/inch at 23° C. according to ASTM D256 with a 10-mil notch in a ?-inch thick bar, melt viscosity is less than 10,000 poise as measured at 1 radian/second on a rotary melt rheometer at 290° C. and does not contain polycarbonate.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: March 13, 2012
    Assignee: Eastman Chemical Company
    Inventors: Thomas Joseph Pecorini, Douglas Stephens McWilliams, Emmett Dudley Crawford, David Scott Porter, Gary Wayne Connell
  • Publication number: 20120043248
    Abstract: There is provided a thermally shrinkable polyester film where the opening ability along the perforation is very good. A thermally shrinkable polyester film comprising polyester resin in which ethylene terephthalate is a main constituting component and not less than 13 molar % of one or more monomer component (s) which can become non-crystalline component is/are contained in the total polyester resin components, wherein the film has specific thermally shrinking characteristics and specific mechanical characteristics after thermal shrinking treatment.
    Type: Application
    Filed: May 6, 2010
    Publication date: February 23, 2012
    Applicant: TOYO BOSEKI KABUSHIKI KAISHA
    Inventors: Masayuki Haruta, Yukinobu Mukoyama, Katsuhiko Nose
  • Patent number: 8119762
    Abstract: Described are film or sheet, comprising polyester based composition, comprising dicarboxylic acid component as terephthalic acid residues and optionally, aromatic dicarboxylic acid residues or aliphatic dicarboxylic acid residues and glycol component, comprising 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues and cyclohexanedimethanol residues. The polyester composition has the inherent viscosity from 0.55 to 0.68 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C., glass transition temperature Tg of 110° C. to 160° C., notched Izod impact strength of at least 7.5 ft-lb/inch at 23° C. according to ASTM D256 with a 10-mil notch in a ?-inch thick bar, melt viscosity is less than 10,000 poise as measured at 1 radian/second on a rotary melt rheometer at 290° C. and does not contain polycarbonate.
    Type: Grant
    Filed: November 10, 2010
    Date of Patent: February 21, 2012
    Assignee: Eastman Chemical Company
    Inventors: Emmett Dudley Crawford, Douglas Stephens McWilliams, David Scott Porter, Gary Wayne Connell
  • Patent number: 8119761
    Abstract: Described are polyester compositions comprising at least one polyester which comprises terephthalic acid residues in the amount from 80 to 100 mole %, 2,2,4,4-tetramethyl-1,3- cyclobutanediol in the preferable amount from 30 to 40 mole % and 1,4-cyclohexanedimethanol in the preferable amount from 60 to 70 mole % , wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mote %; and the inherent viscosity of polyester is from 0.55 to 0.68 dL/g as determined in 60/40 (wt/wt) phenol/tetrachtoroethane at a concentration of 0.5 g/100 ml at 25° C., polyester has a Tg from 110 to 160° C. and polyester composition comprises no polycarbonate. The polyesters may be manufactured into articles such as fibers, films, bottles or sheets.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: February 21, 2012
    Assignee: Eastman Chemical Company
    Inventors: Emmett Dudley Crawford, Thomas Joseph Pecorini, Douglas Stephens McWilliams, David Scott Porter, Gary Wayne Connell
  • Patent number: 8110282
    Abstract: An object of the present invention is to provide a film having a high brightness and a natural metal-effect, and also having excellent formability, causing no delamination and maintaining the metal-effect after forming. Another object is to provide a molded body having less environmental burden, excellent in recycling efficiency and giving no electromagnetic interference. A laminated film including a structure where each 30 layers or more of a layer composed of a resin A (A layer) and a layer composed of a resin B (B layer) are alternately laminated, wherein a relative reflectance in a wavelength range of 400 nm to 1000 nm is 30% or more, tensile stresses at 100% elongation in a longitudinal direction and a width direction of the film are 3 MPa or more and 90 MPa or less in a tensile test at 150° C., and the number of layers with a layer-pair thickness of 10 nm or more and less than 220 nm is more than the number of layers with a layer-pair thickness of 220 nm or more and 320 nm or less.
    Type: Grant
    Filed: August 10, 2006
    Date of Patent: February 7, 2012
    Assignee: Toray Industries, Inc.
    Inventors: Syunichi Osada, Wataru Gouda
  • Patent number: 8106148
    Abstract: A series of resins were synthesized using a range of bio-based materials to control the molecular architecture, and therefore the properties, of the inventive resins. The utility of these resins was demonstrated in the formulation of powder coatings, such as ?-hydroxy amide crosslinked and hybrid types. Generally, the bio-based resins flowed out on heating faster than conventional petrochemically-based resins, allowing the use of lower temperatures in the curing oven than is typically possible and a more active catalyst system, especially in the carboxylic acid-epoxy crosslinked hybrid coatings formulations.
    Type: Grant
    Filed: March 20, 2006
    Date of Patent: January 31, 2012
    Assignee: Battelle Memorial Institute
    Inventors: Bhima R. Vijayendran, Jerry L. King, II, Katherine P. Mitchell, Michael C. Clingerman, Jeffrey T. Cafmeyer
  • Publication number: 20120021158
    Abstract: Described are polyester compositions comprising (a) a dicarboxylicacidcomponent comprising terephthalic acid residues; optionally, aromatic dicarboxylic acid or aliphatic dicarboxylic acid residues; 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues, wherein said 2,2,4,4-tetramethyl-1,3-cyclobutanediol contains certain cis to trans ratios; and 1,4-cyclohexanedimethanol residues.
    Type: Application
    Filed: June 17, 2011
    Publication date: January 26, 2012
    Applicant: Eastman Chemical Company
    Inventors: Emmett Dudley Crawford, David Scott Porter, Gary Wayne Connell
  • Patent number: 8101705
    Abstract: Described are articles, comprising polyester based composition, comprising dicarboxylic acid component as terephthalic acid residues and optionally, aromatic dicarboxylic acid residues or aliphatic dicarboxylic acid residues and glycol component, comprising 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues and cyclohexanedimethanol residues. The polyester composition has the inherent viscosity from 0.60 to 0.75 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C., glass transition temperature Tg of 100° C. to 130° C., notched Izod impact strength of at least 7.5 ft-lb/inch at 23° C. according to ASTM D256 with a 10-mil notch in a ?-inch thick bar, melt viscosity is less than 10,000 poise as measured at 1 radian/second on a rotary melt rheometer at 290° C. and does not contain polycarbonate. Composition can be manufactured into articles as fibers, films, bottles or sheets.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: January 24, 2012
    Assignee: Eastman Chemical Company
    Inventors: Emmett Dudley Crawford, Thomas Joseph Pecorini, Douglas Stephen McWilliams, David Scott Porter, Gary Wayne Connell
  • Publication number: 20110306730
    Abstract: Described are polyesters comprising (a) a dicarboxylic acid component comprising terephthalic acid residues; optionally, aromatic dicarboxylic acid residues or aliphatic dicarboxylic acid residues; 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and cyclohexanedimethanol residues. The polyesters may be manufactured into articles such as fibers, films, bottles or sheets.
    Type: Application
    Filed: August 23, 2011
    Publication date: December 15, 2011
    Applicant: Eastman Chemical Company
    Inventors: Emmett Dudley Crawford, Thomas Joseph Pecorini, Douglas Stephens McWilliams, David Scott Porter, Gary Wayne Connell
  • Patent number: 8067525
    Abstract: Described are film(s) and/or sheet(s) comprising polyesters comprising (a) a dicarboxylic acid component having terephthalic acid residues; optionally, aromatic dicarboxylic acid or aliphatic dicarboxylic acid residues; 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and 1,4-cyclohexanedimethanol residues.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: November 29, 2011
    Assignee: Eastman Chemical Company
    Inventors: Emmett Dudley Crawford, Douglas Stephens McWilliams, David Scott Porter, Gary Wayne Connell
  • Publication number: 20110288263
    Abstract: The present invention relates to polyesters prepared from benzene, cyclohexene and cyclohexane compounds having carboxylic acid groups at the 1 and 4, and optionally the 2, positions, such as terephthalic acid or dimethyl terephthalates, and alkylene glycols, such ethylene glycol or 1,4-butane diol. The invention also relates to processes for preparing such polyesters. The invention also relates to such polyesters derived from starting materials derived from renewable resources.
    Type: Application
    Filed: June 16, 2010
    Publication date: November 24, 2011
    Applicant: Draths Corporation
    Inventors: John W. Frost, Adeline Miermont, Dirk Schweitzer, Vu Bui, Edward Paschke, Douglas A. Wicks
  • Patent number: 8063173
    Abstract: Described as one aspect of the invention are polyesters containing (a) a dicarboxylic acid component having from 70 to 100 mole % of terephthalic acid residues and up to 30 mole % of aromatic dicarboxylic acid residues or aliphatic dicarboxylic acid residues; and (b) a glycol component having from 11 to 25 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues, and 75 to 89 mole % of 1,4-cyclohexanedimethanol residues; wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %. The polyesters may be manufactured into articles.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: November 22, 2011
    Assignee: Eastman Chemical Company
    Inventors: Emmett Dudley Crawford, Thomas Joseph Pecorini, Douglas Stephens McWilliams, David Scott Porter, Gary Wayne Connell
  • Patent number: 8063172
    Abstract: Described are film(s) and/or sheet(s) made using polyester compositions comprising polyesters comprising (a) a dicarboxylic acid component comprising 70 to 100 mole % of terephthalic acid residues, and up to 30 mole % of aromatic dicarboxylic acid residues or aliphatic dicarboxylic acid residues; and (b) a glycol component comprising 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues, and 1,4-cyclohexanedimethanol residues.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: November 22, 2011
    Assignee: Eastman Chemical Company
    Inventors: Emmett Dudley Crawford, Douglas Stephens McWilliams, David Scott Porter, Gary Wayne Connell
  • Publication number: 20110230635
    Abstract: The present invention relates to a copolymer polyester resin and a molded product using the same and more specifically to a copolymer polyester resin that contains 10˜80 mol % of 1,4-cyclohexane dimethanol, 0.1˜50 mol % of a diol compound expressed as HO—R6CR7—R4R1R5—COHR2R3 (where R1 is an alkyl group with a carbon number of 0˜10, and R2˜R7 are hydrogen or an alkyl group with a carbon number of 1˜10), and ethylene glycol as the remainder so that the sum of the entire diol composition is 100 mol % based on aromatic dicarboxylic acid. The copolymer polyester resin of the present invention enables reduction of cycle time and improvement of product processability and prevention of PET bottle deformation during mold processing with a heat-shrinking label by complementing low temperature shrinkage, maintaining a high shrinkage rate, and reducing shrinkage stress.
    Type: Application
    Filed: November 20, 2009
    Publication date: September 22, 2011
    Applicant: SK CHEMICALS CO., LTD.
    Inventors: Myoung Ruoul Lee, Jong Ryang Kim
  • Publication number: 20110230634
    Abstract: The present invention relates to a copolymer polyester resin and a molded product using the same and more specifically to a copolymer polyester resin that contains 10˜80 mol % of 1,4-cyclohexane dimethanol, 0.1˜30 mol % of a cyclohexane dimethanol compound expressed as HOH2C—[C6H12]m—[C6H12]—CH2OH (where m is an integer from 1˜10), and ethylene glycol as the remainder so that the sum of the entire diol composition may be 100 mol % based on an aromatic dicarboxylic acid. The copolymer polyester of the present invention enables superior products to be provided that reduce cycle time and enhance product processability during mold processing using a heat-shrinking label by complementing low temperature shrinkage properties that may be exhibited by the polyester resin of the prior art copolymerized with 1,4-cyclohexane dimethanol.
    Type: Application
    Filed: November 20, 2009
    Publication date: September 22, 2011
    Applicant: SK Chemicals Co., Ltd.
    Inventors: Myoung Ruoul Lee, Jong Ryang Kim, Nam Jung Kim
  • Publication number: 20110218313
    Abstract: A method for producing polymer particles, including (A) polymerizing and granulating a ring-opening polymerizable monomer in a compressive fluid with a catalyst in the presence of a surfactant, or (B) polymerizing and granulating an addition polymerizable monomer in a compressive fluid in the presence of a silicone surfactant.
    Type: Application
    Filed: March 4, 2011
    Publication date: September 8, 2011
    Inventors: Nobuyuki MASE, Takeshi Sako, Idzumi Okajima, Shunsuke Mori, Keishi Mizuno, Yoshitaka Yamauchi, Taichi Nemoto, Chiaki Tanaka, Satoyuki Sekiguchi, Jyun Ishiduka
  • Patent number: 8012571
    Abstract: The present invention relates to multilayer optical films and birefringent copolyester films. The birefringent copolyester optical layer or birefringent copolyester film comprises a major amount of naphthalate units, ethylene units, and a minor amount of branched or cyclic C4 to C10 alkyl units. Also described are certain copolyester polymeric materials further comprising subunits of a phthalate ionomer such as dimethyl sulfosodium isophthtalate ionomer.
    Type: Grant
    Filed: May 2, 2008
    Date of Patent: September 6, 2011
    Assignee: 3M Innovative Properties Company
    Inventors: Yufeng Liu, David T. Yust, Stephen A. Johnson, Kristopher J. Derks
  • Publication number: 20110201752
    Abstract: A melt phase process for making a polyester polymer melt phase product by adding an antimony containing catalyst to the melt phase, polycondensing the melt containing said catalyst in the melt phase until the It.V. of the melt reaches at least 0.75 dL/g. Polyester polymer melt phase pellets containing antimony residues and having an It.V. of at least 0.75 dL/g are obtained without solid state polymerization. The polyester polymer pellets containing antimony residues and having an It.V. of at least 0.70 dL/g obtained without increasing the molecular weight of the melt phase product by solid state polymerization are fed to an extruder, melted to produce a molten polyester polymer, and extruded through a die to form shaped articles. The melt phase products and articles made thereby have low b* color and/or high L* brightness, and the reaction time to make the melt phase products is short.
    Type: Application
    Filed: March 8, 2011
    Publication date: August 18, 2011
    Applicant: GRUPO PETROTEMEX, S.A. DE C.V.
    Inventors: MARY THERESE JERNIGAN, Michael Paul Ekart, Richard Gill Bonner
  • Publication number: 20110189415
    Abstract: Described are graphic art films comprising polyester compositions comprising polyesters which comprise (a) a dicarboxylicacidcomponent having terephthalic acid residues; optionally, aromatic dicarboxylic acid residues or aliphatic dicarboxylic acid residues or ester residues thereof; 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and 1,4-cyclohexanedimethanol residues.
    Type: Application
    Filed: January 31, 2011
    Publication date: August 4, 2011
    Applicant: EASTMAN CHEMICAL COMPANY
    Inventors: Emmett Dudley Crawford, Douglas Stephens McWilliams, David Scott Porter, Gary Wayne Connell
  • Publication number: 20110184130
    Abstract: A polyester production process employing an esterification system that utilizes a horizontally elongated esterification vessel as an esterification reactor and/or a vapor-liquid disengagement vessel.
    Type: Application
    Filed: April 4, 2011
    Publication date: July 28, 2011
    Applicant: GRUPO PETROTEMEX, S.A. DE C.V.
    Inventor: Bruce Roger DeBruin
  • Patent number: 7985827
    Abstract: Described are polyester compositions comprising (a) a dicarboxylic acid component comprising terephthalic acid residues; optionally, aromatic dicarboxylic acid or aliphatic dicarboxylic acid residues; 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues, wherein said 2,2,4,4-tetramethyl-1,3-cyclobutanediol contains certain cis to trans ratios; and 1,4-cyclohexanedimethanol residues.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: July 26, 2011
    Assignee: Eastman Chemical Company
    Inventors: Emmett Dudley Crawford, David Scott Porter, Gary Wayne Connell
  • Patent number: 7960472
    Abstract: A process for preparing modified polymer by withdrawing a slip stream of polymer melt from the discharge line of a continuous polymerization reactor, admixing in a highly modified polymeric additive into the polymer melt within the slip stream, then introducing the modifier containing slip stream late in the manufacturing process prior to the slip stream withdrawal point. The improved processes of the invention have particular utility for large-scale, continuous reactor where transitions and short production runs are economically prohibitive thereby limiting the product breath. The process is particularly suited for producing a family of copolyesters using a continuous melt phase production process.
    Type: Grant
    Filed: October 21, 2010
    Date of Patent: June 14, 2011
    Assignee: Eastman Chemical Company
    Inventors: Frederick Leslie Colhoun, Kenrick Lyle Venett, Bruce Roger DeBruin
  • Patent number: 7956154
    Abstract: A polymer containing a polyester polymer unit having the formula -(I-III-II)-, wherein III is derived form a di-carboxylic acid, wherein I is derived from 1,3 cyclohexanedimethanol, wherein II is derived from 1,4 cyclohexanedimethanol and wherein the polymer is a solid at room temperature.
    Type: Grant
    Filed: September 26, 2006
    Date of Patent: June 7, 2011
    Inventors: John N. Argyropoulos, Marcos Pini Franca, Gary E. Spilman
  • Patent number: 7951900
    Abstract: Described are dialysis filter housings comprising polyester compositions comprising polyesters which comprise (a) a dicarboxylic acid component having terephthalic acid residues; optionally, aromatic dicarboxylic acid residues or aliphatic dicarboxylic acid residues or ester residues thereof; 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and 1,4-cyclohexanedimethanol residues.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: May 31, 2011
    Assignee: Eastman Chemical Company
    Inventors: Emmett Dudley Crawford, David Scott Porter, Gary Wayne Connell
  • Patent number: 7947777
    Abstract: The invention relates to polyesters which contain carboxy groups and which are used as dispersing agents for pigment concentrates for the colouring of thermoplastics, and to a process for their preparation. The invention further relates to the use of the polyesters as dispersing agents, and also to masterbatches which comprise pigments, thermoplastics and the polyesters.
    Type: Grant
    Filed: March 10, 2005
    Date of Patent: May 24, 2011
    Assignee: BYK-Chemie GmbH
    Inventors: Karlheinz Haubennestel, Alfred Bubat, Udo Krappe, Barbel Gertzen, Joerg Garlinsky, Wolfgang Pritschins