Aryl Ring-containing Reactant Patents (Class 528/347)
  • Patent number: 6875245
    Abstract: A resin composition is prepared by reacting components comprising dibasic acid, diamine, polyol and monoalcohol, wherein (a) at least 50 equivalent percent of the dibasic acid comprises polymerized fatty acid; (b) at least 50 equivalent percent of the diamine comprises ethylene diamine; (c) 10-60 equivalent percent of the total of the hydroxyl and amine equivalents provided by diamine, polyol and monoalcohol are provided by monoalcohol; and (d) no more than 50 equivalent percent of the total of the hydroxyl and amine equivalents provided by diamine, polyol and monoalcohol are provided by polyol. This resin composition may be formulated into, for example, personal care products, fragrance releasing products and candles.
    Type: Grant
    Filed: April 22, 2003
    Date of Patent: April 5, 2005
    Assignee: Arizona Chemical Company
    Inventor: Mark S. Pavlin
  • Patent number: 6846868
    Abstract: A polyamide composition comprising 100 parts by weight of (A) a semiaromatic polyamide having dicarboxylic acid units mainly composed of aromatic dicarboxylic acid units and diamine units mainly composed of aliphatic diamine units having 4 to 14 carbon atoms and containing not more than 15 ?eq/g of terminal amino groups; and 0.01 to 5 parts by weight of (B) a copper compound.
    Type: Grant
    Filed: June 5, 2002
    Date of Patent: January 25, 2005
    Assignee: Kuraray Co., Ltd.
    Inventors: Hideaki Oka, Tetsuya Hara, Shigeru Sasaki
  • Publication number: 20040254335
    Abstract: An inventive blue colorant comprising a chromophore having at least one hydroxy group-terminated polyester chain attached, through a suitable alkylamino linking group (or groups), to the 1-position, the 4-position, or both, of an anthraquinone backbone and having at least one hindering group in a secondary position in relation to said amino linking group is provided. Such colorants exhibit excellent amine/base stability and thermal stability, effective colorations, excellent low extraction rates, high lightfastness levels, particularly when incorporated within certain media and/or on the surface of certain polyurethane substrates, and, most importantly excellent stability in the presence of excess of diisocyanates.
    Type: Application
    Filed: June 14, 2003
    Publication date: December 16, 2004
    Inventor: Jusong Xia
  • Publication number: 20040236068
    Abstract: In the production method of the present invention, the polyamide is produced by the polycondensation of a diamine component and a dicarboxylic acid component comprising a straight-chain &agr;,&ohgr;-aliphatic dicarboxylic acid and an aromatic dicarboxylic acid. The dicarboxylic acid component is first made into a suspension phase of the solid aromatic dicarboxylic acid in a molten straight-chain &agr;,&ohgr;-aliphatic dicarboxylic acid. A part of the diamine component is added while the reaction system is in the suspension phase. Then, the reaction system is made into a homogeneous molten phase, to which the rest of the diamine component is added. Finally, the reaction system is kept at temperatures within a specific range to complete the polycondensation.
    Type: Application
    Filed: May 20, 2004
    Publication date: November 25, 2004
    Inventors: Ryoji Otaki, Tomomichi Kanda
  • Publication number: 20040230028
    Abstract: The fuel-barrier polyamide resin of the present invention is a product of the polycondensation of a diamine component comprising 70 mol % or higher of m-xylylenediamine and a dicarboxylic acid component comprising 70 mol % or higher of a mixed dicarboxylic acid which comprises a C4 to C20 &agr;,&ohgr;-linear aliphatic dicarboxylic acid and at least one dicarboxylic acid selected from the group consisting of isophthalic acid and naphthalenedicarboxylic acid in a molar ratio of 30:70 to 95:5. The polyamide resin is excellent in not only fuel-barrier property and heat resistance, but also moldability and recyclability, and therefore suitably used as a barrier material of fuel containers.
    Type: Application
    Filed: May 4, 2004
    Publication date: November 18, 2004
    Inventors: Kazunobu Sato, Kazunobu Maruo, Jun Mitadera, Masashi Kurokawa
  • Patent number: 6812324
    Abstract: A method for preparing nylon 6 copolymer containing 5-sulfoisophthalate salts comonomer. The method includes the steps of reacting 5-sulfoisophthalate salts ester with aliphatic diamine in a molar ratio of 2˜20 at 160˜200° C., followed by completely removing the unreacted aliphatic diamine, to obtain the intermediate compound with terminal amine, 5-sulfobenzenediamide compound (formula III). Next, caprolactam and aliphatic diacid (formula IV) are reacted at 200˜260° C. to form an oligomer with a low molecular weight. 5-Sulfobenzenediamide (formula III) and catalyst are then added into the oligomer obtained in previous step to cause a polymerization reaction at 200˜280° C. to obtain nylon 6 copolymer containing 5-sulfoisophthalate salt comonomer. The molar ratio of E/C is 0.005˜0.150 and the molar ratio of D/E is 1.05-1.00. Compounds present in the water extract are greatly reduced.
    Type: Grant
    Filed: December 23, 2002
    Date of Patent: November 2, 2004
    Assignee: Industrial Technology Research Institute
    Inventors: Tun-Fun Way, Cheng Yeh, Lien-Tai Chen, Chia-Hung Chen
  • Patent number: 6753048
    Abstract: A material for a liquid-crystal alignment film which comprises as a first polyamide a C3 to C10 alkyl ester of a polyamic acid whose acid anhydride residual group is any of: and as a second polyamide a C3 to C10 alkyl ester of a polyamic acid whose acid anhydride residual group is: is provided. The use of this material materializes a liquid-crystal alignment film having a high pre-tilt angle of molecules to the substrate, and having superiority in respect of electrical properties such as voltage holding ratio and residual DC voltage, adherence to substrates, printability, and step-covering properties.
    Type: Grant
    Filed: September 27, 2002
    Date of Patent: June 22, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Nobuhito Katsumura, Haruhiko Kikawa, Takashi Inoue, Masahiro Yamada, Yasuo Koike, Nobuhiko Fukuoka, Hiromu Terao
  • Patent number: 6747120
    Abstract: The invention relates to a semi-aromatic polyamide containing at least tetramethylene terephthalamide units and also hexamethylene terephthalamide units. The copolyamide has a melting point higher than approximately 290° C., a high crystallinity and a good stability. Preferably the copolyamide according to the invention contains approximately 30-75 mol % hexamethylene terephthalamide units and also approximately 0.01-20 mol % other units. The invention also relates to a process for the preparation of a semi-aromatic copolyamide containing at least tetramethylene terephthalamide units and hexamethylene terephthalamide units, characterized in that, successively, a first polymerization is effected in the melt phase, followed by an post-polymerization of the low molar mass polymer thus obtained in the solid phase; and to compositions and products that contain said copolyamide.
    Type: Grant
    Filed: March 29, 2002
    Date of Patent: June 8, 2004
    Assignee: DSM IP Assets B.V.
    Inventors: Rudy Rulkens, Robert C. B. Crombach
  • Patent number: 6720040
    Abstract: A material for a liquid-crystal alignment film which comprises as a first polyamide a C3 to C10 alkyl ester of a polyamic acid whose acid anhydride residual group is any of: and as a second polyamide a C3 to C10 alkyl ester of a polyamic acid whose acid anhydride residual group is: is provided. The use of this material materializes a liquid-crystal alignment film having a high pre-tilt angle of molecules to the substrate, and having superiority in respect of electrical properties such as voltage holding ratio and residual DC voltage, adherence to substrates, printability, and step-covering properties.
    Type: Grant
    Filed: September 12, 2001
    Date of Patent: April 13, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Nobuhito Katsumura, Haruhiko Kikawa, Takashi Inoue, Masahiro Yamada, Yasuo Koike, Nobuhiko Fukuoka, Hiromu Terao
  • Patent number: 6696544
    Abstract: The invention concerns a method for making polyamide. More particularly, the invention concerns a method for making polyamides derived from the reaction between a diacid and a diamine. It concerns a method for making a polyamide derived from the reaction of at least a diacid with at least a polyamide comprising the following steps: preparing a first mixture of diacid and diamine with a diacid/diamine molar ratio ranging between 0.8 and 0.995, preferably ranging between 0.95 and 0.99 in a first reactor (5); preparing a second mixture of diacid and diamine with a diacid/diamine molar ratio ranging between 1.005 and 1.2, preferably between 1.01 and 1.05, in a second reactor (4); introducing in melted form a first flow of the first mixture and a second flow of the second mixture in a stirred polymer reactor (7); drawing, preferably, continuously, from said reactor a flow of polyamide prepolymer; feeding said polyamide flow into a finishing step to obtain the desired degree of polymerisation.
    Type: Grant
    Filed: August 8, 2002
    Date of Patent: February 24, 2004
    Assignees: Rhodianyl
    Inventors: Jean-Francois Thierry, Matthieu Helft
  • Patent number: 6680364
    Abstract: The invention describes polyamides having both strongly hydrophilic groups and unsaturated groups, the polyamides consequently being water-dispersible and curable. The hydrophilic groups are distributed along the chain, whereas the unsaturated groups are located at the ends. The polyamides of the invention are useful in many applications, especially in the preparation of intimate blends of polyamides with vinyl, acrylic and/or styrene polymers.
    Type: Grant
    Filed: February 22, 2002
    Date of Patent: January 20, 2004
    Assignee: Atofina
    Inventor: Reinhard Linemann
  • Patent number: 6610816
    Abstract: In the production of polyamide by the melt-polymerization of the present invention, the polymerization conditions are rapidly and accurately controlled by a near-infrared spectroscopy to enable the efficient production of a desired polyamide with a good stability in its quality.
    Type: Grant
    Filed: December 18, 2001
    Date of Patent: August 26, 2003
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Hideyuki Kurose, Kazumi Tanaka
  • Patent number: 6552160
    Abstract: A resin composition is prepared by reacting components comprising dibasic acid, diamine, polyol and monoalcohol, wherein (a) at least 50 equivalent percent of the dibasic acid comprises polymerized fatty acid; (b) at least 50 equivalent percent of the diamine comprises ethylene diamine; (c) 10-60 equivalent percent of the total of the hydroxyl and amine equilvalents provided by diamine, polyol and monoalcohol are provided by monoalcohol; and (d) no more than 50 equivalent percent of the total of the hydroxyl and amine equivalents provided by diamine, polyol and monoalcohol are provided by polyol. This resin composition may be formulated into, for example, personal care products, fragrance releasing products and candles.
    Type: Grant
    Filed: May 14, 2001
    Date of Patent: April 22, 2003
    Assignee: Arizona Chemical Company
    Inventor: Mark S. Pavlin
  • Patent number: 6500912
    Abstract: A curable epoxy composition comprises an epoxy resin having at least 1.5 epoxy groups per molecule and an amine-terminated polyamide. The liquid amine-terminated polyamide is prepared by reacting a long-chain, C20-C60 dicarboxylic acid or derivative with an amine having a general formula of R1—NH—R2—NH—R3.
    Type: Grant
    Filed: September 12, 2000
    Date of Patent: December 31, 2002
    Assignee: Resolution Performance Products LLC
    Inventor: Larry Steven Corley
  • Patent number: 6414103
    Abstract: A coating powder comprising a macrocyclic oligomer and a ring-opening polymerization agent is applied to an article, fused, and converted to a linear polymer at a temperature of from about 160 to about 400° C. The powder has the low melt viscosity and friability of a thermoset powder but is converted at high fusing temperatures to a tough coating having the good impact resistance and good elongation of a thermoplastic powder. The oligomer is a polyester, polycarbonate, polyamide, polyimide, polyamideimide. The article may be coated electrostatically or in a fluidized bed.
    Type: Grant
    Filed: September 28, 2000
    Date of Patent: July 2, 2002
    Assignee: Rohm and Haas Company
    Inventors: Glenn D. Correll, Tina L. Tullos, Gordon L. Tullos
  • Patent number: 6392009
    Abstract: Benzobisazole polymers having repeating units of the formula wherein Z is wherein X is —S—, —O— or —NH—.
    Type: Grant
    Filed: February 13, 2001
    Date of Patent: May 21, 2002
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Fred E. Arnold, Thuy D. Dang, Narayanan Venkatasubramanian
  • Patent number: 6355769
    Abstract: A process for making partially aromatic polyamides is provided in which an aromatic dicarboxylic acid component, at least 20-100% by weight of the dicarboxylic acid in the acid component is in the form of an alkylated ester, and a diamine component, comprising a diamine having from 6-12 carbon atoms, are admixed in the presence of water and with heating to form polyamide having from 1-100% on a molar basis of N-alkylated amide and amine groups. The polyamides are particularly useful in the manufacture of products intended for use at elevated temperatures or products in which retention of properties at elevated temperatures is required, including articles using injection molding technology, parts for automotive end-uses and electronics. The polyamides can also be formed into films and fibers for use in associated products.
    Type: Grant
    Filed: June 21, 2000
    Date of Patent: March 12, 2002
    Assignee: DuPont Canada, Inc.
    Inventor: Howard Ng
  • Patent number: 6350305
    Abstract: A polymeric furanone magenta colorant is disclosed that contains a furanone magenta chromophore having a furanone adduct, the adduct containing at least one alkoxylated phenyl radical, the chromophore further being derived from at least one aromatic aldehyde having a para-nitrogen and containing electron donating groups selected from the group consisting of alkyls, cycloalkyls, and oligomers or polymers derived from alkyleneoxy or aryleneoxy moieties. The colorant can be utilized in resins, waxes and inks.
    Type: Grant
    Filed: October 8, 1999
    Date of Patent: February 26, 2002
    Assignee: Xerox Corporation
    Inventors: Clifford R. King, Jeffery H. Banning
  • Patent number: 6348562
    Abstract: A process of increasing the melt processing of synthetic polyamides, in particular pigmented and/or filled synthetic polyamide, by adding thereto an additive having the formula (I) wherein R1 represents a methyl group as such or in the form of a stabilizer masterbatch composition. The invention also relates to modified synthetic polyamides obtainable by this process having improved properties due to the stabilization effect of the compound of the above formula (I).
    Type: Grant
    Filed: January 13, 1999
    Date of Patent: February 19, 2002
    Assignee: Clariant Finance (BVI) Limited
    Inventors: Bansi Lal Kaul, Jan Malik, Mohamed Sidqi
  • Publication number: 20010051707
    Abstract: The polyamic acid of the invention can be obtained by the reaction of an acid anhydride component comprising pyromellitic anhydride and 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane with 2,2′-di-substituted-4,4′-diaminobiphenyls as a first aromatic diamine and any aromatic diamine component, as a second aromatic diamine, of 2,2-bis(4-aminophenoxyphenyl)propanes, 1,1-bis(4-(4-aminophenoxy)-3-t-butyl-6-methylphenyl)butane, 2,2-bis(3-amino-4-methylphenyl)hexafluoropropane and &agr;,&agr;′-bis(4-aminophenyl)diisopropylbenzenes in an organic solvent. The polyimide resin of the invention can be obtained by heating such a polyamic acid solution. In the production of a circuit board, by using a photosensitive polyamic acid having a sensitizer incorporated in such a polyamic acid solution, a patterned polyimide resin layer can be provided as an insulation layer on a metal foil.
    Type: Application
    Filed: December 11, 2000
    Publication date: December 13, 2001
    Inventors: Takahiro Fukuoka, Amane Mochizuki, Naoki Kurata, Naotaka Kinjo, Toshihiko Omote
  • Publication number: 20010031853
    Abstract: The present invention provides PMR-type polyimides that exhibit lower melt viscosities than PMR-type polyimides of the prior art. These PMR-type polyimides are created by incorporating flexible linkages, such as kinked structures and twisted or non-coplanar moietes into the backbone structure of the PMR. Specifically, the present invention provides for the production of PMR-type polyimides having 2,2′-disubstituted biaryls in the polymer backbone.
    Type: Application
    Filed: March 2, 2001
    Publication date: October 18, 2001
    Inventors: Ronald K. Eby, Michael Meador, Christopher A. Gariepy
  • Patent number: 6262223
    Abstract: Addition-cured polyimides that contain the reaction product of an aromatic triamine or trianhydride analogue thereof, a reactive end group such as 5-norbornene-2, 3-dicarboxylic acid, ester derivatives of 5-norbornene-2,3-dicarboxylic acid, anhydride derivatives of 5-norbornene-2,3-dicarboxylic acid, or 4-phenylethynylphthalic anhydride, an aromatic diamine, and a dialkyl ester of an aromatic tetracarboxylic acid. The resultant starlike polyimides exhibit lower melt flow viscosity than its linear counterparts, providing for improved processability of the polyimide. Also disclosed are methods for the synthesis of these polyimides as well as composite structures formed using these polyimides.
    Type: Grant
    Filed: February 1, 2000
    Date of Patent: July 17, 2001
    Assignee: The United States of America as represented by the Administrator of National Aeronautics and Space Administration
    Inventors: Michael A. Meador, Baochau N. Nguyen, Ronald K. Eby
  • Patent number: 6204355
    Abstract: The invention relates to the use of polyamide moulding compounds, their alloys or blends, which contain at least one homopolyamide, which has been obtained from long-chained aliphatic monomer blocks with cycloaliphatic monomer blocks, in order to manufacture moulded members for optical or electro-optical applications.
    Type: Grant
    Filed: October 22, 1999
    Date of Patent: March 20, 2001
    Assignee: EMS-Inventa AG
    Inventors: Hans Dalla Torre, Ralf Hala
  • Patent number: 6194538
    Abstract: A process for preparing a polyamide by reacting at least one aminonitrile with water comprises: (1) reacting at least one aminonitrile with water at a temperature from 100 to 360° C. and a pressure from 0.1 to 35×106 Pa to obtain a reaction mixture, (2) further reacting the reaction mixture at a temperature from 150 to 400° C. and a pressure which is lower than the pressure in step 1, the temperature and the pressure being selected so as to obtain a first gas phase and a first liquid or a first solid phase or a mixture of first solid and first liquid phase, and the first gas phase is separated from the first liquid or the first solid phase or from the mixture of first liquid and first solid phase, and (3) admixing the first liquid or the first solid phase or the mixture of first liquid and first solid phase with a gaseous or liquid phase comprising water at a temperature from 150 to 360° C. and a pressure from 0.1 to 30×106 Pa to obtain a product mixture.
    Type: Grant
    Filed: February 22, 1999
    Date of Patent: February 27, 2001
    Assignee: BASF Aktiengesellschaft
    Inventors: Robert Weiss, Dieter Krauss, Dieter Keller, Gunter Pipper, Wolfgang Harder, Alfons Ludwig, Ralf Mohrschladt
  • Patent number: 6169162
    Abstract: A process for producing a polyamide from dicarboxylic acid monomer and diamine monomer comprises the steps of: (a) mixing molten dicarboxylic acid monomer and molten diamine monomer in equimolar amounts, thereby producing a molten reaction mixture; (b) flowing the reaction mixture through at least one unvented reaction vessel, the residence time of the reaction mixture in the at least one unvented reaction vessel being between about 0.01 minutes and about 30 minutes, thereby forming a first product stream that comprises polyamide and water of polymerization; and (c) flowing the first product stream through at least one vented vessel, whereby water of polymerization is removed, thereby forming a second product stream that comprises polyamide. The process can operate continuously, and there is no need to add water to the dicarboxylic acid, to the diamine, or to the reaction mixture.
    Type: Grant
    Filed: May 24, 1999
    Date of Patent: January 2, 2001
    Assignee: Solutia Inc.
    Inventors: Gregory E. Bush, Chris E. Schwier, Robert M. Lembcke, Steven W. Cook
  • Patent number: 6156869
    Abstract: A method for producing polyamides, and to a method for producing primary polycondensates which are intermediates for polyamide production. More precisely, the invention relates to a method for producing primary polycondensates, which comprises a step of polycondensing a dicarboxylic acid component having a terephthalic acid content of from 60 to 100 mol % and a diamine component in which the amount of 1,9-nonanediamine and/or 2-methyl-1,8-octanediamine falls between 60 and 100 mol %, in the presence of water of being from 15 to 35% by weight, at a reaction temperature falling between 250.degree. C. and 280.degree. C. and under a reaction pressure (P) that satisfies the following formula (1):P.sub.0 .gtoreq.P.gtoreq.0.7 P.sub.0 (1)where P.sub.
    Type: Grant
    Filed: July 29, 1999
    Date of Patent: December 5, 2000
    Assignee: Kuraray Co., Ltd.
    Inventors: Kozo Tamura, Hideaki Oka, Kazunori Watanabe, Susumu Matsunaga
  • Patent number: 6150496
    Abstract: An inherently light- and heat-stabilized polyamide has at least one piperidine compound bonded to the backbone polymer chain and at least one 4-amino-2,2,6,6-tetramethylpiperidine compound bonded to the backbone polymer chain. The inherently light- and heat-stabilized polyamide may be used to form articles such as, for example, fibers, carpets, yarns, and textile fabrics.
    Type: Grant
    Filed: February 5, 1999
    Date of Patent: November 21, 2000
    Assignee: BASF Corporation
    Inventors: Otto M. Ilg, Ulrike Breiner, Manfred Juluis
  • Patent number: 6130312
    Abstract: A process for producing an aromatic polyamide which comprises:(a) a dicarboxylic acid component which consists of 30-100 mol % of terephthalic acid and optionally 0-70 mol % of at least one dicarboxylic acid other than terephthalic acid, and(b) a diamine component which consists of 50-100 mol % of an aliphatic alkylenediamine of 4-25 carbons and optionally 0-50 mol % of at least one alicyclic diamine of 3-25 carbons, said process comprising a first step of performing melt reaction of said dicarboxylic acid with said diamine, thereby giving a low molecular weight condensate having an intrinsic viscosity [.eta.] of 0.05-0.6 dl/g, a second step of subjecting it to solid phase polymerization, thereby giving an aromatic polyamide precursor having an intrinsic viscosity [.eta.] of 0.5-1.0 dl/g, and a third step of subjecting it to melt polymerization, thereby giving an aromatic polyamide having a desired intrinsic viscosity [.eta.] of 0.8-2.5 dl/g.
    Type: Grant
    Filed: November 12, 1997
    Date of Patent: October 10, 2000
    Assignee: Mitsui Petrochemical Industries, Ltd.
    Inventors: Hidetatsu Murakami, Satoshi Omori, Kenji Wakatsuru
  • Patent number: 6103852
    Abstract: A method for preparing an amorphous polymer chain in an elastomer which permits use of previously unavailable monomers while permitting control of crystallizability of the amorphous polymer chain. The method of the present invention thus permits an increased range of industrial scale production by broadening the range of raw materials which can be used and by increasing the design options in constructing the chain.
    Type: Grant
    Filed: December 2, 1996
    Date of Patent: August 15, 2000
    Assignees: Hokushin Corporation, Daicel Chemical Industries
    Inventor: Hitoshi Shirasaka
  • Patent number: 6103860
    Abstract: There is disclosed an organic optical component prepared from a resin essentially comprising one or more repetitive structural units selected from the group consisting of structures represented by general formula (1); ##STR1## wherein A is either of the groups below. ##STR2## This invention provides an organic optical component with excellent transparency, heat resistance and mechanical strength as well as a low birefringence. This invention also provides a novel aromatic polyamide with a low permitivity and excellent transparency, processability and thermal stability, besides excellent heat resistance inherent in an aromatic polyamide.
    Type: Grant
    Filed: June 14, 1999
    Date of Patent: August 15, 2000
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Wataru Yamashita, Tomomi Yoshimura, Atsushi Shibuya, Yoshihiro Sakata, Hideaki Oikawa, Masahiro Ohta
  • Patent number: 6011134
    Abstract: An improved method for manufacturing poly(hexamethylene adipamide), i.e. nylon 6,6, by reacting monomethyl adipate with hexamethylenediamine in an approximately equimolar ratio in the presence of water at a temperature of 100 to 165.degree. C. while simultaneous distilling off of a stoichiometric amount of methanol. The resulting aqueous intermediate product is then heated to 200 to 260.degree. C. while distilling off substantially all water at a pressure of 150 to 250 psig (1.03 .times.10.sup.6 to 1.72 .times.10.sup.6 Pa) followed by reducing the pressure to atmospheric pressure and increasing the temperature to 270 to 280.degree. C. to polycondense the distillate residue. Such a process is useful in producing high purity commercial grade poly(hexamethylene adipamide) that advantageously avoids problems caused by N-methylation of the polyamide.
    Type: Grant
    Filed: January 30, 1998
    Date of Patent: January 4, 2000
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: David Neil Marks, Samuel Livingston Lane
  • Patent number: 5990270
    Abstract: A polyamide composition which is amorphous and transparent, which has reduced flammability, and which has reduced migration of flame-retardant additive so that it is film-free, includes at least one polyamide which contains cycloaliphatic monomer units and which is amorphous and transparent; and a flame-retardant additive which is present in an amount effective to reduced flammability of the polyamide composition, which is dissolved in the at least one polyamide, and which is at least one alkyl phosphonic acid compound having a general formula: ##STR1## wherein R and R' each represent, independent of each other, an alkyl group having from 1 to 4 carbon atoms, and x=0 or 1. An article molded from this composition is transparent, has reduced flammability, and has reduced migration of flame-retardant additive so that it is film-free.
    Type: Grant
    Filed: October 30, 1998
    Date of Patent: November 23, 1999
    Assignee: Ems- Inventa AG
    Inventors: Hans Dalla Torre, Manfred Hewel
  • Patent number: 5990261
    Abstract: A low birefringent organic optical component prepared from a resin consisting essentially of one or more repetitive structural units selected from the group consisting of structures represented by general formula (1); ##STR1## wherein A is either of the groups below. ##STR2## The organic optical component can exhibit excellent transparency, heat resistance and mechanical strength as well as a low birefringence. Also provided is a novel aromatic polyamide with a low permitivity and excellent transparency, processability and thermal stability, besides excellent heat resistance inherent in an aromatic polyamide.
    Type: Grant
    Filed: August 26, 1997
    Date of Patent: November 23, 1999
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Wataru Yamashita, Tomomi Yoshimura, Atsushi Shibuya, Yoshihiro Sakata, Hideaki Oikawa, Keisuke Takuma, Masahiro Ohta
  • Patent number: 5981692
    Abstract: This invention relates to high temperature, semi-crystalline, semi-aromatic nylon terpolymers with improved shrinkage resistance, made from terephthalic acid (TA), hexamethylene diamine (HMD) and/or 2-methyl pentamethylene diamine (2-MPMD) and another aliphatic dicarboxylic acid as monomers. These polymers display superior % TD (Transverse Direction) annealing shrinkage, as well as very good balance of mechanical performance as high temperature nylons.
    Type: Grant
    Filed: May 15, 1997
    Date of Patent: November 9, 1999
    Assignee: Du Pont Canada Inc.
    Inventor: Christian Leboeuf
  • Patent number: 5962628
    Abstract: Improved high temperature polyamides, and particularly partially-aromatic polyamides, containing less than about 40 .mu.eq/g carboxylic acid endgroups. When stabilized with a copper-containing thermal stabilizer, the polyamides exhibit improved thermal oxidative stability.
    Type: Grant
    Filed: December 17, 1997
    Date of Patent: October 5, 1999
    Assignee: BP Amoco Corporation
    Inventor: Robert G. Keske
  • Patent number: 5959069
    Abstract: Polyamides are built up from, as fundamental building blocks (a), lactams or aminocarboxylic acids or mixtures of these,as fundamental building blocks (b), from 1 to 50 .mu.mol of at least tribasic amines or carboxylic acids per gram of polyamide,as fundamental building blocks (c), dibasic carboxylic acids or amines andas fundamental building blocks (d), monobasic carboxylic acids or amines,where (c) and (d) are carboxylic acids if (b) are amines, and (c) and (d) are amines if (b) are carboxylic acids,the equivalents ratio of the functional groups of (b) to the functional groups of (c) and (d) together is from 60:40 to 40:60 andthe equivalents ratio of the functional groups of (c) to the functional groups of (d) is from 15:85 to 60:40.
    Type: Grant
    Filed: December 23, 1997
    Date of Patent: September 28, 1999
    Assignee: BASF Aktiengesellschaft
    Inventors: Alexander Gluck, Walter Gotz, Stefan Grutke, Martin Laun, Volker Warzelhan
  • Patent number: 5959070
    Abstract: A class of rigid rod and latter polymers having light emitting capability is provided. Included in this class of polymers are those having novel repeating structural units. These rigid rod and ladder polymers are employed in light emitting diodes.
    Type: Grant
    Filed: October 24, 1997
    Date of Patent: September 28, 1999
    Assignee: University of Rochester
    Inventors: Samson A. Jenekhe, John A. Osaheni
  • Patent number: 5917001
    Abstract: An uncoated lens, especially for use as the lens of a fog light or a headlight for an automobile, and having particularly good resistance against the environmental effects which are inherent in this environment, is formed of a colorless, transparent copolyamide having a glass transition temperature of at least a 170.degree. C., blended with a homopolyamide, and wherein the copolyamide is formed from at least one cycloaliphatic diamine with two cyclohexane rings, and at least one aromatic dicarboxylic acid which is predominantly isophthalic acid. The copolyamide may optionally contain up to 20 mol % of a further polyamide forming monomer of at least one lactam or an omega-aminocarboxylic acid. The homopolyamide is preferably one of PA6, PA11, PA12, PA66, PA69, PA610 or PA612. The cycloaliphatic diamine of the copolyamide is preferably bis(3-methyl-4-aminocyclohexyl)-methane.
    Type: Grant
    Filed: September 6, 1996
    Date of Patent: June 29, 1999
    Assignee: EMS-Inventa AG
    Inventors: Susanne Laederach, Hans Dalla Torre
  • Patent number: 5891987
    Abstract: A copolyamide composition prepared from hexamethylene diamine and either mixtures of adipic acid and terephthalic acid, or mixtures of adipic acid, terephthalic acid and isophthalic acid, has a melting point below 320.degree. C., a glass transition temperature between 100.degree. C. and 120.degree. C. and physical properties similar to nylon 66.
    Type: Grant
    Filed: November 15, 1995
    Date of Patent: April 6, 1999
    Assignee: Industrial Technology Research Institute
    Inventors: Wu-Bin Yuo, Chien-Shiun Liao, Wen-Jeng Lin, Li-Kuei Lin, Tien-San Lee, Szu-Yuan Chan
  • Patent number: 5877341
    Abstract: Methods and devices for controlling the reaction rate of a hydrocarbon to an acid or other intermediate oxidation product by pressure drop rate adjustments. The pressure drop rate measurements arc conducted at predetermined time intervals, after stopping the feeding and exiting of gases. The pressure drop at a predetermined time interval is measured or the time it takes for the pressure to drop by a certain degree. Adjustments are then made in one or more temperature, feeding rates of hydrocarbon, solvent, catalyst, promoter, and the like until the pressure drop rate and the reaction rate fall within desirable predetermined limits.
    Type: Grant
    Filed: May 12, 1998
    Date of Patent: March 2, 1999
    Assignee: Twenty-First Century Research Corporation
    Inventors: Eustathios Vassiliou, Mark W. Dassel, David C. DeCoster, Ader M. Rostami, Sharon M. Aldrich
  • Patent number: 5869596
    Abstract: This invention relates to a nonwoven web and fibers comprising a water soluble polyamide and articles constructed therefrom. The water soluble polyamide may be used alone or in combination with conventional thermoplastic web and fiber forming materials such as water insoluble polyethylene, polypropylene, polyester and polyamide. The water soluble polyamide may also be combined with biodegradable or selectively dispersible material to form nonwoven webs and fibers having various combinations of properties. Such water soluble webs and fibers have utility in the manufacture of disposable absorbent articles such as disposable diapers, feminine napkins, incontinent products and cellulosic articles such as tissues and towels, as well as for water soluble heat fusible webs for the textile industry.
    Type: Grant
    Filed: May 14, 1998
    Date of Patent: February 9, 1999
    Assignee: H. B. Fuller Licensing & Financing, Inc.
    Inventors: Sharf U. Ahmed, Greg J. Van Lith
  • Patent number: 5866675
    Abstract: This invention relates to a nonwoven web comprising a water soluble polyamide and articles constructed therefrom. The water soluble polyamide may be used alone or in combination with conventional thermoplastic web forming materials such as water insoluble polyethylene, polypropylene, polyester and polyamide. The water soluble polyamide may also be combined with biodegradable or selectively dispersible material to form nonwoven webs having various combinations of properties. Such water soluble webs have utility in the manufacture of disposable absorbent articles such as disposable diapers, feminine napkins, incontinent products and cellulosic articles such as tissues and towels, as well as for water soluble heat fusible webs for the textile industry.
    Type: Grant
    Filed: August 29, 1997
    Date of Patent: February 2, 1999
    Assignee: H. B. Fuller Licensing & Financing, Inc.
    Inventors: Sharf U. Ahmed, Greg J. Van Lith
  • Patent number: 5859180
    Abstract: Process for the solid state polycondensation of polyamide resins by the use in the polycondensation reactor of a quantity of an inert gas such that the ratio by weight between the solid capacity/h at the reactor outlet and that one of gas fed into the reactor is lower than 0.5.
    Type: Grant
    Filed: October 10, 1997
    Date of Patent: January 12, 1999
    Assignee: Sinco Engineering S.p.A.
    Inventors: Dario Giordano, Riccardo Bianchi
  • Patent number: 5856429
    Abstract: Amide-containing polymers characterized by the presence of piperazine amide and/or substituted piperazine amide in the polymer chain are used as adsorbents to remove polyphenolic compounds from liquids. The compositions are especially useful in combination with protein removal agents such as silica gel or tannin. The amide-containing polymer compositions (alone or in combination with protein removal agents) are especially useful in the stabilization and/or chillproofing of plant derived liquids or beverages such as beer, wine, fruit juice and vegetable juice.
    Type: Grant
    Filed: April 8, 1997
    Date of Patent: January 5, 1999
    Assignee: W. R. Grace & Co.-Conn.
    Inventor: Demetrius Michos
  • Patent number: 5837802
    Abstract: The present invention relates to a fast setting water sensitive polyamide composition which is the reaction product of at least one reactant which is a dicarboxylic acid, ester or anhydride thereof and at least one reactant is a diamine wherein at least one of said diamines is polyoxyalkylene diamine and at least one of said other reactants is aromatic and said polyamide composition has a T.sub.g of greater than about 15.degree. C. and a .DELTA.H greater than 0 Joules/gram.
    Type: Grant
    Filed: August 29, 1997
    Date of Patent: November 17, 1998
    Assignee: H. B. Fuller Licensing & Financing, Inc.
    Inventors: Gregory J. Van Lith, Mark S. Kroll, Leslie J. Clapp
  • Patent number: 5834575
    Abstract: As a heteroaromatic compound made functional so as to be used in nonlinear optical materials, the present invention provides a heteroaromatic compound represented by the following Formula (1), (2), (3) or (4), a polymer obtained from any of these, a nonlinear optical element comprised of the polymer, an optical device having such an element, and a process for producing them. ##STR1## wherein Ar.sup.1, Ar.sup.2 and Ar.sup.3 each independently represent an aromatic group or an aromatic group having a substituent, R.sup.1, R.sup.2 and R.sup.3 each independently represent a hydrogen atom or a monovalent organic group, X represents a monovalent organic group, Y represents a hydrogen atom or a monovalent functional group, and n represents an integer of 2 to 10.
    Type: Grant
    Filed: November 13, 1996
    Date of Patent: November 10, 1998
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Yutaka Honda, Iwao Fukuchi, Masato Taya, Kwan-Yue Alex Jen
  • Patent number: 5830984
    Abstract: Optically active ladder polymers that are chiral and have an unbroken network of conjugated double bonds along a helical path are synthesized.
    Type: Grant
    Filed: June 27, 1996
    Date of Patent: November 3, 1998
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Thomas J. Katz, Yujia Dai
  • Patent number: 5789525
    Abstract: A process for making polyimide composition comprising reacting at least one diamine, at least one tetracarboxylic diacid diester, selected phosphoramide and at least one base catalyst to form at least one polyimide compound, said reaction carried out at a temperature from about 20.degree. C. to about 60.degree. C. and wherein the molar ratio of diamine:tetracarboxylic diacid diester:phosphoramide:base catalyst is in the range of 0.8-1.2:1:2.5-4.0:2.5-4.0.
    Type: Grant
    Filed: April 15, 1997
    Date of Patent: August 4, 1998
    Assignee: Olin Microelectronic Chemicals, Inc.
    Inventors: Ahmad Naiini, Steve L. C. Hsu, William D. Weber, Andrew J. Blakeney
  • Patent number: 5789524
    Abstract: A process for producing a polyimide composition by reacting at least one polyamic acid or at least one polyamic ester or a mixture of at least one polyamic acid and at least one polyamic ester with a selected phosphoramide in the presence of at least one base catalyst to from a polyimide composition.
    Type: Grant
    Filed: April 15, 1997
    Date of Patent: August 4, 1998
    Assignee: Olin Microelectronic Chemicals, Inc.
    Inventors: Steve L. C. Hsu, Ahmad Naiini, William D. Weber, Andrew J. Blakeney
  • Patent number: 5783657
    Abstract: A low molecular weight, ester-terminated polyamide may be blended with a liquid hydrocarbon to form a transparent composition having gel consistency. The ester-terminated polyamide is prepared by reacting "x" equivalents of dicarboxylic acid wherein at least 50% of those equivalents are from polymerized fatty acid, "y" equivalents of diamine such as ethylene diamine, and "z" equivalents of monoalcohol having at least 4 carbon atoms. The stoichiometry of the reaction mixture is such that 0.9.ltoreq.{x/(y+z)}.ltoreq.1.1 and 0.1.ltoreq.{z/(y+z)}.ltoreq.0.7. The reactants are heated until they reach reaction equilibrium. The gel contains about 5-50% ester-terminated polyamide, with the remainder preferably being pure hydrocarbon. The gels are useful in formulating personal care products and other articles wherein some degree of gel-like or self-supporting consistency is desired.
    Type: Grant
    Filed: October 18, 1996
    Date of Patent: July 21, 1998
    Assignee: Union Camp Corporation
    Inventors: Mark S. Pavlin, Richard C. MacQueen