From Heterocyclic Compound Containing A Sulfur Atom As A Ring Member Patents (Class 528/377)
  • Patent number: 10439141
    Abstract: There is provided p-type organic polymers of general formula I. The polymers may be useful as semi-conducting material. Thus, thin films and devices comprising such polymers are also provided.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: October 8, 2019
    Assignee: AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH
    Inventors: Jun Li, Kok Haw Ong, Zhikuan Chen, Yujun Zhao, Siew Lay Lim, Ivy Wong, Le Yang, Kang Yee Seah
  • Patent number: 10396286
    Abstract: A method of regioselectively preparing a pyridine-containing compound is provided. In particular embodiments, the method includes reacting halogen-functionalized pyridal[2,1,3]thiadiazole with organotin-functionalized cyclopenta[2,1-b:3,4-b?]dithiophene or organotin-functionalized indaceno[2,1-b:3,4-b?]dithiophene. Also provided is a method of preparing a polymer. The method includes regioselectively preparing a monomer that includes a pyridal[2,1,3]thiadiazole unit; and reacting the monomer to produce a polymer that includes a regioregular conjugated backbone section, wherein the section includes a repeat unit containing the pyridal[2,1,3]thiadiazole unit. A polymer that includes a regioregular conjugated backbone section, and electronic devices that include the polymer, are also provided.
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: August 27, 2019
    Assignee: The Regents of the University of California
    Inventors: Guillermo C. Bazan, Lei Ying, Ben B. Y. Hsu, Wen Wen, Hsin-Rong Tseng, Gregory C. Welch
  • Patent number: 10377895
    Abstract: The present invention relates to a conductive polymer material of poly(thio- or seleno-)phene type containing at least two distinct species of counteranion, including a first species which is an anionic form of sulphuric acid, and a second species of counteranion selected from triflate, triflimidate, tosylate, mesylate, perchlorate and hexafluorophosphate. The invention also relates to a process for preparing such a material and the use thereof as conductive film. The invention also targets a substrate coated at least partly by a film of a material as defined above, a device comprising a material as defined above as conductive material, and also the use thereof in the organic electronics, organic thermoelectricity, organic photovoltaic and organic photodetector fields.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: August 13, 2019
    Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Alexandre Carella, Nicolas Massonnet, Jean-Pierre Simonato
  • Patent number: 10361370
    Abstract: An organic photovoltaic device comprising an electron transport layer disposed between an anode and a polymer layer. In this organic photovoltaic device the polymer layer can also be disposed between the electron transport layer and a cathode. The electron transport layer comprises (AOx)yBO(1-y) with an optional fullerene dopant. The polymer comprises a molecular complex comprising wherein X1 and X2 are independently selected from the group consisting of: H, Cl, F, CN, alkyl, alkoxy, ester, ketone, amide and aryl groups; R1, R2, R1? and R2? are side chains independently selected from the group consisting of: H, Cl, F, CN, alkyl, alkoxy, alkylthio, ester, ketone and aryl groups; R3 are selected from the group consisting of alkyl group, alkoxy group, aryl groups and combinations thereof; G is an aryl group; and wherein the thiophene groups are unsymmetrical.
    Type: Grant
    Filed: July 7, 2017
    Date of Patent: July 23, 2019
    Assignee: Phillips 66 Company
    Inventors: Hualong Pan, Kathy Woody, Brian Worfolk, Taeshik Earmme, Joseph E. Bullock
  • Patent number: 10312445
    Abstract: The present specification relates to a polymer, which comprises an electron acceptor functional group on a side chain and is represented by chemical formula 1 below, and to an organic electronic element comprising the same.
    Type: Grant
    Filed: May 24, 2016
    Date of Patent: June 4, 2019
    Assignee: LG Chem, Ltd.
    Inventors: Bogyu Lim, Jaechol Lee, Doowhan Choi, Sungkyoung Kang
  • Patent number: 10294326
    Abstract: Copolymers including dioxythiophene repeating units and no acceptor units allow the formation of electrochromic polymers (ECPs) with vivid neutral state colors and very colorless oxidized states that can be switched rapidly. The dioxythiophene repeating units can included in sequences where all of one type of dioxythiophene is included exclusively as isolated dyads or triads within the copolymer, or the copolymer can be an alternating copolymer with propylenedioxythiophene units. Other non-acceptor units can be included in the copolymers. The copolymers are rendered organic solvent soluble by alkyl substituents on repeating units. The inclusion of sterically encumbered acyclic dioxythiophene (AcDOT) units promotes red color while unsubstituted ethylenedioxythiophene (EDOT) units promote blue colors, and their respective content can be manipulated to achieve a desired neutral state color. Soluble copolymers comprising at least 50% EDOT repeating units can be used in supercapacitor applications.
    Type: Grant
    Filed: May 22, 2015
    Date of Patent: May 21, 2019
    Assignee: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INCORPORATED
    Inventors: John Robert Reynolds, Michael R. Craig, Aubrey Lynn Dyer, Justin Adam Kerszulis
  • Patent number: 10211401
    Abstract: Provided are: a macromolecular compound for providing an organic semiconductor material exhibiting excellent conversion efficiency; a starting-material compound having high material design freedom; and methods for producing the same. The macromolecular compound according to the present invention comprising a benzobisthiazole structural unit represented by the formula (1): [in the formula (1), T1 and T2 each independently represent an alkoxy group, a thioalkoxy group, a thiophene ring optionally substituted by a hydrocarbon group or an organosilyl group, a thiazole ring optionally substituted by a hydrocarbon group or an organosilyl group, or a phenyl group optionally substituted by a hydrocarbon group, an alkoxy group, a thioalkoxy group, an organosilyl group, a halogen atom or a trifluoromethyl group; and B1 and B2 each represent a thiophene ring optionally substituted by a hydrocarbon group, a thiazole ring optionally substituted by a hydrocarbon group, or an ethynylene group].
    Type: Grant
    Filed: February 3, 2015
    Date of Patent: February 19, 2019
    Assignee: TOYOBO CO., LTD.
    Inventors: Atsushi Wakamiya, Kazutake Hagiya, Shiro Hamamoto, Hikaru Tanaka
  • Patent number: 10208147
    Abstract: This invention pertains to fluoroallylsulfonyl azide compounds of formula: CF2?CF—CF2—Rf—SO2N3 formula (I) wherein Rf is a divalent (per)fluorinated group, optionally comprising one or more than one ethereal oxygen atom [monomer (Az)], which are useful as functional monomers in fluoropolymers, to the fluoropolymers which comprise recurring units derived from such fluoroallylsulfonyl azide compounds, to a process for their manufacture, to a curable compound comprising the same and to a method for crosslinking the same.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: February 19, 2019
    Assignee: Solvay Specialty Polymers Italy S.P.A.
    Inventors: Ivan Wlassics, Vito Tortelli, Alessio Marrani
  • Patent number: 10062851
    Abstract: An object of the present invention is to provide a composition for forming an organic semiconductor film that makes it possible to obtain an organic semiconductor film having excellent mobility and heat stability, an organic semiconductor element including an organic semiconductor film having excellent mobility and heat stability, and a method for manufacturing the organic semiconductor element.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: August 28, 2018
    Assignee: FUJIFILM CORPORATION
    Inventors: Toshihiro Kariya, Kensuke Masui, Takafumi Nakayama, Shuji Kanayama, Hiroyuki Takahashi
  • Patent number: 9799831
    Abstract: There is provided p-type organic polymers of general formula I. The polymers may be useful as semi-conducting material. Thus, thin films and devices comprising such polymers are also provided.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: October 24, 2017
    Assignee: Agency for Science, Technology and Research
    Inventors: Jun Li, Kok Haw Ong, Zhikuan Chen, Yujun Zhao, Siew Lay Lim, Ivy Wong, Lee Yang, Kang Yee Seah
  • Patent number: 9718905
    Abstract: To provide a water-soluble polythiophene used as an electrically conductive material, and its production method. A polythiophene comprising at least one type of structural units selected from the group consisting of structural units represented by the formula (1), structural units represented by the formula (2), structural units represented by the formula (3), structural units represented by the formula (4), structural units represented by the formula (5) and structural units represented by the formula (6). The polythiophene is obtained by polymerizing at least one thiophene compound selected from the group consisting of a thiophene compound represented by the formula (15), a thiophene compound represented by the formula (16) and a thiophene compound represented by the formula (17) in water or an alcohol solvent in the presence of an oxidizing agent.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: August 1, 2017
    Assignee: TOSOH CORPORATION
    Inventors: Hirokazu Yano, Masakazu Nishiyama, Hiroshi Awano
  • Patent number: 9658364
    Abstract: Disclosed is a method of storing a thioepoxy compound and a method of preparing a thioepoxy based optical material using the thioepoxy compound. Particularly, a method of preparing a high-quality thioepoxy based optical material having superior color and thermal stability and less time-dependent change, and being colorless and transparent by inhibiting time-dependent change of the thioepoxy compound during storage is disclosed. In addition, a method of storing the thioepoxy compound for an optical material, the thioepoxy compound having a water content of 500 to 2,500 ppm and stored at ?78 to 10° C., and a method of preparing the thioepoxy based optical material, the method including polymerizing a polymerizable composition including the stored thioepoxy compound, are provided. The high-quality thioepoxy based optical material, which is colorless and transparent, prepared according to the present invention may be broadly used in a variety of fields as a substitute for conventional optical materials.
    Type: Grant
    Filed: September 24, 2013
    Date of Patent: May 23, 2017
    Assignee: KOC SOLUTION CO., LTD.
    Inventors: Dong Gyu Jang, Soo Gyun Roh, Jong Hyo Kim, Bong-Keun So, Jin-Moo Seo
  • Patent number: 9634253
    Abstract: Disclosed herein are a donor-acceptor conjugated polymer and an organic electronic device including the same. According to embodiments of the invention, it is possible to realize a conjugated polymer suitable for organic memory devices and a multi-functional, high-performance, large-area organic memory device for electronics including the same, the organic memory device operating in air.
    Type: Grant
    Filed: June 16, 2015
    Date of Patent: April 25, 2017
    Assignee: GWANGJU INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Jae-Suk Lee, Moon-Ho Ham, Myungwoo Son, Walaa Ahmed Ahmed Elsawy, Myung-Jin Kim
  • Patent number: 9627621
    Abstract: A polymer comprises a polymeric chain represented by formula (I) or (II). In formula (I) a, b, d, and n are integers, a from 0 to 3, b from 1 to 5, c from 1 to 3, d from 1 to 5, and n from 2 to 5000; R1 and R2 are side chains; R3 and R4 are each independently H or a side chain; and when a is 0, R3 and R4 are side chains. In formula (II), a, b, c, d, e, and n are integers, a from 1 to 3, b and c being independently 0 or 1, d and e being independently 1 or 2, and n from 2 to 5000; R1 and R2 are side chains except —COOalkyl; and X1, X2 and X3 are independently O, S, or Se. Semiconductors and devices comprising the polymer are also provided.
    Type: Grant
    Filed: April 28, 2014
    Date of Patent: April 18, 2017
    Assignee: Agency for Science, Technology and Research
    Inventors: Zhikuan Chen, Jun Li, Beng Ong, Samarendra P. Singh, Hoi Kai Ivy Wong, Kok Haw Ong
  • Patent number: 9472764
    Abstract: The present invention relates to certain polymeric compounds and their use as organic semiconductors in organic and hybrid optical, optoelectronic, and/or electronic devices such as photovoltaic cells, light emitting diodes, light emitting transistors, and field effect transistors. The present compounds can provide improved device performance, for example, as measured by power conversion efficiency, fill factor, open circuit voltage, field-effect mobility, on/off current ratios, and/or air stability when used in photovoltaic cells or transistors. The present compounds can have good solubility in common solvents enabling device fabrication via solution processes.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: October 18, 2016
    Assignees: Northwestern University, Polyera Corporation
    Inventors: Tobin J. Marks, Xugang Guo, Nanjia Zhou, Robert P. H. Chang, Martin Drees, Antonio Facchetti
  • Patent number: 9453102
    Abstract: Methods for the preparation of mono- and bis-end-functionalized ?-conjugated polymers. In the methods, chalcogens are selectively installed at the polymer terminus or termini.
    Type: Grant
    Filed: October 20, 2014
    Date of Patent: September 27, 2016
    Assignee: University of Washington through its Center for Commercialization
    Inventors: Christine Keiko Luscombe, Ken Okamoto
  • Patent number: 9412950
    Abstract: A polymer compound comprising a repeating unit represented by the formula (A) and a repeating unit represented by the formula (B) manifests large absorbance of light having long wavelength, and can be used in an organic photoelectric conversion device and an organic thin film transistor. [in the formula (A) and the formula (B), R represents a hydrogen atom, a fluorine atom, an optionally substituted alkyl group, an alkoxy group optionally substituted by a fluorine atom, an aryl group, a heteroaryl group, a group represented by the formula (2a) or a group represented by the formula (2b). A plurality of R may be the same or mutually different. Ar1 and Ar2 represent an optionally substituted tri-valent aromatic hydrocarbon group having 6 to 60 carbon atoms or a trivalent heterocyclic group having 4 to 60 carbon atoms.].
    Type: Grant
    Filed: September 24, 2012
    Date of Patent: August 9, 2016
    Assignee: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Yasunori Uetani, Ken Yoshimura
  • Patent number: 9365679
    Abstract: The present invention relates to a benzodithiophene based copolymer containing thieno[3,4-b]thiophene units and a preparing method and applications thereof. The polymer has a structural formula (I), wherein R1 and R2 are respectively selected from H, and alkyl groups of C1 to C16; R3 and R4 are respectively selected from H, alkyl groups of C1 to C16, alkoxy groups of C1 to C16, or thiophene groups substituted by alkyl groups of C1 to C16; R5 is selected from alkyl groups of C1 to C16; n is a natural number from 7 to 80. Applications of the benzodithiophene based copolymer containing thieno[3,4-b]thiophene units in polymer solar cells, polymer organic light-emission, polymer organic field effect transistors, polymer organic optical storage, polymer organic nonlinear materials or polymer organic laser are also provided.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: June 14, 2016
    Assignees: OCEAN'S LIGHTING SCIENCE & TECHNOLOGY CO., LTD., SHENZHEN OCEAN'S KING LIGHTING ENGINEERING CO., LTD.
    Inventors: Mingjie Zhou, Rong Guan, Manyuan Li, Jiale Huang, Naiyuan Li
  • Patent number: 9337358
    Abstract: Benzodithiophene-containing polymers, as well as related photovoltaic cells, articles, systems, and methods, are disclosed.
    Type: Grant
    Filed: July 5, 2012
    Date of Patent: May 10, 2016
    Assignee: MERCK PATENT GMBH
    Inventors: Paul Byrne, Kap-Soo Cheon, Gilles Dennler, Nicolas Drolet, Serge Thompson, David Waller, Li Wen
  • Patent number: 9328204
    Abstract: A benzodithiophene based copolymer containing thiophene pyrroledione units, a preparing method thereof, and applications of the copolymer in polymer solar cells, organic light-emitting, organic field effect transistors, organic optical storage, organic nonlinear materials or organic laser.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: May 3, 2016
    Assignees: OCEAN'S KING LIGHTING SCIENCE & TECHNOLOGY CO., LTD., SHENZHEN OCEAN'S KING LIGHTING ENGINEERING CO., LTD.
    Inventors: Mingjie Zhou, Rong Guan, Manyuan Li, Jiale Huang, Naiyuan Li
  • Patent number: 9328203
    Abstract: The present invention relates to a benzodithiophene based copolymer containing pyridino[2,1,3]thiadiazole units and a preparing method and applications thereof. The polymer has a structural formula (I), wherein R1 and R2 are respectively selected from H or alkyl groups of C1 to C16; R3 and R4 are respectively selected from H, alkyl groups of C1 to C16, alkoxy groups of C1 to C16, or thiophene groups substituted by alkyl groups of C1 to C16; X is N and Y is CH, or X is CH and Y is N; and n is a natural number of 7 to 80. Applications of the benzodithiophene based copolymer containing pyridino[2,1,3]thiadiazole units in polymer solar cells, polymer organic light-emitting, polymer organic field effect transistors, polymer organic optical storage, polymer organic nonlinear materials or polymer organic laser are also provided.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: May 3, 2016
    Assignees: OCEAN'S KING LIGHTING SCIENCE & TECHNOLOGY CO., LTD., SHENZHEN OCEAN'S KING LIGHTING ENGINEERING CO., LTD.
    Inventors: Mingjie Zhou, Rong Guan, Manyuan Li, Jiale Huang, Naiyuan Li
  • Patent number: 9328194
    Abstract: The present invention relates to a benzodithiophene based copolymer containing isoindoline-1,3-diketone units and a preparing method and applications thereof. The polymer has a structural formula (I), wherein R1 and R2 are respectively selected from H or alkyl groups of C1 to C16; R3 and R4 are respectively selected from H, alkyl groups of C1 to C16, alkoxy groups of C1 to C16, or thiophene groups substituted by alkyl groups of C1 to C16; R5 is selected from alkyl groups of C1 to C16; n is a natural number from 7 to 80. Applications of the benzodithiophene based copolymer containing isoindoline-1,3-diketone units in polymer solar cells, polymer organic light-emitting, polymer organic field effect transistors, polymer organic optical storage, polymer organic nonlinear materials or polymer organic laser are also provided.
    Type: Grant
    Filed: December 3, 2012
    Date of Patent: May 3, 2016
    Assignees: OCEAN'S KING LIGHTING SCIENCE & TECHNOLOGY CO., LTD., SHENZHEN OCEAN'S KING LIGHTING ENGINEERING CO., LTD.
    Inventors: Mingjie Zhou, Rong Guan, Manyuan Li, Jiale Huang, Naiyuan Li
  • Patent number: 9318707
    Abstract: An organic photoelectric conversion element which sequentially comprises a transparent first electrode, a photoelectric conversion layer that contains a p-type organic semiconductor material and an n-type organic semiconductor material, and a second electrode in this order on a transparent substrate.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: April 19, 2016
    Assignee: KONICA MINOLTA, INC.
    Inventors: Takamune Hattori, Yasushi Okubo
  • Patent number: 9312491
    Abstract: A photoelectric conversion element has a structure where a hole transport layer, a photoelectric conversion layer, and an electron transport layer are held between a first electrode and a second electrode. The photoelectric conversion layer is a bulk heterojunction layer, and fullerene or a fullerene derivative is used as an n-type organic semiconductor. As a p-type organic semiconductor, a polymer represented by the following Expression is used. In the Expression, R1, R2, R3, and R4 each independently represent any one of a branched alkyl group, a linear alkyl group, an alkyl ester group, a carboxy alkyl group, and an alkoxy group. Independently, X is any one of S, O, and N.
    Type: Grant
    Filed: September 3, 2013
    Date of Patent: April 12, 2016
    Assignees: JX NIPPON OIL & ENERGY CORPORATION, NATIONAL UNIVERSITY CORPORATION OF HIROSHIMA UNIVERSITY
    Inventors: Seunghun Eu, Tsuyoshi Asano, Itaru Osaka, Kazuo Takimiya
  • Patent number: 9312492
    Abstract: The present invention relates to all-polymer blends including an electron-acceptor polymer and an electron-donor polymer, capable of providing improved device performance, for example, as measured by power conversion efficiency, when used in photovoltaic cells.
    Type: Grant
    Filed: February 9, 2015
    Date of Patent: April 12, 2016
    Assignee: RAYNERGY TEK INC.
    Inventors: Martin Drees, Hualong Pan, Zhihua Chen, Shaofeng Lu, Antonio Facchetti
  • Patent number: 9221944
    Abstract: Disclosed are new semiconductor materials prepared from dithienylvinylene copolymers with aromatic or heteroaromatic ?-conjugated systems. Such copolymers, with little or no post-deposition heat treatment, can exhibit high charge carrier mobility and/or good current modulation characteristics. In addition, the polymers of the present teachings can possess certain processing advantages such as improved solution-processability and low annealing temperature.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: December 29, 2015
    Assignees: BASF SE, Polyera Corporation
    Inventors: Ashok Kumar Mishra, Subramanian Vaidyanathan, Hiroyoshi Noguchi, Florian Doetz, Silke Koehler, Marcel Kastler
  • Patent number: 9147843
    Abstract: A compound represented by the formula (1). A polymer compound comprising the compound. An organic semiconductor material comprising the compound or the polymer compound. An organic semiconductor device comprising an organic layer comprising the organic semiconductor material. An organic transistor comprising a source electrode, a drain electrode, a gate electrode and an active layer, wherein the active layer comprises the organic semiconductor material.
    Type: Grant
    Filed: April 16, 2013
    Date of Patent: September 29, 2015
    Assignee: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventor: Hiroki Terai
  • Patent number: 9040655
    Abstract: A method for producing a copolymer includes reacting a first monomer with a second monomer using a Pd-based catalyst, wherein the first monomer is a first hetero cyclic compound which includes a first hetero atom selected from S, N, and O, the first hetero cyclic compound in which a carbon atom adjacent to the first hetero atom is coupled with at least one hydrogen atom, and the second monomer is a second hetero cyclic compound which includes a second hetero atom selected from S, N, and O, the second hetero cyclic compound in which the second hetero atom is coupled with a carbon atom in which a halogen group selected from Br, Cl, and I is substituted.
    Type: Grant
    Filed: November 20, 2012
    Date of Patent: May 26, 2015
    Assignee: GWANGJU INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Jae-Suk Lee, Ashraf A El-Shehawy, Joon-Keun Min, Abdo Nabiha Ibrahim Mahmoud Mahamed
  • Patent number: 9035004
    Abstract: Disclosed are molecular and polymeric compounds having desirable properties as semiconducting materials. Such compounds can exhibit desirable electronic properties and possess processing advantages including solution-processability and/or good stability.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: May 19, 2015
    Assignee: Polyera Corporation
    Inventors: Antonio Facchetti, Chun Huang, Hualong Pan
  • Patent number: 9035015
    Abstract: Novel photoactive polymers, as well as related photovoltaic cells, articles, systems, and methods, are disclosed.
    Type: Grant
    Filed: January 21, 2015
    Date of Patent: May 19, 2015
    Assignee: MERCK PATENT GmbH
    Inventors: Li Wen, David P. Waller, Paul Byrne, Nicolas Drolet, Gilles Herve Regis Dennler, Kap-Soo Cheon
  • Patent number: 9029499
    Abstract: Novel semiconducting photovoltaic polymers with conjugated units that provide improved solar conversion efficiency that can be used in electro-optical and electric devices. The polymers exhibit increased solar conversion efficiency in solar devices.
    Type: Grant
    Filed: February 18, 2014
    Date of Patent: May 12, 2015
    Assignee: University of Chicago
    Inventors: Luping Yu, Yongye Liang
  • Patent number: 9023978
    Abstract: A material capable of luminescence comprising a polymer or oligomer and an organometallic group, wherein the polymer or oligomer is at least partially conjugated and the organometallic group is covalently bound to the polymer or oligomer and at least one of the nature, location, and proportion of the polymer or oligomer and of the organometallic group in the material are selected so that the luminescence predominantly is phosphorescence.
    Type: Grant
    Filed: April 24, 2003
    Date of Patent: May 5, 2015
    Assignee: Cambridge Enterprise Ltd.
    Inventors: Andrew Bruce Holmes, Albertus Sandee, Charlotte Williams, Annette Koehler, Nick Evans
  • Patent number: 9023964
    Abstract: The present invention relates to conjugated polymers. In various embodiments, the present invention provides a conjugated polymer including a repeating unit including a benzene ring conjugated with the polymer backbone, wherein the benzene ring is fused to two 5-membered rings, wherein each fused 5-membered ring includes N and at least one of O and S. In various embodiments, the present invention provides semiconductor devices including the polymer, and methods of making the polymer.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: May 5, 2015
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Malika Jeffries-EL, Jeremy J. Intermann, Brian C. Tlach
  • Patent number: 9018344
    Abstract: The present invention provides new materials that combine the advantages of well-defined polymeric starting materials and the convenience of surface modification by physical methods into one package and, thus, offers a general and powerful platform suitable for use in numerous applications.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: April 28, 2015
    Assignees: Hitachi Chemical Company, Ltd, Hitachi Chemical Research Center, Inc.
    Inventors: Anando Devadoss, Cuihua Xue
  • Patent number: 9006376
    Abstract: Embodiments of the invention are directed to Ge comprising heterocyclic compounds which can be used for the preparation of homopolymers and copolymers. The copolymers can be donor-acceptor (DA) alternating copolymers where the donor unit is a Ge comprising heterocyclic unit. The polymers can be used as materials in solar cells and other photovoltaic devices, transistors, diodes, light emitting devices (LEDs), conductors, supercapacitors, batteries, and electrochromic devices.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: April 14, 2015
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Chad Martin Amb, Franky So, John R. Reynolds
  • Publication number: 20150094445
    Abstract: The present invention provides an asymmetric modified CMS hollow fiber membrane having improved gas separation performance properties and a process for preparing an asymmetric modified CMS hollow fiber membrane having improved gas separation performance properties. The process comprises treating a polymeric precursor fiber with a solution containing a modifying agent prior to pyrolysis. The concentration of the modifying agent in the solution may be selected in order to obtain an asymmetric modified CMS hollow fiber membrane having a desired combination of gas permeance and selectivity properties. The treated precursor fiber is then pyrolyzed to form an asymmetric modified CMS hollow fiber membrane having improved gas permeance.
    Type: Application
    Filed: September 30, 2014
    Publication date: April 2, 2015
    Inventors: Nitesh Bhuwania, William John Koros, Paul Jason Williams
  • Patent number: 8993711
    Abstract: The present invention relates to certain polymeric compounds based upon a head-to-head (H—H) alkylthio-substituted bithiophene repeating units (e.g., 3,3?-bis(tetradecylthio)-2,2?-bithiophene). Such compounds can exhibit desirable electronic properties and possess processing advantages including solution-processability and/or good stability at ambient conditions.
    Type: Grant
    Filed: October 5, 2011
    Date of Patent: March 31, 2015
    Assignee: Polyera Corporation
    Inventors: Ming-Chou Chen, Antonio Facchetti, Jordan Quinn, Jennifer E. Brown
  • Patent number: 8993713
    Abstract: A n-type ladder copolymer including, a n-type ladder copolymer formed with alternating perylene and pyridine units having chemical structure A having two end groups, where perylene units having at least one solubilizing group attaching at position(s) 1, 6, 7, and/or 12, where R1, R2, R3, and R4 solubilizing group(s) are each independently selected from the group consisting of aryl, alkyl aryl, alkoxy aryl, and aryloxy aryl, and where n repeat units ranging from about 4 to about 400
    Type: Grant
    Filed: May 16, 2013
    Date of Patent: March 31, 2015
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: William W. Lai, Alfred Baca
  • Patent number: 8975366
    Abstract: An organic semiconductor compound may be represented by the above Chemical Formula 1 or Chemical Formula 2, and an organic thin film may include the organic semiconductor compound according to Chemical Formula 1 or 2.
    Type: Grant
    Filed: November 12, 2013
    Date of Patent: March 10, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Bang Lin Lee, Jeong Il Park, Jong Won Chung
  • Patent number: 8969508
    Abstract: Photoactive polymers are provided, as well as related photovoltaic cells, articles, systems, and methods comprising these photoactive polymers.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: March 3, 2015
    Assignee: Merck Patent GmbH
    Inventors: Li Wen, David P. Waller, Paul Byrne, Nicolas Drolet, Gilles Herve Regis Dennler, Kap-Soo Cheon
  • Patent number: 8969718
    Abstract: Embodiments of the present invention provide an organic semiconductor excellent in the photoelectric conversion efficiency and also a solar cell using the same. This organic semiconductor has a polymer structure comprising a repeating unit represented by the following formula (I): -[A-D]- (I). In the formula, A is a structure represented by and D is a structure having a benzodithiophene skeleton or the like. In the above, R1 is independently H, a substituted or unsubstituted straight-chain or branched-chain alkyl group, or a substituted or unsubstituted straight-chain or branched-chain alkoxy group. The solar cell according to an embodiment of the present invention comprises an active layer containing the organic semiconductor.
    Type: Grant
    Filed: January 29, 2013
    Date of Patent: March 3, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroki Iwanaga, Akihiko Ono, Fumihiko Aiga
  • Patent number: 8962783
    Abstract: Photovoltaic cells with silole-containing polymers, as well as related systems, methods and components are disclosed.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: February 24, 2015
    Assignee: Merck Patent GmbH
    Inventors: Russell Gaudiana, Richard Kingsborough, Xiaobo Shi, David Waller, Zhengguo Zhu
  • Patent number: 8957181
    Abstract: A preparation process for a cyclic conjugated polymer, includes the steps of deprotonating a monohalogenated cyclic conjugated compound of a 5- to 7-membered ring using a deprotonation catalyst comprising secondary amine represented by R1NHR2 (R1 and R2 are the same or different and are each a branched or cyclic alkyl group of 1 to 15 carbon atoms or a phenyl group) and a Grignard reagent represented by R3MgX (X is a halogen atom selected from chlorine, bromine and iodine, and R3 is a straight-chain or branched alkyl group of 1 to 6 carbon atoms) and polymerizing the deprotonated monohalogenated cyclic conjugated compound.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: February 17, 2015
    Assignees: Soken Chemical & Engineering Co., Ltd., National University Corporation Kobe University
    Inventors: Syuji Okamoto, Hikaru Meguro, Atsunori Mori
  • Patent number: 8946376
    Abstract: The present invention relates to 1,4-diketopyrrolo[3,4-c]pyrrole (DPP) derivatives of the below formula to their manufacture; to their use as organic semiconductors, e.g. in semiconductor devices, especially a sensor, a diode, a photodiode, an organic field effect transistor, a transistor for flexible displays, and/or a solar cell (photovoltaic cell); to such semiconductor devices comprising diketopyrrolopyrrol derivatives of the formula I as a semiconducting effective means, and to devices containing said semiconductor devices. The compounds of the formula I have excellent solubility in organic solvents. High efficiency of energy conversion, excellent field-effect mobility, good on/off current ratios and/or excellent stability can be observed, when said compounds are used in semiconductor devices or organic photovoltaic (PV) devices.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: February 3, 2015
    Assignee: BASF SE
    Inventors: Frank Würthner, Sabin-Lucian Suraru, Pascal Hayoz
  • Patent number: 8946378
    Abstract: Conducting polymer systems for hole injection or transport layer applications including a composition comprising: a water soluble or water dispersible regioregular polythiophene comprising (i) at least one organic substituent, and (ii) at least one sulfonate substituent comprising sulfonate sulfur bonding directly to the polythiophene backbone. The polythiophene can be water soluble, water dispersible, or water swellable. They can be self-doped. The organic substituent can be an alkoxy substituent, or an alkyl substituent. OLED, PLED, SMOLED, PV, and ESD applications can be used.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: February 3, 2015
    Assignee: Solvay USA, Inc.
    Inventors: Venkataramanan Seshadri, Brian Woodworth, Christopher Greco, Darin Laird, Mathew Mathai
  • Patent number: 8940191
    Abstract: The present invention provides an electroconductive polymer solution in which the good dispersibility is maintained and the pH is arbitrarily adjusted, and an electroconductive polymer composition having an excellent heat resistance. Further, the present invention provides a solid electrolytic capacitor having an excellent reliability. The present invention is an electroconductive polymer solution, containing an electroconductive polymer in which a dopant is doped, a first compound having an amino group and a hydroxyl group, a second compound having a carboxylic acid group, and a dispersing medium.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: January 27, 2015
    Assignee: NEC Tokin Corporation
    Inventors: Tomoki Nobuta, Yasuhisa Sugawara, Satoshi Suzuki, Yasuhiro Tomioka
  • Patent number: 8940856
    Abstract: The present invention provides a heterocyclic compound of the following general formula (I): wherein X and Y are different from each other and represent a halogen atom selected from among a chlorine atom, bromine atom and iodine atom, or CF3SO3?, CH3SO3?, C6H5SO3? or CH3C6H4SO3?; R1 represents an optionally substituted monovalent aliphatic hydrocarbon group having two or more carbon atoms; one of A1 and A2 represents —S—, —O—, —Se— or Te—, while the other represents —N?, —P? or —Si(R2)?, wherein R2 represents a hydrogen atom, an optionally substituted monovalent hydrocarbon group, a halogen atom, an amino group or a carbonyl group; and one of two linkages each represented by a solid line and a dashed line is a single bond, while the other is a double bond.
    Type: Grant
    Filed: December 11, 2013
    Date of Patent: January 27, 2015
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Kenta Tanaka, Hideyuki Higashimura, Kazuei Ohuchi, Akio Tanaka, Masato Ueda
  • Patent number: 8927683
    Abstract: Disclosed is a polymerization fluid for electropolymerization which exhibits a reduced environmental burden and excellent economic efficiency and which can yield a conductive polymer film that has high conductivity and that is dense and highly transparent. The polymerization fluid includes at least one monomer selected from the group consisting of 3,4-disubstituted thiophenes which is dispersed as oil drops in surfactant-free water, and the polymerization fluid is transparent.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: January 6, 2015
    Assignee: Nippon Chemi-Con Corporation
    Inventors: Mahito Atobe, Koji Nakabayashi, Kenji Machida, Sekihiro Takeda
  • Patent number: 8927684
    Abstract: Compounds of Formula (I): (formula (I)) where: X1 and X2 are the same or different and each is independently Cl, Br, I, a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group; and, Y is O, S, Se, NR1, R1C—CR2 or R1C?CR2, wherein R1 and R2 are the same or different and are each independently H or an organic group, are useful as monomers to produce oligomers or polymers that are useful in organic electronic devices.
    Type: Grant
    Filed: November 3, 2010
    Date of Patent: January 6, 2015
    Assignee: National Research Council of Canada
    Inventors: Zhao Li, Jianfu Ding, Jianping Lu, Ye Tao
  • Patent number: 8920681
    Abstract: An electrically conductive polymer linked to conductive nanoparticle is provided. The conductive polymer can include conductive monomers and one or more monomers in the conductive polymer can be linked to a conductive nanoparticle and can include a polymerizable moiety so that it can be incorporated into a polymer chain. The electrically conductive monomer can include a 3,4-ethylenedioxythiophene as a conductive monomer. The electrically conductive polymer having the conductive nanoparticle can be prepared into an electrically conductive layer or film for use in electronic devices.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: December 30, 2014
    Assignee: Korea University Research and Business Foundation
    Inventor: Dong Hoon Choi