Polymerizing In The Presence Of A Specified Material Other Than A Reactant Patents (Class 528/378)
  • Patent number: 11945914
    Abstract: A curable composition for forming a high refractive index optical material including an episulfide compound, a cyclic disulfide compound, and a reducing agent, and an optical material comprising a cured product of the curable composition.
    Type: Grant
    Filed: May 19, 2020
    Date of Patent: April 2, 2024
    Assignee: LG CHEM, LTD.
    Inventors: Heon Kim, Hee Jung Choi, Yeongrae Chang
  • Patent number: 10886471
    Abstract: The present teachings relate to novel polymeric materials for electrode treatment. The present polymeric electrode modifiers can be derived from an episulfide monomer via either an acid-catalyzed ring-opening polymerization reaction or a nucleophilic polymerization reaction.
    Type: Grant
    Filed: June 6, 2018
    Date of Patent: January 5, 2021
    Assignee: Flexterra, Inc.
    Inventors: Zhihua Chen, Darwin Scott Bull, Mark Seger, Timothy Chiu, Yu Xia, Antonio Facchetti
  • Patent number: 10131749
    Abstract: According to one preferred embodiment of the present invention, a composition for optical materials, which contains a compound represented by formula (1) and a compound represented by formula (2), is able to be provided. This composition for optical materials enables stable storage of a compound represented by formula (2) at low cost, and also enables stable storage thereof with respect to temperature change. In addition, this composition for optical materials enables the achievement of an optical material which has good light resistance. (In formula (1), in represents an integer of 0-4; and n represents an integer of 0-2.) (In formula (2), m represents an integer of 0-4; and n represents an integer of 0-2.
    Type: Grant
    Filed: March 1, 2016
    Date of Patent: November 20, 2018
    Assignee: MITSUBISHI GAS CHEMICAL COMPANY, INC.
    Inventors: Yoshihiko Nishimori, Teruo Kamura, Hiroshi Horikoshi
  • Patent number: 9658365
    Abstract: Through an optical material composition containing a compound (a), a compound (b), a polythiol (c) and sulfur (d) according to the present invention, good mold release properties are obtained, and the occurrence of separation mark defects can be suppressed. Compound (a): a compound having the structure represented by formula (1): (In formula (1), m is an integer of 0 to 4 and n is an integer of 0 to 2.) Compound (b): a compound having the structure represented by formula (2): (In formula (2), m is an integer of 0 to 4 and n is an integer of 0 to 2.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: May 23, 2017
    Assignee: MITSUBISHI GAS CHEMICAL COMPANY, INC.
    Inventors: Akinobu Horita, Yousuke Imagawa, Teruo Kamura, Hiroshi Horikoshi
  • Patent number: 9525148
    Abstract: A device including an emissive material comprising quantum dots is disclosed. In one embodiment, the device includes a first electrode and a second electrode, a layer comprising quantum dots disposed between the first electrode and the second electrodes, and a first interfacial layer disposed at the interface between a surface of the layer comprising quantum dots and a first layer in the device. In certain embodiments, a second interfacial layer is optionally further disposed on the surface of the layer comprising quantum dots opposite to the first interfacial layer. In certain embodiments, a device comprises a light-emitting device. Other light emitting devices and methods are disclosed.
    Type: Grant
    Filed: April 6, 2012
    Date of Patent: December 20, 2016
    Assignee: QD VISION, INC.
    Inventors: Peter T. Kazlas, Zhaoqun Zhou, Yuhua Niu, Sang-Jin Kim, Benjamin S. Mashford
  • Patent number: 9029499
    Abstract: Novel semiconducting photovoltaic polymers with conjugated units that provide improved solar conversion efficiency that can be used in electro-optical and electric devices. The polymers exhibit increased solar conversion efficiency in solar devices.
    Type: Grant
    Filed: February 18, 2014
    Date of Patent: May 12, 2015
    Assignee: University of Chicago
    Inventors: Luping Yu, Yongye Liang
  • Patent number: 9023964
    Abstract: The present invention relates to conjugated polymers. In various embodiments, the present invention provides a conjugated polymer including a repeating unit including a benzene ring conjugated with the polymer backbone, wherein the benzene ring is fused to two 5-membered rings, wherein each fused 5-membered ring includes N and at least one of O and S. In various embodiments, the present invention provides semiconductor devices including the polymer, and methods of making the polymer.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: May 5, 2015
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Malika Jeffries-EL, Jeremy J. Intermann, Brian C. Tlach
  • Patent number: 9018344
    Abstract: The present invention provides new materials that combine the advantages of well-defined polymeric starting materials and the convenience of surface modification by physical methods into one package and, thus, offers a general and powerful platform suitable for use in numerous applications.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: April 28, 2015
    Assignees: Hitachi Chemical Company, Ltd, Hitachi Chemical Research Center, Inc.
    Inventors: Anando Devadoss, Cuihua Xue
  • Publication number: 20150105534
    Abstract: An improved polymerization method including a method comprising providing a reaction mixture comprising a first monomer, an organic oxidant, and at least one Lewis acid or Brönsted acid, wherein the first monomer comprises at least one optionally substituted heterocyclic ring, wherein the heterocyclic ring comprises at least one heteroatom; and reacting the reaction mixture to obtain a conjugated polymer. The method can reduce the content of undesirable entities in the polymer such as halogens and metals, which can be useful in organic electronic device applications. Purification methods also are adapted to remove organic and inorganic impurities.
    Type: Application
    Filed: September 9, 2014
    Publication date: April 16, 2015
    Inventors: Elena E. Sheina, Chad Landis, Venkataramanan Seshadri, Christopher T. Brown, Samuel M. Mazza
  • Patent number: 8993711
    Abstract: The present invention relates to certain polymeric compounds based upon a head-to-head (H—H) alkylthio-substituted bithiophene repeating units (e.g., 3,3?-bis(tetradecylthio)-2,2?-bithiophene). Such compounds can exhibit desirable electronic properties and possess processing advantages including solution-processability and/or good stability at ambient conditions.
    Type: Grant
    Filed: October 5, 2011
    Date of Patent: March 31, 2015
    Assignee: Polyera Corporation
    Inventors: Ming-Chou Chen, Antonio Facchetti, Jordan Quinn, Jennifer E. Brown
  • Patent number: 8957181
    Abstract: A preparation process for a cyclic conjugated polymer, includes the steps of deprotonating a monohalogenated cyclic conjugated compound of a 5- to 7-membered ring using a deprotonation catalyst comprising secondary amine represented by R1NHR2 (R1 and R2 are the same or different and are each a branched or cyclic alkyl group of 1 to 15 carbon atoms or a phenyl group) and a Grignard reagent represented by R3MgX (X is a halogen atom selected from chlorine, bromine and iodine, and R3 is a straight-chain or branched alkyl group of 1 to 6 carbon atoms) and polymerizing the deprotonated monohalogenated cyclic conjugated compound.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: February 17, 2015
    Assignees: Soken Chemical & Engineering Co., Ltd., National University Corporation Kobe University
    Inventors: Syuji Okamoto, Hikaru Meguro, Atsunori Mori
  • Publication number: 20150041727
    Abstract: The invention relates to novel organic semiconducting polymers containing one or more monomers derived from s-indacene fused symmetrically on each terminus with dithieno[3,2-b;2?,3?-d]thiophene (IDDTT), cyclopenta[2,1-b;3,4-b?]dithiophene (IDCDT), or derivatives thereof, to methods for their preparation and educts or intermediates used therein, to polymer blends, mixtures and formulations containing them, to the use of the polymers, polymer blends, mixtures and formulations as semiconductors in organic electronic (OE) devices, especially in organic photovoltaic (OPV) devices and organic photodetectors (OPD), and to OE, OPV and OPD devices comprising these polymers, polymer blends, mixtures or formulations.
    Type: Application
    Filed: January 18, 2013
    Publication date: February 12, 2015
    Applicant: MERCK PATENT GMBH
    Inventors: Changsheng Wang, William Mitchell, Nicolas Blouin, Jingyao Song, Mansoor D'Lavari, Steven Tierney
  • Patent number: 8936735
    Abstract: The present invention relates to coatings comprising electrically conductive polymers and esters of gallic acid and sugars, their production and use, and dispersions for the production of such coatings.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: January 20, 2015
    Assignee: Heraeus Precious Metals GmbH & Co. KG
    Inventors: Udo Guntermann, Friedrich Jonas
  • Patent number: 8927683
    Abstract: Disclosed is a polymerization fluid for electropolymerization which exhibits a reduced environmental burden and excellent economic efficiency and which can yield a conductive polymer film that has high conductivity and that is dense and highly transparent. The polymerization fluid includes at least one monomer selected from the group consisting of 3,4-disubstituted thiophenes which is dispersed as oil drops in surfactant-free water, and the polymerization fluid is transparent.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: January 6, 2015
    Assignee: Nippon Chemi-Con Corporation
    Inventors: Mahito Atobe, Koji Nakabayashi, Kenji Machida, Sekihiro Takeda
  • Publication number: 20140357835
    Abstract: By using a method for producing a composition for an optical material using (a) sulfur, (b) a compound having two intramolecular episulfide groups, (c) a compound having one or more (preferably two) SH groups, and (d) an amine compound having a specific structure, in which compound (a) and compound (c) are pre-polymerized in the presence of compound (b) using compound (d) as the pre-polymerization catalyst, the present invention provides a polymerizable composition for an optical material in which the viscosity elevation speed during pre-polymerization is slow and the reaction temperature is approximately room temperature, and that has a low viscosity and shows little increase in viscosity.
    Type: Application
    Filed: February 13, 2013
    Publication date: December 4, 2014
    Inventors: Teruo Kamura, Naotsugu Shimoda, Yoshihiko Nishimori, Eiji Koshiishi, Motoharu Takeuchi
  • Patent number: 8901207
    Abstract: It is an object of the present invention to provide an adhesive for electronic components that prevents warpage of electronic components and reflow cracks even in the case of bonding thin electronic components. The present invention relates to an adhesive for electronic components, comprising: an epoxy compound having an aliphatic polyether backbone and a glycidyl ether group; an epoxy group-containing acrylic polymer; an episulfide compound; and a curing agent, wherein the amount of the episulfide compound is 1 parts by weight or more, and less than 30 parts by weight relative to 100 parts by weight of the epoxy compound having an aliphatic polyether backbone and a glycidyl ether group.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: December 2, 2014
    Assignee: Sekisui Chemical Co., Ltd.
    Inventors: Akinobu Hayakawa, Hideaki Ishizawa, Kohei Takeda, Ryohei Masui
  • Patent number: 8895693
    Abstract: An electron-donating polymer including a repeating unit A with a repeating unit represented by Chemical Formula 1 and at least one of repeating units represented by Chemical Formulae 2-4.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: November 25, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yeong Suk Choi, Soo-Ghang Ihn, Bulliard Xavier, Sung Young Yun, Youn Hee Lim, In Sun Park, Yeon Ji Chung
  • Patent number: 8889825
    Abstract: A conjugated polymer containing isoindigo units is disclosed, which has the following structure: P: formula I; wherein, Ar is formula II, formula III or formula IV; R1 is a C8-C20 alkyl; R2 is a C1-C12 alkyl; n is an integer of 2-50. The conjugated polymer containing isoindigo units of this type has good solubility and film-forming property, as well as high thermal stability. HOMO and LUMO energy level are regulated effectively; the absorption range is broaden; and the energy conversion efficiency is greatly improved. A preparation method for the above conjugated polymer containing isoindigo units and use thereof in related fields are also provided.
    Type: Grant
    Filed: November 25, 2010
    Date of Patent: November 18, 2014
    Assignee: Ocean's King Lighting Science & Technology, Co., Ltd.
    Inventors: Mingjie Zhou, Ping Wang, Zhenhua Zhang, Juanjuan Zhang
  • Patent number: 8871897
    Abstract: An amine-containing difluoro benzotriazolyl polymer, preparation method, and use thereof are provided; the polymer has a structure as represented by formula (I), both R1 and R2 are alkyls from C1 to C20, n is an integer from 10 to 50. In the polymer of the present disclosure, because the 1,2,3-benzotriazole solar cell material contains two fluorine atoms, the HOMO energy level is reduced by 0.11 eV, the fluorine-substituted 1,2,3-benzotriazole has two imido groups with strong electron-withdrawing property; the 1,2,3-benzotriazole is a heterocyclic compound with strong electron-withdrawing property, and an alkyl chain can be easily introduced to the N-position of the N—H bond of the benzotriazole; the functional group of the alkyl chain can improve solar energy conversion efficiency, thus solving the low efficiency problem of the solar cell made from the solar cell material.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: October 28, 2014
    Assignee: Ocean's King Lighting Science & Technology Co., Ltd.
    Inventors: Mingjie Zhou, Ping Wang, Zhenhua Zhang, Hui Huang
  • Patent number: 8865861
    Abstract: A Pechmann dye based polymer of formula 1, below, is provided.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: October 21, 2014
    Assignee: Xerox Corporation
    Inventors: Anthony J. Wigglesworth, Yiliang Wu, Ping Liu
  • Patent number: 8859717
    Abstract: Nitrogen-containing fused ring compound having at least one structural unit selected from the group consisting of a structural unit represented by the formula (1-1) and a structural unit represented by the formula (1-2).
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: October 14, 2014
    Assignees: Sumitomo Chemical Company, Limited, Osaka University
    Inventors: Yutaka Ie, Masashi Ueta, Yoshio Aso, Masato Ueda
  • Patent number: 8853346
    Abstract: The invention relates to a curable composition preferable as a raw material for optical materials such as adhesive agents for optical elements, coating agents for optical elements, resist materials, prisms, optical fibers, information recording substrates, filters and plastic lenses, and more specifically to a curable composition characterized by containing (A) an episulfide compound, and (B) a polymerization catalyst comprising a tetraalkylphosphonium dialkylphosphate represented by the following general formula (1): wherein R1 to R6 are the same or different, an alkyl group having 1 to 8 carbon atoms or an alkyl group having a hydroxyl group and 1 to 8 carbon atoms, and linear, branched or cycloaliphatic.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: October 7, 2014
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Hitoshi Okazaki, Motoharu Takeuchi
  • Patent number: 8853347
    Abstract: An organic semiconductor compound may include a structural unit represented by the aforementioned Chemical Formula 1 and an organic thin film and an electronic device may include the organic semiconductor compound.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: October 7, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jeong il Park, Bang Lin Lee, Jong Won Chung
  • Patent number: 8853348
    Abstract: A conjugated polymer containing dithienopyrrole-quinoxaline, the preparation method and uses thereof are provided. The structural formula of the polymer is general formula (I) as follows: wherein, x+y=1, 0<y?0.5, n is an integer and 1<n?100, R1 is selected from C1 to C20 alkyl group, and R2 and R3 are selected from —H, C1 to C20 alkyl group, C1 to C20 alkoxyl group, alkyl-containing phenyl group, alkyl-containing fluorenyl group, or alkyl-containing carbazyl group. The polymer can be used for polymer solar cells and the like.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: October 7, 2014
    Assignee: Ocean's King Lighting Science & Technology Co., Ltd.
    Inventors: Mingjie Zhou, Jie Huang, Erjian Xu
  • Patent number: 8846855
    Abstract: Described herein are compositions including heterocyclic organic compounds based on fused thiophene compounds, polymers based on fused thiophene compounds, and methods for making the monomers and polymer along with uses in thin film-based and other devices.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: September 30, 2014
    Assignee: Corning Incorporated
    Inventors: Mingqian He, Jianfeng Li, James Robert Matthews, Weijun Niu, Arthur L Wallace
  • Patent number: 8841409
    Abstract: The present invention relates to certain polymeric compounds and their use as organic semiconductors in organic and hybrid optical, optoelectronic, and/or electronic devices such as photovoltaic cells, light emitting diodes, light emitting transistors, and field effect transistors. The present compounds can provide improved device performance, for example, as measured by power conversion efficiency, fill factor, open circuit voltage, field-effect mobility, on/off current ratios, and/or air stability when used in photovoltaic cells or transistors. The present compounds can have good solubility in common solvents enabling device fabrication via solution processes.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: September 23, 2014
    Assignee: Polyera Corporation
    Inventors: Antonio Facchetti, Kap-Soo Cheon, Hualong Pan, Martin Drees
  • Patent number: 8841410
    Abstract: It is an object of the present invention to provide a nitrogen-containing condensed ring compound, which can be used as an organic n-type semiconductor having an excellent electron transport property and which is also excellent in terms of solubility in an organic solvent. The nitrogen-containing condensed ring compound of the present invention has a structural unit represented by the following formula (1-1) or formula (1-2): wherein Ar1 represents an aromatic ring; one of Y1 and Y2 represents a single bond, and the other represents —C(R11)(R12)— or —C(?X1)—; one of Y3 and Y4 represents a single bond, and) the other represents —C(R21)(R22)— or —C(?X2)—, and one of Y1 to Y4 represents —C(R11)(R12)— or —C(R21)(R22)—; at least one of W1 and W2 represents —N?; and Z1 and Z2 each represent any one of the groups represented by the formula (i) to the formula (ix).
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: September 23, 2014
    Assignees: Sumitomo Chemical Company, Limited, Osaka University
    Inventors: Yoshio Aso, Yutaka Ie, Masashi Ueta, Masato Ueda
  • Patent number: 8835598
    Abstract: The present invention relates to certain polymeric compounds and their use as organic semiconductors in organic and hybrid optical, optoelectronic, and/or electronic devices such as photovoltaic cells, light emitting diodes, light emitting transistors, and field effect transistors. The present compounds can provide improved device performance, for example, as measured by power conversion efficiency, fill factor, open circuit voltage, field-effect mobility, on/off current ratios, and/or air stability when used in photovoltaic cells or transistors. The present compounds can have good solubility in common solvents enabling device fabrication via solution processes.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: September 16, 2014
    Assignee: Polyera Corporation
    Inventors: Hualong Pan, Martin Drees, Antonio Facchetti
  • Publication number: 20140235818
    Abstract: Process for the preparation of a polymer containing benzohetero[1,3]diazole. units which comprises reacting at least one disubstituted benzohetero[1,3]diazole compound with at least one heteroaryl compound. Said polymer can be advantageously used in the construction of photovoltaic devices such as, for example, photovoltaic cells, photovoltaic modules, solar cells, solar modules, on both a rigid and flexible support. Furthermore, said polymer can be advantageously used in the construction of Organic Thin Film Transistors (OTFTs), or of Organic Field Effect Transistors (OFETs).
    Type: Application
    Filed: August 1, 2012
    Publication date: August 21, 2014
    Applicant: Eni S.P.A.
    Inventors: Giuliana Schimperna, Gabriele Bianchi
  • Patent number: 8802812
    Abstract: A photovoltaic polymer material, preparation method and use thereof are provided. Said photovoltaic polymer material has the following formula (I). The photovoltaic polymer material has the thiophene-phenylene-thiophene (TPT) derivative as the basic structure unit, and by the introduction of D1 and D2 structures to modify the TPT, and the photovoltaic polymer material has the characters of higher hole mobility, narrower band gap and broader absorption region.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: August 12, 2014
    Assignee: Ocean's King Lighting Science & Technology Co., Ltd.
    Inventors: Mingjie Zhou, Ping Wang, Zhenhua Zhang, Lusheng Liang
  • Patent number: 8772443
    Abstract: The present invention is directed to polymeric materials including a copolymer of at least a first and second monomer that have desirable electrical and optical properties, such as a low band gap and near infrared (NIR) absorption, respectively. More specifically, the present invention is directed to polymeric materials with charge neutrality that display increased solubility in aqueous media while retaining their electrical and optical properties. The polymeric materials in accordance with the present invention can be modified with any desired functional group to tailor the polymer materials for a specific application. Also described are methods of making the polymeric materials in accordance with the present invention.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: July 8, 2014
    Assignees: Hitachi Chemical Co., Ltd., Hitachi Chemical Research Center
    Inventor: Cuihua Xue
  • Patent number: 8742062
    Abstract: A polymer comprising sulfone groups, ketone groups and optionally substituted polyarylene groups, wherein the number of moles of sulfone groups over the number of moles of ketone groups ratio is greater than 1. A process for making such polymer, a composition comprising such polymer, and articles made therefrom.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: June 3, 2014
    Assignee: Solvay Advanced Polymers, L.L.C.
    Inventors: Atul Bhatnagar, William W. Looney, Chantal Louis
  • Patent number: 8742063
    Abstract: A non-leaching mediator may include a polymer having a polymeric backbone, and a plurality of phenothiazine groups bonded to the polymeric backbone. The plurality of phenothiazine groups may include at least one of a phenothiazine group having the general formula (IV): and salts thereof, where n is about 9 and “R” represents the polymeric backbone to which the phenothiazine group is bonded, and a phenothiazine group having the general formula (V): and salts thereof, where n is about 9 and “R” represents the polymeric backbone to which the phenothiazine group is bonded.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: June 3, 2014
    Assignee: Bayer HealthCare LLC
    Inventors: Jiangfeng Fei, William Chiang, Frank Kerrigan, Stuart Green, Craig Robson, Howard Easterfield
  • Patent number: 8735536
    Abstract: Disclosed are new semiconducting polymers. The polymers disclosed herein can exhibit high carrier mobility and/or efficient light absorption/emission characteristics, and can possess certain processing advantages such as solution-processability and/or good stability at ambient conditions.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: May 27, 2014
    Assignee: Polyera Corporation
    Inventors: Jordan Quinn, Hualong Pan, Antonio Facchetti
  • Patent number: 8729221
    Abstract: Embodiments of the invention include polymers comprising a regioregular conjugated main chain section having an enantiopure or enantioenriched chiral side chain, as well as methods and materials for producing such polymers. Illustrative methods include regioselectively preparing a monomer that includes an enantiopure or enantioenriched chiral side group, and then reacting these monomers to produce a polymer that comprises a regioregular conjugated main chain section having an enantiopure or enantioenriched chiral side chains. In illustrative embodiments of the invention, the regioregular conjugated main chain section can contain a repeat unit that includes a dithiophene and a pyridine.
    Type: Grant
    Filed: April 24, 2013
    Date of Patent: May 20, 2014
    Assignee: The Regents of the University of California
    Inventors: Guillermo C. Bazan, Lei Ying, Peter Zalar, Thuc-Quyen Nguyen
  • Patent number: 8729220
    Abstract: An organic semiconductor material, layer or component, comprising a copolymer of the formula wherein v and w each generally are from the range 4 to 1000; A is a benzodithiophene repeating unit of the formula II or III and COM is selected from certain arylene-type repeating units, and combinations thereof. The present copolymers, as well as composites thereof, may be used as semiconductor in the preparation of electronic devices such as photodiodes, organic field effect transistors and especially organic photovoltaic devices such as solar cells.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: May 20, 2014
    Assignee: BASF SE
    Inventors: Mathias Dueggeli, Ralph Reiger, Klaus Muellen, Natalia Chebotareva, Dirk Beckmann
  • Publication number: 20140121293
    Abstract: Disclosed is a composition comprising (A) at least one compound selected from the group consisting of an ether compound having two or more ether groups, a trivalent phosphorus compound, and a ketone compound, (B) a boron trihalide, and (C) an episulfide compound.
    Type: Application
    Filed: July 18, 2012
    Publication date: May 1, 2014
    Applicant: ASAHI KASEI CHEMICALS CORPORATION
    Inventors: Akitake Nakamura, Takeshi Endo
  • Patent number: 8710177
    Abstract: There is provided a conductive polymer having a high electrical conductivity and an excellent heat resistance. Using it as a solid electrolyte, there is provided a solid electrolyte capacitor having a low ESR and a large capacitance with good reliability under a hot condition. A monomer mixture of 2,3-dihydro-thieno[3,4-b][1,4]dioxin and 2-alkyl-2,3-dihydro-thieno[3,4-b][1,4]dioxin at a mixture ratio of 0.05:1 to 1:0.1 by the molar ratio is polymerized in the presence of an organic sulfonic acid, and the organic sulfonic acid is included as a dopant. As the 2-alkyl-2,3-dihydro-thieno[3,4-b][1,4]dioxin, the alkyl portion can be methyl, ethyl, propyl or butyl.
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: April 29, 2014
    Assignee: Tayca Corporation
    Inventors: Ryosuke Sugihara, Kazuto Fujihara, Takashi Ono
  • Publication number: 20140090711
    Abstract: The present invention relates to solar cells and discloses a difluoro benzotriazolyl solar cell material and preparation method and use thereof. The solar cell material is represented by formula (I), wherein both R1 and R2, are C1 to C20 alkyl, and n is an integer from 10 to 50. In the difluoro benzotriazolyl solar cell material, since the 1,2,3-benzotriazole solar cell material contains two fluorine atoms, the HOMO energy level is reduced by 0.11 eV, while the fluorine-substituted 1,2,3-benzotriazole has two imido groups with electron-withdrawing ability; the fluorine-substituted 1,2,3-benzotriazole is a heterocyclic compound with strong electron-withdrawing ability, and an alkyl chain can be easily introduced to the N-position of the N—H bond of the benzotriazole. The functional group of the alkyl chain can improve the solar energy conversion efficiency, thus solving the low efficiency problem of solar cells made of the solar cell material.
    Type: Application
    Filed: September 22, 2011
    Publication date: April 3, 2014
    Applicant: OCEAN'S KING LIGHTING SCIECNE & TECHNOLOGY CO., LTD.
    Inventors: Mingjie Zhou, Ping Wang, Zhenhua Zhang, Hui Huang
  • Patent number: 8685566
    Abstract: A process to induce polymerization of an organic electronically conductive polymer in the presence of a partially delithiated alkali metal phosphate which acts as the polymerization initiator.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: April 1, 2014
    Inventors: Steen Brian Schougaard, Michel Gauthier, Christian Kuss, David Lepage, Guoxian Liang, Christophe Michot
  • Patent number: 8663505
    Abstract: The present invention relates to novel processes for preparing an aqueous or nonaqueous dispersion or solution comprising at least one conductive polymer and at least one polyanion, characterized in that the polymerization is performed at a pressure below atmospheric pressure, to aqueous or nonaqueous dispersions or solutions prepared by this process and to the use thereof.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: March 4, 2014
    Assignee: Heraeus Precious Metals GmbH & Co. KG
    Inventors: Wilfried Loevenich, Rudolf Hill, Andreas Elschner, Friedrich Jonas, Udo Guntermann
  • Patent number: 8653227
    Abstract: A process for preparing a regioregular homopolymer or copolymer of 3-substituted thiophene, 3-substituted selenophene, 3-substituted thiazol or 3-substituted selenazol by a) reacting a 3-substituted 2,5-dihalothiophene, 2,5-dihaloselenophene, 2,5-dihalothiazol or 2,5-dihaloselenazol with reactive zinc, magnesium and/or an organomagnesium halide to give an organozinc or organomagnesium intermediate containing one halozinc or one halomagnesium group, b) bringing the organozinc or the organomagnesium intermediate into contact with a Ni(II), Ni(O), Pd(II) or Pd(0) catalyst to initiate the polymerization reaction, and c) polymerizing the organozinc or the organomagnesium intermediate to give a regioregular head-to-tail homopolymer or copolymer of 3-substituted thiophene, 3-substituted selenophene, 3-substituted thiazol or 3-substituted selenazol characterized in that the polymerization reaction is carried out at a temperature rising from a lower temperature T1 to a higher temperature T2 during a time t1, wherein T
    Type: Grant
    Filed: June 14, 2010
    Date of Patent: February 18, 2014
    Assignees: BASF SE, Rieke Metals, Inc.
    Inventors: Marcel Kastler, Silke Annika Koehler
  • Patent number: 8642720
    Abstract: The present invention provides a photoelectric conversion element exhibiting excellent photoelectric conversion efficiency and excellent stability in photoelectric conversion function; a method of manufacturing the photoelectric conversion element; and a solar cell thereof in order to solve the current problems.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: February 4, 2014
    Assignee: Konica Minolta Business Technologies, Inc.
    Inventors: Kenichi Onaka, Kazuya Isobe, Kazukumi Nishimura
  • Patent number: 8642719
    Abstract: A method of making a polymer, including: heating, for a sufficient time and temperature, to polymerize a homogenous mixture including of at least one polymerizable monomer, and a solvent mixture comprised of at least a first liquid and a second liquid, the first liquid being a stronger solvent for the product polymer than the weaker second liquid, and the polymer product precipitates from the homogenous mixture during the heating, as defined herein. Also disclosed are semiconducting articles and printable inks prepared with the resulting narrow polydispersity polymers, as defined herein.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: February 4, 2014
    Assignee: Corning Incorporated
    Inventors: Mingqian He, James Robert Matthews, Michael Lesley Sorensen
  • Patent number: 8641926
    Abstract: Devices are provided comprising conductive or semiconductive layers comprising compositions comprising aqueous dispersions of polythiophenes having homopolymers or co-polymers of Formula I(a) or Formula I(b) and at least one colloid-forming polymeric acid. Methods of making such compositions and using them in organic electronic devices are further provided.
    Type: Grant
    Filed: May 13, 2008
    Date of Patent: February 4, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventors: Che Hsiung Hsu, Yong Cao, Sunghan Kim, Daniel David Lecloux, Huawen Li, Charles Douglas Macpherson, Chi Zhang, Hjalti Skulason
  • Publication number: 20130324683
    Abstract: The present invention relates to apparatuses and processes for manufacturing polymers of thiophene, benzothiophene, and their alkylated derivatives. A process for manufacturing polymers that includes isolating a sulfur-containing heterocyclic hydrocarbon from cracked naphtha and reacting the sulfur-containing heterocyclic hydrocarbon with a super acid to produce a polymer.
    Type: Application
    Filed: May 24, 2013
    Publication date: December 5, 2013
    Inventor: Abdullah R. Al-Malki
  • Patent number: 8575293
    Abstract: According to the present invention, a resin compound for optical material, comprising (a) an episulfide compound represented by a specific structural formula, (b) a xylylenedithiol compound and (c) a xylylenediisocyanate compound can be provided. In a preferable embodiment of the present invention, a resin compound for optical material having superb optical properties, a high density and a high thermal resistance can be provided. Also according to the present invention, an optical material obtained by curing the above-described resin compound can be provided.
    Type: Grant
    Filed: September 11, 2007
    Date of Patent: November 5, 2013
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Hiroshi Horikoshi, Motoharu Takeuchi
  • Patent number: 8568616
    Abstract: There are provided electrically conducting polymer compositions comprising an electrectically conductive polymer or copolymer and an organic solvent wettable fluorinated acid polymer. Electrically conductive polymer materials are derived from thiophene, pyrrole, aniline and polycyclic heteroaromatic precursor monomers. Non-conductive polymers derived from alkenyl, alkynyl, arylene, and heteroarylene precursor monomers. The organic-solvent wettable fluorinated acid polymer is fluorinated or highly fluorinated and may be colloid-forming. Acidic groups include carboxylic acid groups, sulfonic acid groups, sulfonimide groups, phosphoric acid groups, phosphonic acid groups, and combinations thereof. The compositions can be used in organic electronic devices.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: October 29, 2013
    Assignee: E I du Pont de Nemours and Company
    Inventors: Che-Hsiung Hsu, Christopher P. Junk, Frank P. Uckert, Mark F. Teasley, Andrew Edward Feiring, Charles J. Dubois, Viacheslav A. Petrov, Natalie Daoud, Amy Qi Han
  • Patent number: 8562867
    Abstract: The present invention provides polymeric compositions that can be used to modify charge transport across a nanocrystal surface or within a nanocrystal-containing matrix, as well as methods for making and using the novel compositions.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: October 22, 2013
    Assignee: Nanosys, Inc.
    Inventors: Jeffery A. Whiteford, Mihai A. Buretea, Linh Hong Nguyen, Erik Scher
  • Patent number: 8541541
    Abstract: The invention relates to the synthesis of polythiophene (PAT) copolymers, and their use as conductive polymers in final applications. Specifically, copolymers of PAT with (meth)acrylates, or amides are useful as additives in blends of different polymer matrices in many commercial applications.
    Type: Grant
    Filed: March 3, 2006
    Date of Patent: September 24, 2013
    Assignee: Arkema Inc.
    Inventors: Gary S. Silverman, Thomas P. McAndrew, Scott C. Schmidt, David A. Mountz, Mark A. Aubart, Nicholas J. Rodak