From Inorganic Sulfur-containing Reactant Patents (Class 528/381)
  • Patent number: 11407861
    Abstract: A method for forming a polyarylene sulfide with a relatively low content of volatile malodorous compounds is provided. More particularly, such low compound levels may be achieved by selectively controlling the manner in which the polyarylene sulfide is washed after it is formed.
    Type: Grant
    Filed: May 20, 2020
    Date of Patent: August 9, 2022
    Assignee: Ticona LLC
    Inventor: Hendrich A. Chiong
  • Patent number: 11390714
    Abstract: The present invention relates to a polyarylene sulfide which has more improved compatibility with other polymer materials or fillers, and a method for preparing the same. The polyarylene sulfide is characterized in that at least part of end groups of the main chain of the polyarylene sulfide is hydroxyl group (—OH), the polyarylene sulfide contains iodine bonded to its main chain and free iodine, and the content of iodine bonded to the main chain and free iodine is 10 to 10,000 ppmw.
    Type: Grant
    Filed: September 23, 2020
    Date of Patent: July 19, 2022
    Assignee: HDC POLYALL CO., LTD.
    Inventors: Se-Ho Lee, Sung-Gi Kim
  • Patent number: 11155682
    Abstract: The continuous dehydration method for a raw material mixture to be used in the production of PAS includes supply and dehydration of the raw material mixture and extraction of the raw material mixture having a water content reduced by the dehydration, the supply, dehydration and extraction being carried out concurrently in parallel. A dehydration efficiency index determined according to Equation (1) is not less than 0.3. In Equation (1), the dehydration time is a period of time until a moisture content per mole of the sulfur source in the raw material mixture having a reduced water content reaches not greater than 1.7 mol, including moisture consumed by the hydrolysis of the organic polar solvent.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: October 26, 2021
    Assignee: KUREHA CORPORATION
    Inventors: Michihisa Miyahara, Kenji Suzuki, Hiroshi Sakabe
  • Patent number: 10822457
    Abstract: The present invention relates to a polyarylene sulfide which has more improved compatibility with other polymer materials or fillers, and a method for preparing the same. The polyarylene sulfide is characterized in that at least part of end groups of the main chain of the polyarylene sulfide is hydroxyl group (—OH), the polyarylene sulfide contains iodine bonded to its main chain and free iodine, and the content of iodine bonded to the main chain and free iodine is 10 to 10,000 ppmw.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: November 3, 2020
    Assignee: SK CHEMICALS CO., LTD.
    Inventors: Se-Ho Lee, Sung-Gi Kim
  • Patent number: 9567440
    Abstract: The present invention discloses a fiber-grade polyphenylene sulfide resin synthesis method, taking sodium bisulfide and p-dichlorobenzene as raw materials, N-methyl pyrrolidone as the solvent and C5-C6 fatty acid salt formed through dehydration to C5-C6 fatty acid and sodium hydroxide as the polymerization additive for synthesis through polymerization. White polyphenylene sulfide resin is obtained through acidification and washing of reaction slurry. In view of the fact that MFR is below 125 g/10 min, weight-average molecular weight as measured by GPC is over 4.2×104, and whiteness is over 90, it can satisfy requirements for fiber polyphenylene sulfide resin. C5-C6 fatty acid salt according to the method of the present invention has a higher solubility in NMP, which can better promote polymerization. It is to be fully diverted into the filtrate after filter prior to conversion into free fatty acid again through acidification with hydrochloric acid.
    Type: Grant
    Filed: October 29, 2013
    Date of Patent: February 14, 2017
    Assignees: ZHEJIANG NHU SPECIAL MATERIALS CO., LTD., ZHEJIANG UNIVERSITY, SHANGYU NHU BIOLOGICAL CHEMICAL CO., LTD., ZHEJIANG NHU COMPANY LTD.
    Inventors: Zhirong Chen, Woyuan Li, Haoran Li, Ming Lian, Hong Yin, Guiyang Zhou, Xinfeng Zheng
  • Patent number: 9422401
    Abstract: The various embodiments of the invention relate to recyclable polyarylene sulfide that may exhibit and maintain excellent mechanical properties, particularly does not exhibit decrease in melt viscosity when it is molten, and thus exhibit little deterioration of mechanical properties, and a method for preparing the dame. The polyarylene sulfide has initial melt viscosity measured at 300° C. of 300 to 6000 poise, and melt viscosity after heat treated and molten at 300° C., equal to or greater than the initial melt viscosity.
    Type: Grant
    Filed: February 3, 2015
    Date of Patent: August 23, 2016
    Assignee: SK Chemicals Co., Ltd.
    Inventors: Sung-Gi Kim, Il-Hoon Cha
  • Patent number: 9255350
    Abstract: Disclosed are a branched poly(arylene sulfide) resin having a melt viscosity measured at a temperature of 310° C. and a shear rate of 1200 sec?1 of 65 to 450 Pa·s, a maximum draft ratio of 6500 or more, and a degree of whiteness of 65 or more; moreover, a branched poly(arylene sulfide) resin preferably having a dependence of melt viscosity on shear rate of 1.4 to 2.6 or a melt stability of 0.85 to 1.30; and a method for producing a branched poly(arylene sulfide) resin, wherein a sulfur source and a dihaloaromatic compound are caused to undergo a polymerization reaction at a temperature of 170 to 290° C. in the organic amide solvent in the presence of a polyhaloaromatic compound in an amount of 0.0001 to 0.01 mol per mol of the fed sulfur source.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: February 9, 2016
    Assignee: KUREHA CORPORATION
    Inventors: Shingo Taniguchi, Hiroshi Sakabe, Yui Yoshida, Kazuhiko Sunagawa
  • Patent number: 8859720
    Abstract: The present invention relates to a method for preparing polyarylene sulfide, in which the polyarylene sulfide is prepared by a polymerization reaction of reactants including a diiodo aromatic compound and a sulfur compound, the method including: further adding 0.01 to 10.0 wt. % of diphenyl disulfide with respect to the weight of the polyarylene sulfide to the reactants to form the polyarylene sulfide having a melting point of 265 to 320° C. The diphenyl disulfide included in the reactants according to the present invention costs far less than other conventional polymerization inhibitors to dramatically lower the production cost, and the polyarylene sulfide prepared using the diphenyl disulfide exhibits low iodine content and very excellence in thermal stability.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: October 14, 2014
    Assignee: SK Chemicals Co., Ltd.
    Inventors: Yong-Jun Shin, Jae-Bong Lim, Joon-Sang Cho, Il-Hoon Cha, Sung-Gi Kim
  • Patent number: 8835595
    Abstract: A polyamide compound containing: from 25 to 50 mol % of a diamine unit, which contains an aromatic diamine unit represented by the following formula (I), in an amount of 50 mol % or more; from 25 to 50 mol % of a dicarboxylic acid unit, which contains a linear aliphatic dicarboxylic acid unit represented by the following formula (II-1) and/or an aromatic dicarboxylic acid unit represented by the following formula (II-2), in an amount in total of 50 mol % or more; and from 0.1 to 50 mol % of a constitutional unit represented by the following formula (III): wherein n represents an integer of from 2 to 18, Ar represents an arylene group, and R represents a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group.
    Type: Grant
    Filed: December 24, 2010
    Date of Patent: September 16, 2014
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Takafumi Oda, Ryoji Otaki, Shota Arakawa, Tsuneaki Masuda, Hiroyuki Matsushita, Ryuji Hasemi
  • Patent number: 8759478
    Abstract: A method for preparing polyarylene sulfide having reduced iodine content and excellent thermal stability is described. The method includes reacting a composition comprising diiodide aromatic compounds, sulfur compounds, and a polymerization terminator. The preparation method may effectively reduce iodine content of polyarylene sulfide to prevent corrosion of post processing equipment, improve properties of polyarylene sulfide such as thermal stability, and the like, and thus, it may be usefully applied in the industrial field relating to preparation of polyarylene sulfide.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: June 24, 2014
    Assignee: SK Chemicals Co., Ltd.
    Inventors: Yong-Jun Shin, Il-Hoon Cha, Jae-Bong Lim, Sung-Gi Kim
  • Patent number: 8586694
    Abstract: The polymerization catalyst for a polythiourethane-based optical material of the present invention includes a sulfonate represented by the following general formula (1). Furthermore, in the formula, R1, R2, R3 and R4 each independently represent an alkyl group having 1 to 18 carbon atoms, R1, R2, R3 and R4 may be bonded to each other to form a ring. R5 represents a hydrogen atom or an alkyl group having 1 to 18 carbon atoms, and X represents a nitrogen atom or a phosphorus atom.
    Type: Grant
    Filed: February 4, 2008
    Date of Patent: November 19, 2013
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Masanori Iwazumi, Nobuo Kawato, Mamoru Tanaka, Hidetoshi Hayashi, Seiichi Kobayashi
  • Patent number: 8575249
    Abstract: There is provided a polygermane compound forming a film having a high refractive index and thermal stability, and containing a sulfur atom-containing organic group as a group bonded to a germanium atom. A polygermane compound comprising a sulfur atom-containing organic group as a group bonded to a germanium atom, in which the sulfur atom-containing organic group is a group of Formula [1]: -L-Z??[1] where L is a single bond, a C1-6 alkylene group, or a C4-20 arylene group optionally substituted with a C1-6 alkyl group; and Z is a C1-20 sulfide group, a C1-14 cyclic sulfide group optionally substituted with a C1-6 alkyl group, a C2-20 alkyl group containing a sulfide bond, or a C5-20 aralkyl group containing a sulfide bond, with a proviso that when L is a single bond, Z is not a C1-20 sulfide group.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: November 5, 2013
    Assignees: Nissan Chemical Industries, Ltd., Tohoku University
    Inventors: Takehiro Nagasawa, Akira Watanabe, Tokuji Miyashita
  • Patent number: 8546518
    Abstract: A method is provided for producing a polyarylene sulfide by reacting a sulfidizing agent with a dihalogenated aromatic compound in an organic polar solvent in the presence of an alkali metal hydroxide, the method includes <Step 1>: carrying out the reaction in such a manner that the polymerization time in a temperature range of 230° C. to less than 245° C. (T1a) is not less than 30 minutes and less than 3.5 hours and that the conversion ratio of the dihalogenated aromatic compound at the end of the step is 70 to 98 mol. % and <Step 2>: carrying out the reaction in such a manner that the polymerization time in a temperature range of 245° C. to less than 280° C. (T2) is not less than 5 minutes and less than 1 hour.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: October 1, 2013
    Assignee: Toray Industries, Inc.
    Inventors: Takeshi Unohara, Hiroyuki Isago, Toru Nishimura, Masahiro Inohara
  • Patent number: 8410241
    Abstract: A process for the preparation of a polymerizable unit for production of a hole transporting polymer for use in an optical device, which process comprises reacting in the presence of S to form wherein each R is the same or different and is independently H or a substituent group; n is O or an integer from 1 to 100; Ar and Ar? are the same or different and are each aromatic or heteroaromatic groups which are substituted or unsubstituted; Y is a direct bond, a light emissive moiety, a hole transporting moiety or an electron transporting moiety; and X is a polymerizable group.
    Type: Grant
    Filed: December 23, 2005
    Date of Patent: April 2, 2013
    Assignee: Cambridge Display Technology Limited
    Inventor: Caroline Towns
  • Patent number: 8394920
    Abstract: According to a preferable embodiment of the present invention, a composition for a resin comprising an inorganic compound having a sulfur atom and/or a selenium atom, an episulfide compound, and a mercaptodisulfide compound can be provided. According to another preferable embodiment of the present invention, a composition for a resin having the viscosity thereof decreased to facilitate a cast polymerization operation and thus to improve the tonality of the obtained optical material can be provided. According to still another preferable embodiment of the present invention, an optical material obtained by curing the above-described composition for a resin and having a high refractive index can be provided.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: March 12, 2013
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Motoharu Takeuchi, Takashi Aoki
  • Publication number: 20120322971
    Abstract: This disclosure relates to recyclable polyarylene sulfide that may exhibit and maintain excellent mechanical properties, particularly does not exhibit decrease in melt viscosity when it is molten, and thus, exhibit little deterioration of mechanical properties, and a method for preparing the same.
    Type: Application
    Filed: February 28, 2011
    Publication date: December 20, 2012
    Applicant: SK CHEMICALS CO., LTD.
    Inventors: Sung-Gi Kim, Il-Hoon Cha
  • Publication number: 20120302726
    Abstract: This disclosure relates to a method for preparing polyarylene sulfide having reduced iodine content while having excellent thermal stability, specifically to a method comprising polymerization reacting a composition comprising diiodide aromatic compounds, sulfur compounds, and a polymerization terminator. The preparation method may effectively reduce iodine content of polyarylene sulfide to prevent corrosion of post processing equipment, improve properties of polyarylene sulfide such as thermal stability, and the like, and thus, it may be usefully applied in the industrial field relating to preparation of polyarylene sulfide.
    Type: Application
    Filed: January 31, 2011
    Publication date: November 29, 2012
    Applicant: SK Chemicals Co., Ltd.
    Inventors: Yong-Jun Shin, II-Hoon Cha, Jae-Bong Lim, Sung-Gi Kim
  • Patent number: 8183336
    Abstract: In a process for producing a poly(arylene sulfide) by polymerizing a sulfur source and a dihalo-aromatic compound in the presence of an alkali metal hydroxide in an organic amide solvent, the production process comprises washing a polymer obtained by the polymerization with a hydrophilic organic solvent containing water in a proportion of 1 to 30% by weight, thereby collecting a purified polymer, the content of nitrogen contained in an extract extracted by a mixed solvent containing 40% by weight of acetonitrile and 60% by weight of water from the purified polymer is at most 50 ppm on the basis of the weight of the polymer, and a poly(arylene sulfide), the content of nitrogen contained in an extract extracted by a mixed solvent containing 40% by weight of acetonitrile and 60% by weight of water from the purified polymer is at most 50 ppm on the basis of the weight of the polymer.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: May 22, 2012
    Assignee: Kureha Corporation
    Inventors: Hiroyuki Sato, Koichi Suzuki, Hirohito Kawama
  • Patent number: 8138302
    Abstract: In a production process of a poly(arylene sulfide), a mixture containing an organic amide solvent, an alkali metal hydrosulfide and an alkali metal hydroxide in a proportion of 0.95 to 1.05 mol per mol of the alkali metal hydrosulfide is heated and dehydrated in a dehydration step. After the dehydration step, as needed, an alkali metal hydroxide and water are added to control the total number of moles of the alkali metal hydroxide, and the number of moles of water so as to amount to 1.00 to 1.09 per mol of a sulfur source including the alkali metal hydrosulfide existing in the system and to 0.5 to 2.0 per mol of the charged sulfur source, respectively. A polymerization step is conducted by a two-stage process.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: March 20, 2012
    Assignee: Kureha Corporation
    Inventors: Hiroyuki Sato, Tatsuya Kawasaki, Yasushi Nakazawa
  • Publication number: 20110172361
    Abstract: Processes for synthesizing polytrimethylene ether glycol and copolymers thereof are provided. The processes include polycondensing diols in the presence of carbon black, and may be used to produce polymers having molecular weights from about 250 to about 5000.
    Type: Application
    Filed: July 16, 2010
    Publication date: July 14, 2011
    Applicant: E.I. DU PONT DE NEMOURS AND COMPANY
    Inventors: Edward Budi Muliawan, Tuyu Xie
  • Publication number: 20110049432
    Abstract: Disclosed is a conductive polymer, which is doped with an acid and has a weight-average molecular weight of 5,000 or less when provided in the form of a base type, with a solubility of 3% or more in a polar organic solvent. Because the conductive polymer is soluble in various polar organic solvents, the solvent may be freely selected depending on the end use of the conductive polymer and thus the conductive polymer has a very wide range of industrial applications. A method of preparing the conductive polymer is also provided, which is simple and generates a small amount of wastewater and thus reduces the preparation cost and is environmentally friendly.
    Type: Application
    Filed: January 16, 2009
    Publication date: March 3, 2011
    Inventors: Sung-Joo Lee, Seung-Koo Cho, Hong-Sup Lee, Seung-Gyu Kim
  • Patent number: 7847055
    Abstract: A polyphenylene sulfide resin treated by thermal oxidation has a generated gas amount of 0.23 wt % or less when the resin is heated and melted in vacuum at 320° C. for 2 hours; a residual amount of 3.0 wt % or less as a residue when the resin is dissolved in an amount corresponding to 20 times the weight of the resin, of 1-chloronaphthalene at 250° C. for 5 minutes and, as the 1-chloronaphthalene solution, pressure-filtered in a still hot state by a PTFE membrane filter with a pore size of 1 ?m or less; and a melt flow rate (measured at a temperature of 315.5° C. and at a load of 5000 g according to ASTM D-1238-70) of more than 100 g/10 min to 500 g/10 min.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: December 7, 2010
    Assignee: Toray Industries, Inc.
    Inventors: Kei Saitoh, Atsushi Ishio, Takeshi Unohara
  • Publication number: 20100204436
    Abstract: Processes for preparing relatively high molecular weight poly(trimethylene ether)glycol employing a cocatalyst system are provided.
    Type: Application
    Filed: February 9, 2009
    Publication date: August 12, 2010
    Applicant: E. I. DU PONT DE NEMOURS AND COMPANY
    Inventors: Yanhui Niu, Zuohong Yin
  • Patent number: 7754848
    Abstract: In a process for producing a poly(arylene sulfide) by polymerizing a sulfur source and a dihalo-aromatic compound in the presence of an alkali metal hydroxide in an organic amide solvent, the production process comprises washing a polymer obtained by the polymerization with a hydrophilic organic solvent containing water in a proportion of 1 to 30% by weight, thereby collecting a purified polymer, the content of nitrogen contained in an extract extracted by a mixed solvent containing 40% by weight of acetonitrile and 60% by weight of water from the purified polymer is at most 50 ppm on the basis of the weight of the polymer, and a poly(arylene sulfide), the content of nitrogen contained in an extract extracted by a mixed solvent containing 40% by weight of acetonitrile and 60% by weight of water from the purified polymer is at most 50 ppm on the basis of the weight of the polymer.
    Type: Grant
    Filed: December 20, 2004
    Date of Patent: July 13, 2010
    Assignee: Kureha Corporation
    Inventors: Hiroyuki Sato, Koichi Suzuki, Hirohito Kawama
  • Patent number: 7691959
    Abstract: The present invention generally relates to a moisture curable composition in the form of a hot melt. The inventive compositions contain hydrolyzable silyl groups connected to a polymer which is capable of crosslinking when exposed to moisture.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: April 6, 2010
    Assignee: Henkel Corporation
    Inventors: Thomas Fay-Oy Lim, David Dworak, Jessica Fedorchick, Hsien-Kun Chu
  • Publication number: 20090225499
    Abstract: A conductive polymer having high conductivity and a solid electrolytic capacitor having low ESR are provided. A conductive polymer is synthesized using as a monomer a compound of a dimer to a decamer in which 3-alkyl five-membered heterocyclic rings are bonded at positions 2 and 5, being sterically controlled. Further, this conductive polymer is used as the solid electrolyte of a solid electrolytic capacitor.
    Type: Application
    Filed: January 27, 2009
    Publication date: September 10, 2009
    Applicant: NEC TOKIN CORPORATION
    Inventors: Naoki TAKAHASHI, Ryuta KOBAYAKAWA, Tomoki NOBUTA, Yasuhisa SUGAWARA, Satoshi SUZUKI
  • Patent number: 7569656
    Abstract: There is provided a method for producing a poly(arylene sulfide) in which a dihalo-aromatic compound and an alkali metal halide are polymerized by heating in an organic amide solvent, wherein the cooling time for the polymerization reaction system is significantly reduced. After the polymerization process, there is provided a cooling process for cooling the polymerization reaction system comprising a liquid phase containing the product poly (arylene sulfide) and the organic amide solvent and a vapor phase containing a gas component (A); and in the cooling process, the gas component (A) in the vapor phase is cooled while the content of a low boiling gas component (A1), which has a lower boiling point than water and exists in the gas component (A), is reduced in the vapor phase of the polymerization system.
    Type: Grant
    Filed: September 27, 2002
    Date of Patent: August 4, 2009
    Assignee: Kureha Corporation
    Inventors: Masaru Kagoshima, Mitsuhiro Matsuzaki
  • Publication number: 20090099301
    Abstract: The present invention relates to crosslinked polymeric nanospheres having a star-shaped structure of the core-branch type, in which the branches are of a hydrophilic nature and the core is of a polymeric, crosslinked, hydrophobic nature and forms the imprint of all or at least part of a target molecule and to a process for preparing them.
    Type: Application
    Filed: March 22, 2007
    Publication date: April 16, 2009
    Applicant: POLYINTELL
    Inventors: Kaynoush Naraghi, Sami Bayoudh, Michel Arotcarena
  • Patent number: 7517946
    Abstract: In the dehydration step, a mixture comprising an organic amide solvent and a sulfur source is heated, vapor volatilized is guided to a distillation column, a fraction comprising the organic amide solvent as a principal component is refluxed into a reaction vessel, a fraction comprising water and hydrogen sulfide is cooled to discharge hydrogen sulfide that is not condensed by the cooling and reflux a part of water condensed into the distillation column, the remaining water is discharged, a relational expression between the total amount of water of an amount of water refluxed and an amount of water discharged without being refluxed, and an amount of hydrogen sulfide discharged from the reaction vessel is determined in advance, and an amount of hydrogen sulfide discharged from the reaction vessel is calculated out from a measured value of the total amount of water on the basis of the relational expression to control a charged molar ratio of the sulfur source to a dihalo-aromatic compound.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: April 14, 2009
    Assignee: Kureha Corporation
    Inventors: Hiroyuki Sato, Tatsuya Kawasaki, Yasushi Nakazawa
  • Publication number: 20080275203
    Abstract: The present invention relates to resin compositions for radical curing comprising a component (I) containing reactive carbon-carbon unsaturations and a component (II) containing XH-groups, with X not being C or O, which resin compositions (a) are substantially free of photoinitiators; (b.) have an average number of reactive carbon-carbon unsaturations of component (I) higher than 2; (c) have an average number of XH-groups of component (II) equal to or higher than 2, with at least one of the XH-groups of the XH-component being a thiol group, and; (d) whereby at least one of the average numbers of (b) and (c) is higher than 2; (e) and at most 5 mol % of the reactive unsaturations is capable of undergoing homopolymerisation; (f) respectively is present in the form of a mono-ene functional alkylene; and (g) the molar ratio of the XH-groups and of the reactive unsaturations is in the range of from 4:1 to 1:4; with the proviso that the RU component is not tris-(norborn-5-ene-2-carboxy) propoxypropane.
    Type: Application
    Filed: April 6, 2005
    Publication date: November 6, 2008
    Inventors: Johan Franz Gradus Antonius Jansen, Michael Alphonsus Cornelis Johannes Van Dijck, Marco Marcus Matheus Driessen
  • Publication number: 20080171835
    Abstract: A sulfonation method to treat a polymer substrate to provide a hydrophilic layer with an improvement in at least one of anti-fogging, anti-static, wettability, lubricity, anti-microbial and/or transparency properties. The articles formed thereby find excellent application in a wide range of areas.
    Type: Application
    Filed: May 14, 2007
    Publication date: July 17, 2008
    Applicant: Sulfo Technologies, LLC
    Inventors: Elena Sebe, Dwayne Back, Charles H. Winter
  • Publication number: 20080139782
    Abstract: A polyphenylene sulfide resin treated by thermal oxidation has a generated gas amount of 0.23 wt % or less when the resin is heated and melted in vacuum at 320° C. for 2 hours; a residual amount of 3.0 wt % or less as a residue when the resin is dissolved in an amount corresponding to 20 times the weight of the resin, of 1-chloronaphthalene at 250° C. for 5 minutes and, as the 1-chloronaphthalene solution, pressure-filtered in a still hot state by a PTFE membrane filter with a pore size of 1 ?m or less; and a melt flow rate (measured at a temperature of 315.5° C. and at a load of 5000 g according to ASTM D-1238-70) of more than 100 g/10 min to 500 g/10 min.
    Type: Application
    Filed: November 22, 2005
    Publication date: June 12, 2008
    Applicant: Toray Industries, Inc.
    Inventors: Kei Saitoh, Atsushi Ishio, Takeshi Unohara
  • Publication number: 20080102342
    Abstract: A polysulfone is provided with a nitrogen-containing functional group having an affinity to an acid, an electrolyte membrane using the polysulfone, and a fuel cell including the electrolyte membrane. In particular, the polysulfone includes a nitrogen-containing functional group that has an affinity to an acid, such as a phosphoric acid, thereby having an excellent acid retaining ability. In an electrolyte membrane including the polysulfone and an acid, the amount of the retained acid can be controlled. Therefore, the electrolyte membrane has a high ionic conductivity and a high mechanical strength. A polysulfone blend of polysulfone and a thermoplastic resin prevents the dissolution of polysulfone by phosphoric acid, so that an electrolyte membrane using the polysulfone blend has an improved durability. A cross-linked reaction product of polysulfone, a cross-linking agent and a polymerization product of polysulfone, a thermoplastic resin, and a cross-linking agent strongly resist a phosphoric acid.
    Type: Application
    Filed: June 1, 2007
    Publication date: May 1, 2008
    Applicant: Samsung SDI Co., Ltd
    Inventors: Chung-kun CHO, Myung-jin Lee, Myeong-soon Kang
  • Patent number: 7294684
    Abstract: The invention relates to a process and composition-of-matter for the preparation of dimeric and polymeric alkylphenol polysulfides based on paracumyl phenol for use in vulcanizable rubbers in which the additive is a dimeric or polymeric alkylphenol polysulfide non-nitrosamine-releasing additive based on paracumyl phenol.
    Type: Grant
    Filed: November 11, 2006
    Date of Patent: November 13, 2007
    Assignee: Dover Chemical Corporation
    Inventors: Donald R. Stevenson, Satyan Kodali, Duong N. Nguyen
  • Patent number: 7265196
    Abstract: The present invention relates to a controllable crosslinking polyaryletherketone with improved properties such as stiffness, heat resistance, and stability as shown by any one of the following structures:
    Type: Grant
    Filed: July 7, 2004
    Date of Patent: September 4, 2007
    Assignee: Jilin University
    Inventors: Wanjin Zhang, Chunhai Chen, Xincai Liu, Xiaogang Zhao, Youhai Yu, Zihong Gao, Xiaoqing Yang, Zhongwen Wu
  • Patent number: 7115704
    Abstract: This invention provides a method for producing a polyarylene sulfide, comprising the step of bringing a low-hydrated alkali metal sulfide containing respectively 0.05 to less than 0.8 mole of water and an organic amide solvent per mole of the sulfur contained in the alkali metal sulfide, into contact with a dihalogenated aromatic compound in an organic polar solvent for polymerization. This invention also provides a polyarylene sulfide obtained by the method. The problem to be solved by this invention is to provide a method for efficiently producing a polyarylene sulfide in a short time using an alkali metal sulfide small in water content and organic amide solvent content.
    Type: Grant
    Filed: July 23, 2004
    Date of Patent: October 3, 2006
    Assignee: TORAY Industries, Inc.
    Inventors: Shunsuke Horiuchi, Atsushi Ishio, Kei Saitoh
  • Patent number: 7091307
    Abstract: The present invention relates to a composition for optical materials, comprising (a) a compound having in one molecule at least one structure represented by the following Formula 1: wherein R1 is a single bond or a C1-10 hydrocarbon group, each of R2, R3 and R4 is a C1-10 hydrocarbon group or hydrogen, Y is O, 5, Se or Te, m is 1 to 5, and n is 0 to 5; (b) a compound having in one molecule at least one isocyanate group and/or at least one isothiocyanate group; (c) a compound having in one molecule at least one mercapto group; and (d) an inorganic compound having sulfur atom and/or selenium atom, and also relates to an optical material produced by polymerization curing the composition, a production method thereof, and an optical lens comprising the optical material. The present invention provides a high refractive, high Abbe's number optical material having an improved impact resistance.
    Type: Grant
    Filed: October 11, 2001
    Date of Patent: August 15, 2006
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Yuichi Yoshimura, Motoharu Takeuchi, Hiroshi Horikoshi
  • Publication number: 20040122201
    Abstract: The present invention relates to a composition for optical materials, comprising (a) a compound having in one molecule at least one structure represented by the following Formula 1: 1
    Type: Application
    Filed: April 2, 2003
    Publication date: June 24, 2004
    Inventors: Yuichi Yoshimura, Motoharu Takeuchi, Hiroshi Horikoshi
  • Patent number: 6492448
    Abstract: A resin composition is provided which composition comprises 100 parts by weight of (A) polyarylene sulfide, and 0.01 to 5.0 parts by weight of (B) a product compound of an element selected from the group consisting of group IIA and group IIB of the periodic table, wherein said product compound has such alkalinity that a mixture of said product compound with a 20-fold weight of ultrapure water of grade A4 specified in the Japanese Industrial Standards (JIS) K0557 has a pH of from 10.0 to 12.0. The composition is particularly suited to be used for an optical instrument part such as an object lens driving unit and the like.
    Type: Grant
    Filed: July 11, 2000
    Date of Patent: December 10, 2002
    Assignee: Dainippon Ink and Chemicals, Incorporated
    Inventors: Masaru Miyoshi, Osamu Komiyama
  • Patent number: 6437024
    Abstract: A process is provided to recover at least one modifier compound and at least one polar organic compound from a poly(arylene sulfide) reaction mixture comprising high molecular weight poly(arylene sulfide), low molecular weight poly(arylene sulfide), cyclic and linear poly(arylene sulfide) oligomers, at least one polar organic compound, at least one modifier compound, and an alkali metal halide by-product.
    Type: Grant
    Filed: September 13, 1999
    Date of Patent: August 20, 2002
    Assignee: Phillips Petroleum Company
    Inventors: Fernando C. Vidaurri, Jr., James W. Waterman, Jon F. Geibel
  • Patent number: 6350852
    Abstract: The process for preparing sulfur-containing polymers, in particular polyarylene sulfides, from at least one sulfide and at least one aromatic dihalogen compound, in a solvent, is carried out in the steps: a) a mixture of aromatic dihalogen compound and sulfide is polymerized, b) aromatic dihalogen compound and sulfide are added to the polymerized mixture and c) the reaction mixture is polymerized further. The sulfur-containing polymers prepared by the process are distinguished by high purity and good mechanical properties.
    Type: Grant
    Filed: February 10, 1999
    Date of Patent: February 26, 2002
    Assignee: Ticona GmbH
    Inventors: Michael Haubs, Reinhard Wagener
  • Publication number: 20010056175
    Abstract: A film comprising polysulfone wherein the polysulfone contains no more than about 1.4 weight percent sulfone cyclic dimer.
    Type: Application
    Filed: July 19, 2001
    Publication date: December 27, 2001
    Inventors: Selvaraj Savariar, Geoffrey S. Underwood
  • Patent number: 6307011
    Abstract: A process is provided to recover at least one modifier compound and at least one polar organic compound from a P(AS) recycle mixture.
    Type: Grant
    Filed: September 13, 1999
    Date of Patent: October 23, 2001
    Assignee: Phillips Petroleum Company
    Inventors: Jeffrey S. Fodor, Jon F. Geibel, Fernando C. Vidaurri
  • Patent number: 6303746
    Abstract: A process for the manufacture of a polymeric phenol sulfide, which can be a polymeric alkyl phenol sulfide, such as one containing an alkyl group containing from one to about four carbon atoms in the alkyl group contained therein of the following formula, where R is the alkyl group,: where R is alkyl, m is from 1 to 3, n ranges from about 2 to about 10, and x ranges from 1 to about 4.
    Type: Grant
    Filed: April 17, 2000
    Date of Patent: October 16, 2001
    Assignee: Akzo Nobel NV
    Inventors: Jagadish C. Goswami, Jian-Lin Liu, Andress K. Doyle
  • Patent number: 6201100
    Abstract: The present invention pertains to electroactive, energy-storing, highly crosslinked organic polymers and copolymers with a carbocyclic repeat unit comprising a non-aromatic carbocycle with from 3 to 12 ring carbon atoms, wherein each repeat unit is covalently linked via divalent polysulfide linkages having the formula, —Sm—, where m is the same or different at each occurrence and is an integer from 3 to 10. The present invention also pertains to methods of making such polymers and copolymers, which methods generally comprise reacting an alkali metal polysulfide with a halogen-substituted carbocyclic precursor.
    Type: Grant
    Filed: December 19, 1997
    Date of Patent: March 13, 2001
    Assignee: Moltech Corporation
    Inventors: Alexander Gorkovenko, Terje A. Skotheim
  • Patent number: 6194487
    Abstract: In the present method of manufacturing modified particles, a saturated vapor of a monomer B is produced in a condensing chamber, and then particles containing a monomer A, which differs from the monomer B and is polymerizable therewith, are introduced, along with an inert gas, into the condensing chamber through a particle intake. Then, a super-saturated vapor of the monomer B is created by reducing pressure using a pressurizing/depressurizing opening, thereby condensing the monomer B on the surface of the particles, and causing a polymerization reaction between the monomer A and the monomer B. With this method, spherical modified particles of uniform diameter, which include a polymer of the monomers A and B, can be obtained in a short time, by means of simple operations.
    Type: Grant
    Filed: November 12, 1998
    Date of Patent: February 27, 2001
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Kiyofumi Morimoto, Takahiro Horiuchi, Shigeaki Tasaka
  • Patent number: 5962630
    Abstract: A method of encapsulating mixed waste in which a thermoplastic polymer having a melting temperature less than about 150.degree. C. and sulfur and mixed waste are mixed at an elevated temperature not greater than about 200.degree. C. and mixed for a time sufficient to intimately mix the constituents, and then cooled to a solid. The resulting solid is also disclosed.
    Type: Grant
    Filed: December 3, 1997
    Date of Patent: October 5, 1999
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Michael H. O'Brien, Arnold W. Erickson
  • Patent number: 5929203
    Abstract: A process is provided for producing a high molecular weight poly(arylene sulfide) polymer employing at least one dihaloaromatic compound, a sulfur source, a polar organic compound, a lithium salt which is soluble in the polar organic compound, and water in an amount less than about 1.75 moles of water per mole of sulfur under polymerization conditions. The pressure and temperature are chosen to allow the volatile reactants to be maintained in liquid form in the reaction mixture.
    Type: Grant
    Filed: October 23, 1992
    Date of Patent: July 27, 1999
    Assignee: Phillips Petroleum Company
    Inventors: Carlton E. Ash, Jon F. Geibel, Harold D. Yelton
  • Patent number: 5886130
    Abstract: A new class of polyarylene co-polymers include repeating units comprising one or more arylene units having the general formula (--Ar--/--Y--).sub.n, where Y is a divalent group chosen from nil, --Z--, --Z--Ph--, and --Ph--Z--Ph--, where Z is a divalent group chosen from the group consisting of --O--, --S--, --NR--, --O(CO)--, --O(CO.sub.2)--,--(CO)NH(CO)--, --NR(CO)--, phthalimide, pyromellitimide, --CO--, --SO--, --SO.sub.2 --, --P(O)R--, --CH.sub.2 --, --CF.sub.2 --, and --CRR'--; Ph is phenylene (ortho, meta or para); and n is greater than 4. The co-polymers are useful as molding resins, and composite matrix resins, and where Ar is heteroarylene as ion exchange resins.
    Type: Grant
    Filed: November 2, 1995
    Date of Patent: March 23, 1999
    Assignee: Maxdem Incorporated
    Inventors: Mark S. Trimmer, Ying Wang, Matthew L. Marrocco III, Virgil J. Lee
  • Patent number: 5824767
    Abstract: A process for improving the processability of poly(arylene sulfide) in melt spinning operations by treatment with a barium-containing compound and, optionally, a lubricant is disclosed.
    Type: Grant
    Filed: July 8, 1996
    Date of Patent: October 20, 1998
    Assignee: Hoechst Celanese Corporation
    Inventors: Balaram B. Gupta, Andrew B. Auerbach, Barrie L. Davies