From Organic Reactant Containing A Sulfur To Oxygen Bond, E.g., -s(=o), Etc. Patents (Class 528/391)
  • Patent number: 8734952
    Abstract: The present invention relates generally to the field of organic chemistry and particularly to the optical retardation films for liquid crystal displays. The present invention provides an optical film comprising a substrate having front and rear surfaces, and at least one solid retardation layer on the front surface of the substrate.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: May 27, 2014
    Assignee: Crysoptix KK
    Inventor: Ellina Kharatiyan
  • Patent number: 8703862
    Abstract: The present invention relates to thermoplastic molding compositions composed of the following components: (A) at least one polyarylene ether (A1) having an average of at most 0.1 phenolic end groups per polymer chain, and at least one polyarylene ether (A2) having an average of at least 1.5 phenolic end groups per polymer chain, (B) at least one fibrous or particulate filler, and (C) optionally further additives and/or processing aids. The present invention further relates to a process for producing the thermoplastic molding compositions of the invention, the use of these for producing moldings, fibers, foams, or films, and to the resultant moldings, fibers, foams, and films.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: April 22, 2014
    Assignee: BASF SE
    Inventors: Martin Weber, Christian Maletzko, Mark Völkel
  • Patent number: 8632894
    Abstract: A substrate for an electronic device having high carrier transport ability, a method for manufacturing a substrate for an electronic device which can manufacture such a substrate for an electronic device, an electronic device provided with the substrate for an electronic device and having improved properties, and electronic equipment having high reliability are provided. A substrate for an electronic device includes a light emitting layer (organic semiconductor layer), a cathode (inorganic layer), and an intermediate layer provided between the light emitting layer and the cathode so as to make contact with both of the light emitting layer and the cathode. The intermediate layer is constituted of a compound (1) represented by a general formula R—X—O-M as a main component thereof. In the general formula, the R is a hydrocarbon group, the X is any one of binding groups comprising a single bond, a carbonyl group and a sulfonyl group, and the M is any one of a hydrogen atom and a metal atom.
    Type: Grant
    Filed: June 21, 2006
    Date of Patent: January 21, 2014
    Assignee: Seiko Epson Corporation
    Inventor: Masamitsu Uehara
  • Patent number: 8623970
    Abstract: A diaphragm for electro-acoustic transducers, especially a diaphragm for speakers, and a film for the diaphragm excellent in the formability and the durability in high-output operation are obtained. A diaphragm for electro-acoustic transducers formed of a film that contains a polybiphenyl ether sulfone resin (A) having a specific repetitive unit or contains it and a crystalline resin (B) such as polyaryl ketone resin; and a film for use for the diaphragm.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: January 7, 2014
    Assignee: Mitsubishi Plastics, Inc.
    Inventor: Kouichirou Taniguchi
  • Patent number: 8623971
    Abstract: Polyethersulfones having Tg greater than about 225° C. and a notched Izod value greater than about 1 ft-lb/in, as measured by ASTM D256, comprise from about 5 mol % to less than about 40 mol % structural units of formula 1; and from greater than about 60 mol % to about 95 mol % structural units of formula 2 wherein R1, R2, and R3 are independently at each occurrence a halogen atom, a nitro group, a cyano group, a C1-C12aliphatic radical, C3-C12cycloaliphatic radical, or a C3-C12aromatic radical; n, m, q are independently at each occurrence integers from 0 to 4; and Q is a C3-C20cycloaliphatic radical, or a C3-C20aromatic radical.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: January 7, 2014
    Assignee: Sabic Innovative Plastics IP B.V.
    Inventors: Daniel Joseph Brunelle, Daniel Steiger
  • Patent number: 8609804
    Abstract: Provided are sulfone-containing polyarylene polymers, and processes for preparing the polymers. The polyarylene polymers are suitable for use as engineering polymers.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: December 17, 2013
    Assignee: E I du Pont de Nemours and Company
    Inventor: Mark F Teasley
  • Patent number: 8597855
    Abstract: An electrolyte material, which comprises a polymer (H) having ion exchange groups converted from precursor groups in a polymer (F) having repeating units (A) having a precursor group represented by the formula (g1) and repeating units (B) based on a perfluoromonomer having a 5-membered ring, and having a density of at most 2.03 g/cm3, the polymer (H) having an ion exchange capacity of from 1.3 to 2.3 meq/g dry resin: wherein Q1 and Q2 are a perfluoroalkylene group having an etheric oxygen atom, or the like, and Y is F or the like; the electrolyte material being suitable for a catalyst layer of the membrane/electrode assembly; the membrane/electrode assembly being excellent in power generation characteristics under low or no humidity conditions and under high humidity conditions.
    Type: Grant
    Filed: July 26, 2010
    Date of Patent: December 3, 2013
    Assignee: Asahi Glass Company, Limited
    Inventors: Satoru Hommura, Susumu Saito, Tetsuji Shimohira, Atsushi Watakabe
  • Patent number: 8586694
    Abstract: The polymerization catalyst for a polythiourethane-based optical material of the present invention includes a sulfonate represented by the following general formula (1). Furthermore, in the formula, R1, R2, R3 and R4 each independently represent an alkyl group having 1 to 18 carbon atoms, R1, R2, R3 and R4 may be bonded to each other to form a ring. R5 represents a hydrogen atom or an alkyl group having 1 to 18 carbon atoms, and X represents a nitrogen atom or a phosphorus atom.
    Type: Grant
    Filed: February 4, 2008
    Date of Patent: November 19, 2013
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Masanori Iwazumi, Nobuo Kawato, Mamoru Tanaka, Hidetoshi Hayashi, Seiichi Kobayashi
  • Publication number: 20130300281
    Abstract: Copolymers for luminescent enhancement in reflective display applications comprise a functionalized fluorene moiety, including a functional group selected from water-soluble functional groups and/or alcohol-soluble functional groups, and a heterocyclic ring moiety selected from the group consisting of substituted carbazole derivatives, substituted benzothiadiazole derivatives, and substituted phenothiazine derivatives, wherein the respective substituted derivatives include a functional group selected from water-soluble functional groups and/or alcohol-soluble functional groups. Composite materials comprising the copolymers and photoluminescent dyes are also provided, as is a luminescence-based sub-pixel (100).
    Type: Application
    Filed: January 21, 2011
    Publication date: November 14, 2013
    Inventors: Zhang-Lin Zhou, Gary Gibson, Lihua Zhao
  • Publication number: 20130292657
    Abstract: Light-emitting composition and devices including the same, the composition including a fluorescent light-emitting material and a polymer having a conjugating repeat unit and a non-conjugating repeat unit in a backbone of the polymer, and in which the conjugating repeat unit provides at least one conjugation path between repeat units linked to it; the non-conjugating repeat unit reduces conjugation of the polymer as compared to a polymer in which the non-conjugating repeat unit is absent; and a triplet excited state energy level of the light-emitting material is higher than a triplet excited state energy level of the non-conjugating repeat unit.
    Type: Application
    Filed: October 13, 2011
    Publication date: November 7, 2013
    Applicants: Sumitomo Chemical Company Limited, Cambridge Display Technology, Ltd.
    Inventors: Natasha M.J. Conway, Jonathan Pillow, Thomas Pounds, Fredrik Jakobsson, Christian Nielsen
  • Patent number: 8557952
    Abstract: The invention pertains to novel (per)fluoropolyethers comprising at least one (per)fluoropolyoxyalkylene chain (chain Rf) comprising at least one recurring unit (R2) having formula: CF2—CF(CF2OSO2F)—O— (poly(fluorosulfate) PFPE) to a process for their manufacture, and to their use for providing functional (per)fluoropolyethers.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: October 15, 2013
    Assignee: Solvay Solexis S.p.A.
    Inventors: Giuseppe Marchionni, Silvia Petricci, Pier Antonio Guarda
  • Publication number: 20130267616
    Abstract: A method of forming a polymer is provided, the method comprising: Providing a first monomer comprising one or more aromatic moieties, the first monomer comprising at least two amino groups, each of the amino groups being attached to an aromatic moiety; and contacting said first monomer with formaldehyde or a source of methylene. Polymers made by such a method and uses of such polymers are also described.
    Type: Application
    Filed: September 12, 2011
    Publication date: October 10, 2013
    Applicant: University College Cardiff Consultants Limited
    Inventors: Neil Bruce McKeown, Mariolino Carta, Matthew James Croad
  • Publication number: 20130267658
    Abstract: There is provided oligomers comprising a highly fluorinated sulfinate oligomers.
    Type: Application
    Filed: December 6, 2011
    Publication date: October 10, 2013
    Applicant: 3M Innovative Properties Company
    Inventors: Miguel A. Guerra, Gregg D. Dahlke, Denis Duchesne, Tatsuo Fukushi, Werner M.A. Grootaert, Zai-Ming Qiu
  • Patent number: 8541539
    Abstract: A method for preparing a water-soluble polyamide, includes copolymerizing reactive monomers including caprolactam; ethylene glycol bis(2-aminoethyl)ether or ethylene glycol bis(3-aminopropyl)ether; and 5-sulfoisophthalic acid monosodium salt, wherein a molar ratio of caprolactam:ethylene glycol bis(2-aminoethyl)ether or ethylene glycol bis(3 -aminopropyl)ether:5-sulfoisophthalic acid monosodium salt is about 0:1:1 to about 5:1:1, advantageously about 1.85:1:1. Copolymerizing takes place at a copolymerization temperature of about 222-250° C. and a copolymerization pressure of about 3 Bar. The method further includes maintaining a temperature of about 222-250° C. for about 2-3 hours under normal pressure after the copolymerization step. The water-soluble polyamide has a solubility in water of about 10-70%.
    Type: Grant
    Filed: December 29, 2008
    Date of Patent: September 24, 2013
    Assignee: Taiwan Textile Research Institute
    Inventors: Yu-Chi Tseng, Chin-Wen Chen, S-P Rwei
  • Patent number: 8541538
    Abstract: An adsorbent for the removal of blood cells, which is formed from a hydrophobic polymer resin and has a surface center line average roughness of 5 to 100 nm. The hydrophobic polymer resin is preferably a polyarylate resin (PAR), polyethersulfone resin (PES), polysulfone resin (PSF), or a polymer alloy consisting of two or more of these resins. The adsorbent for the removal of blood cells can take the form of beads, hollow fibers, or solid fibers.
    Type: Grant
    Filed: April 17, 2009
    Date of Patent: September 24, 2013
    Assignee: Nikkiso Co., Ltd.
    Inventors: Michiharu Nakao, Seishu Hayashi
  • Patent number: 8524853
    Abstract: The present invention relates to polyarylene ether block copolymers according to the general formula A-K—X—K-A, where —X— is a polyarylene ether segment with number-average molar mass of at least 5000 g/mol, and A- is a segment of the general structure R2NH—(R1—NH—CO—Ar—CO—NH)n—R1—NH—, in which R1 is a linear or branched alkylene group having from 2 to 12 carbon atoms and Ar is an arylene group having from 6 to 18 carbon atoms, and R2 is selected from aryloyl, alkyloyl, and H, and in which the number average of n is from 1 to 3, and there is a coupling group K of the structure —CO—Ar3—CO— linking each A to X, in which Ar13 is an aromatic group having from 6 to 18 carbon atoms. The present invention also relates to a process for the production of the polyarylene ether block copolymers of the invention, to polymer compositions comprising the polyarylene ether block copolymers of the invention, and also to the use thereof for the production of moldings, of films, of fibers, or of foams.
    Type: Grant
    Filed: May 31, 2010
    Date of Patent: September 3, 2013
    Assignee: BASF SE
    Inventors: Cecile Gibon, Martin Weber, Reinoud J. Gaymans, Ranimol Stephen
  • Publication number: 20130217856
    Abstract: Described are sulfonated polyoxadiazole polymers with a high degree of sulfonation and good flammability properties. The polymer has repeat units of Formula (I) and one or both of Formula (II) and (IIa): wherein M is a cation. The polymers are useful in articles such as fibers.
    Type: Application
    Filed: December 5, 2011
    Publication date: August 22, 2013
    Applicant: E.I.DuPont de Nemours and Company
    Inventors: Michael W Cobb, Alexander Anthony Marchione, John Henry Mcminn, Sharlene Renee Williams
  • Patent number: 8501902
    Abstract: The invention relates to a process for coupling thiophene or selenophene compounds, in particular for preparing conjugated thiophene or selenophene polymers with high molecular weight and high regioregularity, and to novel polymers prepared by this process. The invention further relates to the use of the novel polymers as semiconductors or charge transport materials in optical, electrooptical or electronic devices including field effect transistors (FETs), thin film transistors (TFT), electroluminescent, photovoltaic and sensor devices. The invention further relates to FETs and other semiconducting components or materials comprising the novel polymers.
    Type: Grant
    Filed: August 15, 2006
    Date of Patent: August 6, 2013
    Assignee: Merck Patent GmbH
    Inventors: Steven Tierney, Martin Heeney, Weimin Zhang, Simon Higgins, Iain Liversedge
  • Publication number: 20130197110
    Abstract: A sulphur-containing and sulphonated aromatic perfluoroalkane monomer is provided that can be used for the manufacture of a polymer membrane for a PEM-type fuel cell. The perfluoroalkane monomer is a functionalized polymer that has a structure corresponding to a formula (I): E1-Ar1—X1—(CF2)n—X2—Ar2-E2??(I) in which: n is in a range from 1 to 20; X1 and X2, which are identical or different, represent S, SO, or SO2; Ar1, Ar2, which are identical or different, represent a phenylene group, at least one of Ar1 and Ar2 bearing a sulphonic (—SO3H) group or a sulphonate (—SO3M) group, in which M represents an alkali metal cation; and E1 and E2, which are identical or different, represent an electrophilic group such as a halogen, specifically fluorine or chlorine.
    Type: Application
    Filed: July 6, 2011
    Publication date: August 1, 2013
    Applicants: MICHELIN RECHERCHE ET TECHNIQUE S.A., COMPAGNIE GENERALE DES ETABLISSEMENTS MICHELIN
    Inventor: Milan Fedurco
  • Publication number: 20130193382
    Abstract: The present invention relates to compounds of the formula (I) and to the use thereof in electronic devices. The invention furthermore relates to electronic devices, preferably organic electroluminescent devices (OLEDs), comprising one or more com-pounds of the formula (I). The invention again furthermore relates to the preparation of compounds of the formula (I) and to formulations comprising one or more compounds of the formula (I).
    Type: Application
    Filed: September 6, 2011
    Publication date: August 1, 2013
    Applicant: MERCK PATENT GmbH
    Inventors: Arne Buesing, Thomas Eberle, Irina Martynova, Teresa Mujica-Fernaud
  • Publication number: 20130172509
    Abstract: Microfabricated particles are dispersed throughout a matrix to create a composite. The microfabricated particles are engineered to a specific structure and composition to enhance the physical attributes of a composite material. The microfabricated particles are generated by forming a profile extrudate. A profile extrudate is an article of indefinite length that has a cross sectional profile of a desired structure with micro-scale dimensions. Upon or after formation, the profile extrudate may be divided along its length into a plurality of microfabricated particles.
    Type: Application
    Filed: September 20, 2011
    Publication date: July 4, 2013
    Applicant: Interfacial Solutions IP, LLC
    Inventors: Adam R. Pawloski, Jeffrey Jacob Cernohous
  • Patent number: 8470955
    Abstract: The present invention relates to a poly(arylene ether) copolymer having a cation exchange group, a method for manufacturing the same, and use thereof. The poly(arylene ether) copolymer having the cation exchange group according to the present invention has excellent physical characteristics, ion exchanging capacity, metal ion adsorption capacity and a processability, and thus can be molded in various shapes and can be extensively applied to various fields such as recovering of organic metal, air purification, catalysts, water treatment, medical fields and separating of proteins.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: June 25, 2013
    Assignee: Hyundai Motor Company
    Inventors: Inchul Hwang, Nak Hyun Kwon, Young Taek Kim, Dong Il Kim, Ju Ho Lee
  • Patent number: 8450390
    Abstract: The present invention provides both crosslinked polymer compositions capable of forming hydrogels upon exposure to an aqueous environment and thiosulfonate hydrogel-forming components. The thiosulfonate hydrogel-forming components of the invention are preferably multi-arm thiosulfonate polymer derivatives that form a crosslinked polymer composition when exposed to a base without requiring the presence of a second cross-linking reagent, redox catalyst, or radiation. Methods for forming hydrogel compositions, as well as methods for using the hydrogels, are also provided.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: May 28, 2013
    Assignee: Nektar Therapeutics
    Inventors: Zhihao Fang, Michael D. Bentley
  • Publication number: 20130112409
    Abstract: The invention pertains to improved proppant particles comprising an aromatic polycondensation polymer having a glass transition temperature (Tg) of at least 120° C. when measured according to ASTM 3418 [polymer (P)] and a method of treating a subterranean formation using said proppant particles.
    Type: Application
    Filed: November 2, 2012
    Publication date: May 9, 2013
    Applicant: SOLVAY SPECIALTY POLYMERS USA, LLC
    Inventor: SOLVAY SPECIALTY POLYMERS USA, LLC
  • Patent number: 8418759
    Abstract: Fluorinated polymers having first divalent units represented by formula, and a plurality of groups of formula —CH2—CH2—O—. Compositions containing the fluorinated polymer and solvent, and methods of treating hydrocarbon-bearing formations using these compositions are disclosed. A method of making a composition containing the fluorinated polymer is also disclosed.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: April 16, 2013
    Assignee: 3M Innovative Properties Company
    Inventors: George G. I. Moore, Rudolf J. Dams, Jimmie R. Baran, Jr.
  • Publication number: 20130079469
    Abstract: A copolymer containing, in addition to recurring elements of a sulfonated poly(arylene) containing exclusively recurring structural element(s) of the general formulas —[—Ar1(SO3M)n-X—]— and —[—Ar2(SO3M)n-Y—]—, wherein X and Y, which are identical or different from each other, each represent an electron-acceptor group, Ar1 and Ar2, which are either identical or different from each other, represent an aromatic or heteroaromatic ring system with 5-18 ring atoms; wherein the aromatic or heteroaromatic ring system, in addition to the SO3M and the substituents X and Y, optionally comprises additional substituents which are not electron-donor groups; M represents monovalent cation and n is an integral number between 1 and 4; and wherein X, Y, Ar1, Ar2, M and n can be identical or different in various structural elements, independently of each other, one or several additional elements of at least one additional monomer or macromonomer.
    Type: Application
    Filed: November 16, 2012
    Publication date: March 28, 2013
    Applicant: Max-Planck-Gesellschaft zur Forderung der Wissenschaften e V.
    Inventor: Max-Planck-Gesellschaft zur Forderung der Wisse
  • Publication number: 20130075714
    Abstract: Light-emitting composition comprising a host polymer and a light emitting dopant wherein the host polymer comprises conjugating repeat units and non-conjugating repeat units in a backbone of the polymer and wherein: the conjugating repeat units provide at least one conjugation path between repeat units linked thereto; and the non-conjugating repeat units comprise an at least partially saturated ring having at least one ring atom that breaks any conjugation path between repeat units linked to the non-conjugating repeat unit such that a highest occupied molecular orbital level of the polymer is further from vacuum level by at least 0.1 eV and/or a lowest unoccupied molecular orbital level of the polymer is closer to vacuum level by at least 0.1 eV as compared to a polymer in which the non-conjugating repeat units are absent.
    Type: Application
    Filed: May 12, 2011
    Publication date: March 28, 2013
    Applicant: SUMTOMO CHEMICAL COMPANY LIMITED
    Inventors: Sheena Zuberi, Tania Zuberi
  • Patent number: 8404795
    Abstract: Polymers for photoresists and monomers for incorporation into those polymers are disclosed. The polymers comprise a photoacid generator (PAG) component and at least a second component that is photolytically stable and acid-stable. The polymers may also contain a third, acid-labile component. The photoacid generator is based on N-sulfoxyimides and related moieties that contain photolabile oxygen-heteroatom and oxygen-aromatic carbon bonds.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: March 26, 2013
    Assignee: The Research Foundation for the State University of New York
    Inventor: Robert L. Brainard
  • Patent number: 8399604
    Abstract: Conducting polymer systems for hole injection or transport layer applications including a composition comprising: a water soluble or water dispersible regioregular polythiophene comprising (i) at least one organic substituent, and (ii) at least one sulfonate substituent comprising sulfonate sulfur bonding directly to the polythiophene backbone. The polythiophene can be water soluble, water dispersible, or water swellable. They can be self-doped. The organic substituent can be an alkoxy substituent, or an alkyl substituent. OLED, PLED, SMOLED, PV, and ESD applications can be used.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: March 19, 2013
    Assignee: Plextronics, Inc.
    Inventors: Venkataramanan Seshadri, Brian E. Woodworth, Christopher Greco, Darin Laird, Mathew K. Mathai
  • Patent number: 8389672
    Abstract: A diaphragm for electro-acoustic transducers, especially a diaphragm for speakers, and a film for the diaphragm excellent in the formability and the durability in high-output operation are obtained. A diaphragm for electro-acoustic transducers formed of a film that contains a polybiphenyl ether sulfone resin (A) having a specific repetitive unit or contains it and a crystalline resin (B) such as polyaryl ketone resin; and a film for use for the diaphragm.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: March 5, 2013
    Assignee: Mitsubishi Plastics, Inc.
    Inventor: Kouichirou Taniguchi
  • Patent number: 8383763
    Abstract: Sulfonated polymers are made by the direct polymerization of a sulfonated monomer to form the sulfonated polymers. The types of sulfonated polymers may include polysulfones or polyimides. The sulfonated polymers can be formed into membranes that may be used in proton exchange membrane fuel cells or as ion exchange membranes. The membranes formed from the sulfonated polymers exhibit improved properties over that of Nafion®. A heteropoly acid may be added to the sulfonated polymer to form a nanocomposite membrane in which the heteropoly acid is highly dispersed. The addition of a heteropoly acid to the sulfonated polymer increases the thermal stability of the membrane, enhances the conductivity above 100° C., and reduces the water uptake of the membrane.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: February 26, 2013
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: James E. McGrath, Michael Hickner, Feng Wang, Yu-Seung Kim
  • Patent number: 8378054
    Abstract: A process for preparing polyaryl ethers in which a polycondensation of the monomer building blocks is carried out using microwave irradiation leads to thermoplastic molding compositions having improved color properties.
    Type: Grant
    Filed: November 11, 2008
    Date of Patent: February 19, 2013
    Assignee: BASF SE
    Inventors: Martin Weber, Volker Warzelhan, Faissal-Ali El-Toufaili, Andreas Greiner, Heiner Stange, Seema Agrarwal
  • Publication number: 20130026088
    Abstract: Described herein is a method for altering the characteristics of a membrane comprising a dielectric material. The method comprises heating the membrane and applying an electric field in a direction out of the plane of the membrane to at least a portion of the dielectric material. At least a portion of the dielectric material becomes aligned with the applied electric field. In some embodiments, the membrane is piezoelectric and application of an electric signal to the membrane causes out of plane movement of the membrane. Also disclosed are membranes and systems and apparatuses comprising such membranes.
    Type: Application
    Filed: November 25, 2010
    Publication date: January 31, 2013
    Inventors: Hans Gerard Leonard Coster, Tahereh Darestani Farahani, Terry Calvin Chilcott
  • Patent number: 8362195
    Abstract: An ionically conductive polymer has the chemical structure 1 as shown herein. Examples of the polymer include 4,4?-(4-(1H-benzo[d]imidazol-2-yl)butane-2,2-diyl)diphenol, sulfonated poly(aryl ether sulfone) containing benzimidazole backbone, sulfonated poly(aryl ether sulfone) containing carboxylic acid backbone, and sulfonated poly(aryl ether sulfone) containing benzimidazole backbone from carboxylic acid containing sulfonated poly(aryl ether sulfone). The polymer has intrinsic ion conducting properties so that it is effectively conductive even under low water conditions. In one embodiment, the polymer has an ionic conductivity of at least 1×10?5 S/cm at a temperature of 120° C. when the polymer is substantially anhydrous.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: January 29, 2013
    Inventors: Ramanathan S. Lalgudi, Jeffrey Boyce, Jay Sayre, Bhima R. Vijayendran
  • Patent number: 8361368
    Abstract: Certain polymer materials, including perfluorosulfonic acid ionomers, have been found to be capable of being deformed from an initial permanent shape into three or more temporary shapes. An article thus formed from such a polymer material may be used initially in a final temporary shape. As the article is progressively heated, the polymer composition reverts successively from its final temporary shape through its intermediate temporary shapes. If a suitable temperature is reached, the original permanent shape is recovered. The article may be devised to serve successive functions in each of its several shapes.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: January 29, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Tao Xie, Paul E. Krajewski
  • Patent number: 8349993
    Abstract: Hydrolytically and thermo-oxidatively stable sulfonated polyarylenes include the structural element —X—Ar(SO3M)n-Y—. The aromatic ring carrying the sulfonic acid group is substituted exclusively by electron-acceptor bridge groups X and Y and, if applicable, by other non-electron-donor substituents. Their synthesis and application are also included.
    Type: Grant
    Filed: March 7, 2006
    Date of Patent: January 8, 2013
    Assignee: Max-Planck-Gesellschaft zur Forderung der Wissenschaften e.V.
    Inventors: Michael Schuster, Klaus-Dieter Kreuer, Henrik Thalbitzer Andersen, Joachim Maier
  • Publication number: 20130005927
    Abstract: A method of forming a thermoplastic article, comprises steps of a) positioning at least one preheated first component being hollow and having at least one open end in two co-operating first mould halves; b) extruding a blow-mouldable thermoplastic material into the first component and closing the mould halves; and c) blowing the blow-moldable thermoplastic material inside the mould halves to form an article on which the first component is fixedly engaged. The method is simple in implementation, low in cost and easy in modification, and by which a thermoplastic article of varied colors, patterns, materials, and/or functional components being fixedly mounted on its outer surface could be realized.
    Type: Application
    Filed: January 8, 2010
    Publication date: January 3, 2013
    Applicant: GREAT FORTUNE (HK) LIMITED
    Inventor: Chi Shing Lam
  • Patent number: 8344192
    Abstract: The invention provides a technique enabling the separation and recovery of an unreacted fluoromonomer from an aqueous fluoropolymer dispersion obtained by emulsion polymerization, without using any extraction solvent, and enabling the prevention of a hydrolysis of —SO2F and a like sulfonic acid precursor functional group convertible to sulfonic acid group. Thus, the invention provides a recovering method fluoromonomer having a sulfonic acid precursor functional group convertible to a sulfonic acid group and remaining unreacted from an aqueous fluoropolymer dispersion obtained by emulsion polymerization of the fluoromonomer, wherein the unreacted fluoromonomer is recovered from the aqueous fluoropolymer dispersion by evaporation, wherein the aqueous fluoropolymer dispersion has an acidic pH.
    Type: Grant
    Filed: December 7, 2007
    Date of Patent: January 1, 2013
    Assignee: Daikin Industries, Ltd.
    Inventors: Tadaharu Isaka, Tadashi Ino, Masaharu Nakazawa, Masahiro Kondo
  • Patent number: 8344094
    Abstract: An optical material is provided that has a high transmittance, a high refractive index, a low Abbe constant, a high secondary dispersion property, and a low water absorption rate. The optical material includes a polymer of a mixture which contains: a sulfur-containing compound represented by the following general formula (1): a sulfur-containing compound represented by the following general formula (2): and an energy polymerization initiator, in which a content of the sulfur-containing compound represented by the chemical formula (2) is 10% by weight or more to 60% by weight or less, an Abbe constant (?d) of the polymer of the mixture satisfies 18<?d<23, and a secondary dispersion property (?g,F) thereof satisfies 0.68<?g,F<0.69.
    Type: Grant
    Filed: September 8, 2009
    Date of Patent: January 1, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventors: Hidefumi Iwasa, Shigeo Kiso, Terunobu Saitoh, Toshiji Nishiguchi
  • Publication number: 20120328519
    Abstract: The present invention relates to the novel compound classes of dendritic polyglycerol sulfates and sultanates as well as to their production and use for the treatment of diseases, particularly inflammatory diseases, and to their use as selectin inhibitors and selectin indicators. The dendritic polyglycerol sulfates and sulfonates are also suitable for imaging diagnostics, particularly with respect to inflammatory diseases.
    Type: Application
    Filed: August 3, 2007
    Publication date: December 27, 2012
    Inventors: Rainer Haag, Jens Dernedde, Rudolf Tauber, Gesche Bernhard, Sven Enders, Heidemarie Weinhart, Arne Von Bonin, Ulrich Zügel, Holger Türk
  • Publication number: 20120322973
    Abstract: Provided are sulfone-containing polyarylene polymers, and processes for preparing the polymers. The polyarylene polymers are suitable for use as engineering polymers.
    Type: Application
    Filed: August 21, 2012
    Publication date: December 20, 2012
    Applicant: E I DU PONT DE NEMOURS AND COMPANY
    Inventor: Mark F. Teasley
  • Publication number: 20120302725
    Abstract: Described herein is the preparation of polyarylene ionomeric copolymers containing polysulfone, sulfonic acid, and sulfonimide repeat units, and such polyarylene ionomeric copolymers that are useful as membranes in electrochemical cells.
    Type: Application
    Filed: December 28, 2010
    Publication date: November 29, 2012
    Applicant: E I DU PONT DE NEMOURS AND COMPANY
    Inventor: Mark F. Teasley
  • Publication number: 20120296065
    Abstract: Described herein is the preparation of polyarylene ionomeric copolymers, copolymers containing polysulfone, sulfonic acid, and sulfonimide repeat units, and useful membranes made from such polyarylene ionomeric copolymers, in particular as membranes in electrochemical cells such as fuel cells.
    Type: Application
    Filed: December 29, 2010
    Publication date: November 22, 2012
    Applicant: EI DU PONT DE NEMOURS AND COMPANY
    Inventor: Mark F. Teasley
  • Publication number: 20120289678
    Abstract: Described herein is the preparation of polyarylene ionomers copolymers, both polysulfones and sulfonimide containing, useful as membranes in electrochemical cells.
    Type: Application
    Filed: December 28, 2010
    Publication date: November 15, 2012
    Applicant: E.I. Du Pont De Nemours and Company
    Inventor: Mark F. Teasley
  • Patent number: 8293851
    Abstract: A sulfonated copolymer including a crosslinking functional group and a fuel cell including a polymer composition of the same are provided. The sulfonated copolymer including a crosslinking functional group can remarkably reduce methanol crossover and maintain superior dimensional stability and ionic conductivity by reducing swelling.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: October 23, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jae-Jun Lee, Do-yun Kim, Sang-kook Mah
  • Publication number: 20120263670
    Abstract: The present disclosure is directed to compounds and methods for the treatment of disorders associated with fluid retention or salt overload, such as heart failure (in particular, congestive heart failure), chronic kidney disease, end-stage renal disease, liver disease, and peroxisome proliferator-activated receptor (PPAR) gamma agonist-induced fluid retention. The present disclosure is also directed to compounds and methods for the treatment of hypertension. The present disclosure is also directed to compounds and methods for the treatment of gastrointestinal tract disorders, including the treatment or reduction of pain associated with gastrointestinal tract disorders.
    Type: Application
    Filed: June 29, 2011
    Publication date: October 18, 2012
    Applicant: Ardelyx, Inc.
    Inventors: Dominique Charmot, Jeffrey W. Jacobs, Michael Robert Leadbetter, Marc Navre, Christopher Carreras, Noah Bell
  • Publication number: 20120211702
    Abstract: The present invention relates generally to substituted polyaniline polymer/copolymer compositions, suitable slats thereof and uses therefore. In one embodiment, the present invention relates to conductive substituted polyaniline polymer/copolymer compositions, suitable slats thereof and uses therefore. In still another embodiment, the present invention relates to self-protonated substituted polyaniline polymer/copolymer compositions, suitable slats thereof and uses therefore. In yet another embodiment, the present invention relates to self-protonated sulfonic acid- or boric acid-substituted polyaniline polymer/copolymer compositions, suitable slats thereof and uses therefore. In still another embodiment, the one or more various polyaniline polymer/copolymer compositions of the present invention are both biodegradable and conducting polymer compositions.
    Type: Application
    Filed: August 2, 2010
    Publication date: August 23, 2012
    Applicant: THE OHIO STATE UNIVERSITY
    Inventors: Arthur J. Epstein, Yong Min, Jen-Chieh Wu
  • Patent number: 8247614
    Abstract: Fluorinated copolymers are prepared via copolycondensation polymerization in a process comprising reacting A) a telechelic fluoroazido compound of formula N3(Y)p—(CH2)n—R—(CH2)m—(Y)pN3, wherein Y is SO, SO2, C6H4, or CO, p=0 or 1, n and m are independently 1 to 4, and R is selected from the group consisting of i) a C3-C10 fluoroalkylene group, ii) a C3-C10 fluoroalkoxylene group, iii) a substituted aryl group, iv) an oligomer comprising copolymerized units of vinylidene fluoride and perfluoro(methyl vinyl ether), v) an oligomer comprising copolymerized units of vinylidene fluoride and hexafluoropropylene, vi) an oligomer comprising copolymerized units of tetrafluoroethylene and perfluoro(methyl vinyl ether), and vii) an oligomer comprising copolymerized units of tetrafluoroethylene and a hydrocarbon olefin with B) a telechelic diyne or dinitrile compound in the presence of copper halide catalyst.
    Type: Grant
    Filed: June 17, 2009
    Date of Patent: August 21, 2012
    Assignees: E I du Pont de Nemours and Company
    Inventors: Ming-Hong Hung, Bruno Ameduri, Bernard Boutevin, Aurelien Soules
  • Patent number: 8247598
    Abstract: The present invention provides both crosslinked polymer compositions capable of forming hydrogels upon exposure to an aqueous environment and thiosulfonate hydrogel-forming components. The thiosulfonate hydrogel-forming components of the invention are preferably multi-arm thiosulfonate polymer derivatives that form a crosslinked polymer composition when exposed to a base without requiring the presence of a second cross-linking reagent, redox catalyst, or radiation. Methods for forming hydrogel compositions, as well as methods for using the hydrogels, are also provided.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: August 21, 2012
    Assignee: Nektar Therapeutics
    Inventors: Zhihao Fang, Michael D. Bentley
  • Publication number: 20120202967
    Abstract: A method for preparing terpolymer of poly (biphenyl sulfone ether) and poly (ether sulfone) comprises: adding high-temperature organic solvent into a flask, stirring and heating to 80° C., adding 4,4?-dichlorodiphenylsulfone,4,4?-Bis(4-chlorophenyl)sulfonyl-1,1?-biphenyl and 4,4?-dihydroxydiphenylsulfone with solid content of 20-35%; stirring until monomers are completely dissolved, heating to 100° C., adding salt-forming agent and xylene; stirring while heating so that salt-forming reaction begins in the system, wherein the system temperature is controlled between 190° C. and 210° C.; when the amount of water discharged reaches the theoretical value, the first stage of salt-forming reaction is finished; heating the system to 230-236° C.
    Type: Application
    Filed: October 26, 2010
    Publication date: August 9, 2012
    Applicant: KINGFA SCI & TECH CO., LTD.
    Inventors: Zhongwen Wu, Rongtang Ma