From Aluminum- Or Heavy Metal-containing Reactant Patents (Class 528/395)
  • Patent number: 10470472
    Abstract: A method and apparatus for removing guts of a fish body, the method includes: transferring a fish body A, with a head cut off and removed, by a transfer device and cutting open the abdomen thereof with an abdominal blade on the way of transfer; transferring the fish body to a gut removal member and causing membrane separation blades, provided at an upper end portion of the gut removal member, to enter in between a peritoneal membrane portion on both sides of the vertebra and a fish meat inner wall on a head cut-off section of the fish body; swinging the gut removal member downwardly with its lower end portion as fulcrum to tilt the membrane separation blades from the horizontal state and peel off the peritoneal membrane portions from the fish meat inner wall; and shaking off downwardly the guts adhered to the peritoneal membrane portions.
    Type: Grant
    Filed: April 5, 2017
    Date of Patent: November 12, 2019
    Assignee: TOYO SUISAN KIKAI CO., LTD.
    Inventors: Tomoyori Tsukagoshi, Takashi Uchita
  • Patent number: 9481762
    Abstract: The present invention relates to a method of manufacturing a polycarbonate including the process of copolymerizing epoxide compound and CO2 using cobalt(III) or chromium(III), where the ligands contains at least 3 ammonium cations, central metal has formal ?1 charge, and conjugated anions of the two cationic ammonium groups are acid-base homoconjugation, as catalyst. According to the present invention, the initial induction time can be reduced when the polycarbonate is manufactured and it is possible to improve the activity of the catalyst and the molecular weight of the obtained polymer.
    Type: Grant
    Filed: February 6, 2015
    Date of Patent: November 1, 2016
    Assignee: SK Innovation Co., Ltd.
    Inventors: Jisu Jeong, Sujith Sudevan, Myung Ahn Ok, Jieun Yoo, BunYeoul Lee, Sung-Jae Na
  • Patent number: 9136494
    Abstract: A white light emitting material comprising a polymer having an emitting polymer chain and at least one emitting end capping group.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: September 15, 2015
    Assignees: CAMBRIDGE DISPLAY TECHNOLOGY LIMITED, SUMITOMO CHEMICAL CO. LIMITED
    Inventors: Richard Wilson, Thomas Pounds, Natasha M. Conway, Ilaria Grizzi, Antonio Guerrero Castillejo
  • Patent number: 9023978
    Abstract: A material capable of luminescence comprising a polymer or oligomer and an organometallic group, wherein the polymer or oligomer is at least partially conjugated and the organometallic group is covalently bound to the polymer or oligomer and at least one of the nature, location, and proportion of the polymer or oligomer and of the organometallic group in the material are selected so that the luminescence predominantly is phosphorescence.
    Type: Grant
    Filed: April 24, 2003
    Date of Patent: May 5, 2015
    Assignee: Cambridge Enterprise Ltd.
    Inventors: Andrew Bruce Holmes, Albertus Sandee, Charlotte Williams, Annette Koehler, Nick Evans
  • Patent number: 9012675
    Abstract: The present disclosure is directed to, in part, an aliphatic polycarbonate polymerization reaction initiated by combining an epoxide with carbon dioxide in the presence of a catalytic transition metal-ligand complex to form a reaction mixture, and further quenching that polymerization reaction by contacting the reaction mixture with an acid containing a non-nucleophilic anion produces a crude polymer solution with improved stability and processability.
    Type: Grant
    Filed: September 17, 2009
    Date of Patent: April 21, 2015
    Assignee: Novomer, Inc.
    Inventors: Scott D. Allen, Jeffrey R. Conuel, David E. Decker, Anna E. Cherian
  • Patent number: 8981043
    Abstract: The present invention related to a method of manufacturing a polycarbonate including the process of copolymerizing epoxide compound and CO2 using cobalt(III) or chromium(III), where the ligands contains at least 3 ammonium cations, central metal has formal ?1 charge, and conjugated anions of the two cationic ammonium groups are acid-base homoconjugation, as catalyst. According to the present invention, the initial induction time can be reduced when the said polycarbonate is manufactured and it is possible to improve the activity of the catalyst and the molecular weight of the obtained polymer.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: March 17, 2015
    Assignee: SK Innovation Co., Ltd.
    Inventors: Jisu Jeong, Sujith Sudevan, Myungahn Ok, Jieun Yoo, BunYeoul Lee, SungJae Na
  • Patent number: 8894891
    Abstract: A nanomaterial can include an outer layer including a ligand. The ligand can include a first monomer unit including a first moiety having affinity for a surface of the nanocrystal, a second monomer unit including a second moiety having a high water solubility, and a third monomer unit including a third moiety having a selectively reactive functional group or a selectively binding functional group. The ligand can be a random copolymer.
    Type: Grant
    Filed: August 16, 2010
    Date of Patent: November 25, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Wenhao Liu, Peter Matthew Allen, Numpon Insin, Moungi G. Bawendi
  • Patent number: 8865858
    Abstract: The present invention relates to a process for producing a composite material composed of a) at least one oxidic phase and b) an organic polymer phase. The copolymerization of at least one compound of the formula I [(ArO)mMOnRrHp]q??(I) in which M is B, Al, Ga, In, Si, Ge, Sn, P, As or Sb, Ar is phenyl or naphthyl, R is alkyl, alkenyl, cycloalkyl or aryl, where aryl is unsubstituted or may have one or more substituents, with formaldehyde or formaldehyde equivalents, in a reaction medium which is essentially anhydrous, to obtain a composite material having an arrangement of phase domains similar to those nanocomposite materials obtainable by twin polymerization, and to the use of the composite material for production of gas storage materials, rubber mixtures, low-K dielectrics and electrode materials for lithium ion batteries.
    Type: Grant
    Filed: June 25, 2013
    Date of Patent: October 21, 2014
    Assignee: BASF SE
    Inventors: Arno Lange, Gerhard Cox, Hannes Wolf, Szilard Csihony
  • Patent number: 8802246
    Abstract: A light emitting polymer includes a phosphorescence unit and a fluorescence unit. An organic light emitting device includes the light emitting polymer. The light emitting polymer can emit light of two or more colors according to a phosphorescent and fluorescent mechanisms, and thus the organic light emitting device including the light emitting polymer can have long lifetime, high brightness and excellent efficiency, and emit white light.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: August 12, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Jhun-Mo Son, Young-Hun Byun, Yu-Jin Kim, O-Hyun Kwon, Young-Mok Son
  • Patent number: 8795774
    Abstract: Compositions containing certain organometallic oligomers suitable for use as spin-on, metal hardmasks are provided, where such compositions can be tailored to provide a metal oxide hardmask having a range of etch selectivity. Also provided are methods of depositing metal oxide hardmasks using the present compositions.
    Type: Grant
    Filed: September 23, 2012
    Date of Patent: August 5, 2014
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Deyan Wang, Jibin Sun, Peng-Wei Chuang, Peter Trefonas, III, Cong Liu
  • Publication number: 20140211373
    Abstract: The purpose of the present invention is to provide composite particulates and a method for manufacturing the composite particulates, the particulates including an organic substance and a metal having exceptional adhesiveness to a substrate, allowing easier control over metallic particle dispersion, facilitating control over electrical conductivity, and exhibiting high electroconductivity. The metallic particulates are characterized in that they have a thiol compound coordinated on the surfaces thereof, they are adsorbed onto a substrate with a silane compound interposed therebetween, and the thiol compound on the surfaces is subjected to oxidative polymerization, thereby yielding a structure in which an electroconductive polymer is coordinate-bonded to the surface of the metallic particulates.
    Type: Application
    Filed: August 2, 2012
    Publication date: July 31, 2014
    Applicant: HITACHI, LTD.
    Inventors: Taku Oyama, Satoru Amou, Kosuke Kuwabara, Takahito Muraki
  • Patent number: 8754154
    Abstract: The present invention relates to phosphorus-containing triazine compounds of the formula (I) and (III) and to the polymers obtainable from the water-eliminating polycondensation of a compound of the formula (II), and to the use thereof as flame retardants. [(A-H)+]m[Mm+(HPO42?)m]??(III-1), [(A-H)+]m[Mm+(P2O74?)m/2]??(III-2).
    Type: Grant
    Filed: July 16, 2008
    Date of Patent: June 17, 2014
    Assignee: Catena Additives GmbH & Co. KG
    Inventors: Trupti Dave, Wolfgang Wehner
  • Patent number: 8742012
    Abstract: The invention includes a thermosetting film-forming composition comprising a polytrialkanolamine reacted with a crosslinking agent composition. The composition forms a three-dimensional crosslinked network having atrane-containing linkages.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: June 3, 2014
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Michael Zalich, Susan Donaldson, Gregory J. McCollum, Randy E. Daughenbaugh, Kurt G. Olson, Nathan J. Silvernail
  • Publication number: 20140121349
    Abstract: A hydrogel composition is formed by conveying separate first and second liquid components subject to a selectively applied application pressure P(A) into an outlet path for mixing and discharge. A liquid flushing agent is automatically conveyed into the outlet path subject to a substantially constantly applied purge pressure P(P) when the application of P(A) is interrupted, to continuously flush residual hydrogel composition from the outlet path.
    Type: Application
    Filed: January 7, 2014
    Publication date: May 1, 2014
    Applicant: EAST CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventor: Yongshu XIE
  • Patent number: 8703902
    Abstract: Polymerizable ionic liquid monomers and their corresponding polymers (poly(ionic liquid)s) are created and found to exhibit high absorption of radio frequency electromagnetic radiation, particularly in the microwave and radar bands. These materials are useful for coating objects to make them less reflective of radio frequency radiation and for making objects that absorb radio frequency radiation and are of minimal reflectivity to radio frequency radiation. Free-radical and condensation polymerization approaches are used in the preparation of the poly(ionic liquids).
    Type: Grant
    Filed: November 10, 2005
    Date of Patent: April 22, 2014
    Assignee: University of Wyoming
    Inventors: Maciej Radosz, Youqing Shen, Huadong Tang
  • Patent number: 8653230
    Abstract: Implementations and techniques for preparing and using monomers, oligomeric complexes, and coordination polymers are generally disclosed.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: February 18, 2014
    Assignee: East China University of Science and Technology
    Inventor: Yongshu Xie
  • Patent number: 8580915
    Abstract: A micro electromechanical system having incorporated therein a composition of matter consisting of a stable solution containing a polymer derived from a solution of a polymer containing trace metals, the derived method comprising the steps of: (a) providing a polymer solution containing a polymer, a first solvent and trace metals; (b) passing said polymer solution through an acidic cation ion exchange material to remove said trace metals therefrom and thereby forming a polymer solution containing free acid radicals; (c) precipitating said polymer from said polymer solution of step b by contacting with a second solvent wherein the polymer is substantially insoluble therein; (d) filtering said solution and said second solvent to thereby form a solid polymer cake; (e) contacting said cake from step d with sufficient quantities of additional said second solvent in order to remove free acid radicals therefrom; (f) removing any residual first and second solvents from said polymer to form said stable polymer.
    Type: Grant
    Filed: May 23, 2012
    Date of Patent: November 12, 2013
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: William Richard Russell, John Anthony Schultz
  • Patent number: 8546514
    Abstract: Disclosed is a continuous process for manufacturing aliphatic polycarbonate by polymerizing carbon dioxide and one or more epoxide compound in the presence of catalyst, in which carbon dioxide, one or more epoxide compound, and the catalyst are continuously supplied to polymerization reactor to produce aliphatic polycarbonate, separate unreacted carbon dioxide and epoxide compound and recycle them as raw materials.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: October 1, 2013
    Assignee: SK Innovation Co., Ltd.
    Inventors: Byoungmu Chang, Gwangbin Moon, Myungahn Ok, Jisu Jeong, Jieun Yoo, Sun Choi, Hongdae Kim, Sujith Sudevan, Daeho Shin, Jaeho Lee, Seongjun Lee, Gyungrok Kim, Mingyoo Park, Jangjae Lee
  • Patent number: 8530614
    Abstract: A porphyrin coordination polymer nanostructure comprising a network of pyridyl porphyrin molecules and coordinating metal ions coordinatively bound through the pyridyl groups. In some embodiments, the porphyrins are metalloporphyrins. A variety of nanostructures are formed by the network polymer, including nanospheres, polygonal nanostructures, nanorods, and nanofibers, depending on a variety of factors including coordination metal ion, porphyrin type, metal of the metalloporphyrin, and degree of agitation during nanostructure formation. Reduction of coordinating metal ions may be used to form metal nanoparticles on the coordination polymer nanostructure.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: September 10, 2013
    Assignee: Sandia Corporation
    Inventors: Zhongchun Wang, John A. Shelnutt, Craig J. Medforth
  • Patent number: 8512870
    Abstract: A transparent resin for an encapsulation material, including a polymetallosiloxane obtained from at least one metal compound represented by Chemical Formulae 1A to 1D copolymerized with a silicon compound including a compound represented by Chemical Formula 2:
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: August 20, 2013
    Assignee: Cheil Industries, Inc.
    Inventors: June-Ho Shin, Sang-Ran Koh, Sung-Hwan Cha, Hyun-Jung Ahn, Young-Eun Choi
  • Patent number: 8492007
    Abstract: A metal complex which has a metal complex structure showing light emission from triplet excited state, and has a monovalent group derived from carbazole, and a light-emitting device using said metal complex.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: July 23, 2013
    Assignee: Sumitomo Chemical Company
    Inventors: Satoshi Kobayashi, Shuji Doi, Satoshi Mikami
  • Patent number: 8481655
    Abstract: Copper complexes of aminoorgano group-containing organosilicon compounds exhibit high thermal stability and can be used to impart thermal stability to a wide variety of polymer compositions. The complexes are particularly useful as constituents of xerographic rollers and fuser oils, and are simply and economically prepared.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: July 9, 2013
    Assignee: Wacker Chemical Corporation
    Inventors: Elizabeth Sorensen Paps, Fushu Fu, Theodore D. Johnson
  • Patent number: 8472115
    Abstract: An anisotropic dye layer containing a coordination polymer is disclosed. The a polarization control film containing an oriented dichroic dye in which light absorption spectrum of a molecule is reversibly changed by charge passing are disclosed.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: June 25, 2013
    Assignee: Konica Minolta Opto, Inc.
    Inventors: Takatugu Suzuki, Yukihito Nakazawa
  • Patent number: 8440214
    Abstract: Implantable or insertable medical devices are described, which include one or more polymeric regions and one or more therapeutic agents. The polymeric regions, which regulate the release of one or more therapeutic agent from the medical device, contain copolymer molecules, each of which includes one or more soft segments and one or more uniform hard segments (e.g., polyamide segments that do not vary in length from molecule to molecule, among others).
    Type: Grant
    Filed: January 31, 2006
    Date of Patent: May 14, 2013
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Michael Arney, Liliana Atanasoska, Robert Warner
  • Patent number: 8329929
    Abstract: A metal complex represented by the following formula (1): wherein R1 to R6 each independently represent a hydrogen atom or a substituent; Y1 and Y2 each independently represent any one of the following groups: wherein R? represents a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms; P1 and P2 each represent a group of atoms necessary for forming a heterocyclic ring together with Y1 or Y2 and the two carbon atoms at a position adjacent to Y1 or Y2; P1 and P2 may be linked to each other to form a ring; M represents a transition metal element or typical metal element; m represents 1 or 2; X represents a counter ion or a neutral molecule; n represents the number of X's in the complex, and an integer of 0 or more; and Q1 and Q2 each independently represent an aromatic heterocyclic group.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: December 11, 2012
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Tadafumi Matsunaga, Nobuyoshi Koshino, Hideyuki Higashimura
  • Patent number: 8324342
    Abstract: A porphyrin coordination polymer nanostructure comprising a network of pyridyl porphyrin molecules and coordinating metal ions coordinatively bound through the pyridyl groups. In some embodiments, the porphyrins are metalloporphyrins. A variety of nanostructures are formed by the network polymer, including nanospheres, polygonal nanostructures, nanorods, and nanofibers, depending on a variety of factors including coordination metal ion, porphyrin type, metal of the metalloporphyrin, and degree of agitation during nanostructure formation. Reduction of coordinating metal ions may be used to form metal nanoparticles on the coordination polymer nanostructure.
    Type: Grant
    Filed: June 13, 2007
    Date of Patent: December 4, 2012
    Assignee: Sandia Corporation
    Inventors: Zhongchun Wang, John A. Shelnutt, Craig J. Medforth
  • Publication number: 20120214962
    Abstract: Implementations and techniques for preparing and using monomers, oligomeric complexes, and coordination polymers are generally disclosed.
    Type: Application
    Filed: February 18, 2011
    Publication date: August 23, 2012
    Inventor: Yongshu Xie
  • Patent number: 8236910
    Abstract: Cycloolefin copolymers which are distinguished by the presence of racemic diads of repeating polycyclic units and additionally by racemic triads of repeating polycyclic units are described. These copolymers can be prepared by copolymerization of polycyclic olefins with linear olefins in the presence of metallocene catalysts which have no Cs symmetry in relation to the centroid-M-centroid plane. The novel copolymers can be used for the production of shaped articles, in particular of films.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: August 7, 2012
    Assignee: Topas Advanced Polymers GmbH
    Inventors: Dieter Ruchatz, Anne-Meike Schauwienold, Peter Jörg
  • Patent number: 8206838
    Abstract: Photoluminescent and electroluminescent compositions are provided which comprise a matrix comprising aromatic repeat units covalently coordinated to a phosphorescent or luminescent metal ion or metal ion complexes. Methods for producing such compositions, and the electroluminescent devices formed therefrom, are also disclosed.
    Type: Grant
    Filed: December 16, 2003
    Date of Patent: June 26, 2012
    Assignee: Sumitomo Chemical Co., Ltd.
    Inventors: Matthew L. Marrocco, III, Farshad J. Motamedi, Feras Bashir Abdelrazzaq, Bashir Twfiq Abdelrazzaq, legal representative
  • Patent number: 8193291
    Abstract: In a solution of metal-polymer (chelate(s) and applications thereof, a metal-polymer chelate is prepared by mixing water and R—COOH soluble carbohydride molecules and/or hydroxyl or hydroxyl amino and/or carboxyl and/or carbohydrate polymers, metal salts and/or ammonia or amines. The solution of metal-polymer chelate(s) is used extensively in different technical areas including oxidation, condensation, degradation, oxidizing condensation, gas detection, artificial imitated chitosan solution, artificial imitated glucosamine, disinfectant, biochemical reaction for fermentation, biological protein and its metabolite purification, metal enzyme biocatalyst, dry activation of protein enzyme, bacteria preservation systems, oil product, plant, semiconductor, nano filtration, nano material production, nano inorganic matter, nano ceramic, nano plastic, nano textile, battery, liquid crystal, and biochip. These reactions give effects for chemical engineering, gas removal, and waste solvent treatment.
    Type: Grant
    Filed: January 31, 2005
    Date of Patent: June 5, 2012
    Inventor: Caiteng Zhang
  • Patent number: 8138286
    Abstract: Cycloolefin copolymers which are distinguished by the presence of racemic diads of repeating polycyclic units and additionally by racemic triads of repeating polycyclic units are described. These copolymers can be prepared by copolymerization of polycyclic olefins with linear olefins in the presence of metallocene catalysts which have no Cs symmetry in relation to the centroid-M-centroid plane. The novel copolymers can be used for the production of shaped articles, in particular of films.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: March 20, 2012
    Assignee: Topas Advanced Polymers GmbH
    Inventors: Dieter Ruchatz, Anne-Meike Schauwienold, Peter Jörg
  • Publication number: 20120064790
    Abstract: The invention relates to ethylene diphosphinic acids and salts thereof of general formula A-P(O)(OX)—CR1R2—CR3R4—P(O)(OX)-A, in which A, H and/or CR5R6—OH, R1, R2, R3, R4, R5, R6 are the same or different, and denote independently from each other H, C1-C20 alkyl, C6-C20 aryl and or C6-C20 aralkyl, and X denotes H, an alkali metal, an element of the second main and secondary group, an element of the third main and secondary group, an element of the fourth main and secondary group, an element of the fifth main and secondary group, an element of the sixth secondary group, an element of the seventh secondary group, an element of the eight secondary group and/or a nitrogen base. Also disclosed are a method for producing same and the use thereof.
    Type: Application
    Filed: November 22, 2011
    Publication date: March 15, 2012
    Applicant: CLARIANT FINANCE (BVI) LIMITED
    Inventors: Harald BAUER, Werner KRAUSE, Peter STANIEK
  • Patent number: 8093350
    Abstract: Disclosed is a coordination polymer crystal with porous metal-organic frameworks (MOFs), in which, while a crystal state of the coordination polymer crystal is maintained, an additional material selected from the group consisting of an organic compound, a metal cluster, and an organometallic compound is chemically bonded to the coordination polymer crystal. Therefore it is possible easily adsorb and store more guest molecules regardless of a change in an ambient temperature or pressure due to the chemically bonded additional material.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: January 10, 2012
    Assignee: Insilicotech Co., Ltd
    Inventors: Dong-Hyun Jung, Min-Kyoung Kim, Dae-Jin Kim, Tae-Bum Lee, Seung-Hoon Choi, Ji-Hye Yoon, Sang-Beom Choi, You-Jin Oh, Min-Jeong Seo, Ja-Heon Kim, Byoung-Ho Won, Ki-Hang Choi
  • Publication number: 20120004388
    Abstract: Organometallic coatings or films, substrates coated with such films and methods for applying the films to the substrates are disclosed. The organometallic film or coating is derived from a transition metal compound containing both halide ligands and alkoxide ligands. Coated articles comprising polymer substrates and adhered to the substrate surface an organometallic film in which the metal comprises halide and alkoxide ligands are also disclosed.
    Type: Application
    Filed: September 7, 2011
    Publication date: January 5, 2012
    Applicant: Aculon, Inc.
    Inventor: Eric L. Hanson
  • Patent number: 8058347
    Abstract: A composite including interpenetrating networks of an organic polymer, such as from an acrylate or olefin, having urethane groups; and an inorganic polymer, the composite having a low or no-shrinkage characteristic, and a method for making the composite, as defined herein.
    Type: Grant
    Filed: February 9, 2010
    Date of Patent: November 15, 2011
    Assignee: Corning Incorporated
    Inventor: Nikita Sergeevich Shelekhov
  • Publication number: 20110245383
    Abstract: The present invention relates to phosphorus-containing triazine compounds of the formula (I) and (III) and to the polymers obtainable from the water-eliminating polycondensation of a compound of the formula (II), and to the use thereof as flame retardants. [(A-H)+]m[Mm+(HPO42?)m]??(III-1), [(A-H)+]m[Mm+(P2O74?)m/2]??(III-2).
    Type: Application
    Filed: July 16, 2008
    Publication date: October 6, 2011
    Inventors: Trupti Dave, Wolfgang Wehner
  • Patent number: 7989030
    Abstract: A silicone resin containing boron, aluminum, and/or titanium, and having silicon-bonded branched alkoxy groups; a silicone composition containing a silicone resin; and a method of preparing a coated substrate comprising applying a silicone composition on a substrate to form a film and pyrolyzing the silicone resin of the film.
    Type: Grant
    Filed: July 23, 2007
    Date of Patent: August 2, 2011
    Assignee: Dow Corning Corporation
    Inventors: Ronald Boisvert, Duane Bujalski, Zhongtao Li, Kai Su
  • Patent number: 7989580
    Abstract: Metal complexes of formula I and IA and polymers derived from the complexes are useful in optoelectronic devices wherein M is Ir, Co or Rh; is a cyclometallated ligand; R1 is hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, arylalkyl, or substituted arylalkyl; R2 is hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl; and at least one of R1 and R2 is other than hydrogen; R1a is hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, arylalkyl, or substituted arylalkyl; R2a is hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl; and at least one of R1a and R2a is substituted alkyl, substituted aryl, substituted arylalkyl, and at least one substitutent of the substituted alkyl, substituted aryl, or substituted arylalkyl is a polymerizable group.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: August 2, 2011
    Assignee: General Electric Company
    Inventors: Kyle Erik Litz, Kelly Scott Chichak, Donald Wayne Whisenhunt, Jr.
  • Publication number: 20110177332
    Abstract: Example embodiments are directed to a nanofiber-nanowire composite includes a polymer nanofiber; and a plurality of nanowires of a metal oxide extending from inside to outside of the polymer nanofiber and covering the polymer nanofiber. According to example embodiments, a method of fabricating a nanofiber-nanowire composite includes forming a nanofiber including a metal seed; and growing nanowires of a metal oxide from the metal seed to the outside of the nanofiber.
    Type: Application
    Filed: June 30, 2010
    Publication date: July 21, 2011
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Jong-jin Park, Seung-nam Cha, Jae-hyun Hur
  • Patent number: 7973126
    Abstract: Polymers including at least one structural unit derived from a compound of formula I or including at least one pendant group of formula II may be used in optoelectronic devices wherein R1, R3, R4 and R6 are independently hydrogen, alkyl, alkoxy, oxaalkyl, alkylaryl, aryl, arylalkyl, heteroaryl, substituted alkyl; substituted alkoxy, substituted oxaalkyl, substituted alkylaryl, substituted aryl, substituted arylalkyl, or substituted heteroaryl; R1a is hydrogen or alkyl; R2 is alkylene, substituted alkylene, oxaalkylene, CO, or CO2; R2a is alkylene; R5 is independently at each occurrence hydrogen, alkyl, alkylaryl, aryl, arylalkyl, alkoxy, carboxy, substituted alkyl; substituted alkylaryl, substituted aryl, substituted arylalkyl, or substituted alkoxy, X is halo, triflate, —B(OR1a)2, or ?located at the 2, 5- or 2, 7-positions; and L is derived from phenylpyridine, tolylpyridine, benzothienylpyridine, phenylisoquinoline, dibenzoquinozaline, fluorenylpyridine, ketopyrrole, 2-(1-naphthyl)benzo
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: July 5, 2011
    Assignee: General Electric Company
    Inventors: Joseph John Shiang, Kelly Scott Chichak, James Anthony Cella, Larry Neil Lewis, Kevin Henry Janora
  • Publication number: 20110112272
    Abstract: Processes and methods of making and preparing, compositions and structural products therefrom are provided, whereby the surface area of alumino-silicate based powders is greatly increased and rendered chemically active so that when the functionalized powders are mixed with water poly-condensation reactions occur between the surfaces binding the powders together to form a structural material with negligible emission of carbon compounds. In another embodiment, the surface functionalized powders can be mixed with an additive; a dry aggregate, such as sand and water to make a slurry that can be poured or cast into any desired shape and rapidly cured to a hardened shape suitable for use as a structural material with the mechanical strength equivalent to Portland-cement based concrete products.
    Type: Application
    Filed: December 16, 2008
    Publication date: May 12, 2011
    Applicant: University of Central Florida Research Foundation, Inc.
    Inventors: Sudipta Seal, Larry L. Hench, Suresh Babu Krishna Moorthy, David Reid, Ajay Karakoti
  • Publication number: 20110054145
    Abstract: Disclosed is a continuous process for manufacturing aliphatic polycarbonate by polymerizing carbon dioxide and one or more epoxide compound in the presence of catalyst, in which carbon dioxide, one or more epoxide compound, and the catalyst are continuously supplied to polymerization reactor to produce aliphatic polycarbonate, separate unreacted carbon dioxide and epoxide compound and recycle them as raw materials.
    Type: Application
    Filed: September 2, 2010
    Publication date: March 3, 2011
    Applicant: SK ENERGY CO., LTD.
    Inventors: Byoungmu Chang, Gwangbin Moon, Myungahn Ok, Jisu Jeong, Jieun Yoo, Sun Choi, Hongdae Kim, Sujith Sudevan, Daeho Shin, Jaeho Lee, Seongjun Lee, Gyungrok Kim, Mingyoo Park, Jangjae Lee
  • Patent number: 7888453
    Abstract: Disclosed herein are ferrocene-containing polymers in which ferrocene is conjugated to the backbone of conductive conjugated polymers. Further disclosed are organic memory devices comprising the ferrocene-containing polymers. Because the organic memory devices possess the advantages of decreased switching time, decreased operating voltage, decreased fabrication costs and increased reliability, they may be used as highly integrated large-capacity memory devices.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: February 15, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Tae Lim Choi, Kwang Hee Lee, Sang Kyun Lee, Won Jae Joo
  • Publication number: 20110034667
    Abstract: This invention relates to processes for compounds, polymeric compounds, and compositions used to prepare semiconductor and optoelectronic materials and devices including thin film and band gap materials. This invention provides a range of compounds, polymeric compounds, compositions, materials and methods directed ultimately toward photovoltaic applications, transparent conductive materials, as well as devices and systems for energy conversion, including solar cells. In particular, this invention relates to polymeric precursor compounds and precursor materials for preparing photovoltaic layers. A compound may contain repeating units {MB(ER)(ER)} and {MA(ER)(ER)}, wherein MA is Ag, each MB is In or Ga, each E is S, Se, or Te, and each R is independently selected, for each occurrence, from alkyl, aryl, heteroaryl, alkenyl, amido, silyl, and inorganic and organic ligands.
    Type: Application
    Filed: August 18, 2010
    Publication date: February 10, 2011
    Applicant: PRECURSOR ENERGETICS, INC.
    Inventors: Kyle L. Fujdala, Wayne A. Chomitz, Zhongliang Zhu, Matthew C. Kuchta, Qinglan Huang
  • Patent number: 7871712
    Abstract: A water-capturing or drying agent placed in a hermetically sealed field light emission device for maintaining stable light emission of the light emission device not susceptible to moisture and oxygen for long period of time. The drying agent comprises a compound of polymer formed by bonding M constituting a plurality of organometallic compounds wherein M is a trivalent metal atom with an oxygen molecule. The drying agent is placed in the hermetically sealed container, thereby protecting the field light emission device from being adversely affected by damage from trace amounts of moisture permeating from outside the hermetically sealed container and/or adhered to the inner surface thereof.
    Type: Grant
    Filed: March 22, 2006
    Date of Patent: January 18, 2011
    Assignee: Futaba Corporation
    Inventors: Hisamitsu Takahashi, Shigeru Hieda, Satoshi Tanaka
  • Patent number: 7862983
    Abstract: A composition of matter consisting of a stable solution containing a polymer derived from a solution of a polymer containing trace metals, the derived method comprising the steps of: (a) providing a polymer solution containing a polymer, a first solvent and trace metals; (b) passing said polymer solution through an acidic cation ion exchange material to remove said trace metals therefrom and thereby forming a polymer solution containing free acid radicals; (c) precipitating said polymer from said polymer solution of step b by contacting with a second solvent wherein the polymer is substantially insoluble therein; (d) filtering said solution and said second solvent to thereby form a solid polymer cake; and (e) contacting said cake from step d with sufficient quantities of additional said second solvent in order to remove free acid radicals therefrom.
    Type: Grant
    Filed: May 6, 2010
    Date of Patent: January 4, 2011
    Assignee: DuPont Electronic Polymers L.P.
    Inventors: William Richard Russell, John Anthony Schultz
  • Publication number: 20100311936
    Abstract: In one embodiment the present invention provides for high thermal conductivity materials 30 that have surface functional groups grafted thereto. These grafted surface functional groups then form a continuous bond with a host resin matrix 32 that the high thermal conductivity materials 30 are added to.
    Type: Application
    Filed: August 20, 2010
    Publication date: December 9, 2010
    Inventors: James David Blackhall Smith, Gary Stevens, John William Wood
  • Patent number: 7834135
    Abstract: To provide a light emitting device capable of emitting light with high efficiency and of being formed by a coating process, the present invention provides a light emitting device including as a light emitting material a polymeric mixed-metal complex containing two or more kinds of metals selected from Cu, Ag, and Au.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: November 16, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventors: Akira Tsuboyama, Kazunori Ueno, Yoichi Sasaki, Kiyoshi Tsuge, Seiko Shibata, Motoshi Tamura
  • Publication number: 20100282080
    Abstract: Fluorinated metal-organic frameworks (“FMOFs”) are capable of adsorbing and desorbing gases and molecules. The FMOFs can be arranged in a variety of configurations and have internal hollow channels and cavities. In the FMOFs, hydrogen atoms have been substituted completely or partially with fluorine atoms or fluorinated groups in each linking organic ligand. The FMOFs have high densities, leading to an enhanced volumetric capacity for gas storage.
    Type: Application
    Filed: September 12, 2008
    Publication date: November 11, 2010
    Inventors: Mohammad A. Omary, Chi Yang
  • Publication number: 20100202950
    Abstract: Efficient heterogeneous catalysts were prepared by derivatization and palladation of commercially available chloromethylated polystyrene, and derivatization and palladation of functionalized silica gels with benzylchloride pendant groups. Both polymer based and silica based heterogeneous catalysts exhibited catalytic activity. Catalytic activity was studied using methanolysis of commercially available P?S pesticides. Catalytic activity of catalysts immobilized on silica gel was greater than catalyst immobilized on polymer.
    Type: Application
    Filed: November 4, 2009
    Publication date: August 12, 2010
    Inventors: Alexei A. Neverov, R. Stanley Brown, Mark F. Mohamed