From Aluminum- Or Heavy Metal-containing Reactant Patents (Class 528/395)
  • Publication number: 20100202950
    Abstract: Efficient heterogeneous catalysts were prepared by derivatization and palladation of commercially available chloromethylated polystyrene, and derivatization and palladation of functionalized silica gels with benzylchloride pendant groups. Both polymer based and silica based heterogeneous catalysts exhibited catalytic activity. Catalytic activity was studied using methanolysis of commercially available P?S pesticides. Catalytic activity of catalysts immobilized on silica gel was greater than catalyst immobilized on polymer.
    Type: Application
    Filed: November 4, 2009
    Publication date: August 12, 2010
    Inventors: Alexei A. Neverov, R. Stanley Brown, Mark F. Mohamed
  • Publication number: 20100197886
    Abstract: A modified polymer complex, which is obtained by intermolecular and/or intramolecular crosslinking of a polymer complex via side chains thereof, wherein the polymer complex is a copolymer of a complex monomer meeting the following conditions (i) to (iii) and a comonomer expressed by the following general formula (1): R02R03?R01E (The definitions of R01, R02, R03 and E are omitted.) (i) the complex monomer has two or more transition metal atoms; (ii) the complex monomer has a polydentate ligand containing three or more coordinating atoms that are coordinately bonded to the transition metal atoms; and (iii) the polydentate ligand has one or more polymerizable functional groups.
    Type: Application
    Filed: August 5, 2008
    Publication date: August 5, 2010
    Applicant: Sumitomo Chemical Company, Limited
    Inventors: Takeshi Ishiyama, Hideyuki Higashimura, Sho Kanesaka
  • Patent number: 7763365
    Abstract: A polymer light emitting material, wherein the material has a light emitting mechanism based on transition from an excited triplet state to a ground state or transition through an excited triplet state to a ground state of an electron energy level, and the material comprises a nonionic light emitting part which constitutes a part of the polymer or is bound to the polymer. The polymer light emitting material exhibits high light emission efficiency above 5%, which is the limit of external quantum efficiency of fluorescence and can be designed so as to have a large area and hence are suitable for mass production of organic light emitting devices.
    Type: Grant
    Filed: February 6, 2008
    Date of Patent: July 27, 2010
    Assignee: Showa Denko K.K.
    Inventors: Masataka Takeuchi, Shuichi Naijo, Naoko Ito, Koro Shirane, Takashi Igarashi, Yoshiaki Takahashi, Motoaki Kamachi
  • Patent number: 7763691
    Abstract: Norbornene monomers with fluorene group and polymer material thereof are disclosed. The norbornene monomers with fluorene group are prepared by Diels-Alder reation. The Norbornene monomers containing fluorene groups are highly active for ring-opening-metathesis polymerization (ROMP), and the molecular weight and PDI value of the obtained polymers are controllable.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: July 27, 2010
    Assignee: National Taiwan University of Science & Technology
    Inventor: Der-Jang Liaw
  • Publication number: 20100174047
    Abstract: Disclosed is a coordination polymer crystal with porous metal-organic frameworks (MOFs), in which, while a crystal state of the coordination polymer crystal is maintained, an additional material selected from the group consisting of an organic compound, a metal cluster, and an organometallic compound is chemically bonded to the coordination polymer crystal. Therefore it is possible easily adsorb and store more guest molecules regardless of a change in an ambient temperature or pressure due to the chemically bonded additional material.
    Type: Application
    Filed: November 30, 2007
    Publication date: July 8, 2010
    Applicant: Insilicotech Co., Ltd.
    Inventors: Dong-Hyun Jung, Min-Kyoung Kim, Dea-Jin Kim, Tae-Bum Lee, Seung-Hoon Choi, Ji-Hye Yoon, Sang-Beom Choi, You-Jin Oh, Min-Jeong Seo, Ja-Heon Kim, Byoung-Ho Won, Ki-Hang Choi
  • Patent number: 7741429
    Abstract: A method of making a stable photoresist solution containing a polymer from a solution of a polymer containing trace metals, said method comprising the steps of: (a) providing a polymer solution containing a polymer, a first solvent and trace metals; (b) passing said polymer solution through an acidic cation ion exchange material to remove said trace metals therefrom and thereby forming a polymer solution containing free acid radicals; (c) precipitating said polymer from said polymer solution of step b by contacting with a second solvent wherein the polymer is substantially insoluble therein; (d) filtering said solution and said second solvent to thereby form a solid polymer cake; (e) contacting said cake from step d with sufficient quantities of additional said second solvent in order to remove free acid radicals therefrom; (f) adding a compatible photoresist solvent to said solid polymer cake from step e and mixing the two in order to dissolve said polymer in said photoresist solvent and thereby forming a
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: June 22, 2010
    Assignee: DuPont Electronic Polymers L.P.
    Inventors: William Richard Russell, John Anthony Schultz
  • Patent number: 7736757
    Abstract: A polymer light emitting material, wherein the material has a light emitting mechanism based on transition from an excited triplet state to a ground state or transition through an excited triplet state to a ground state of an electron energy level, and the material comprises a nonionic light emitting part which constitutes a part of the polymer or is bound to the polymer. The polymer light emitting material exhibits high light emission efficiency above 5%, which is the limit of external quantum efficiency of fluorescence and can be designed so as to have a large area and hence are suitable for mass production of organic light emitting devices.
    Type: Grant
    Filed: February 6, 2008
    Date of Patent: June 15, 2010
    Assignee: Showa Denko K.K.
    Inventors: Masataka Takeuchi, Shuichi Naijo, Naoko Ito, Koro Shirane, Takashi Igarashi, Yoshiaki Takahashi, Motoaki Kamachi
  • Patent number: 7718087
    Abstract: The present invention provides compositions comprising at least one novel polymeric organic iridium compound which comprises at least one cyclometallated ligand and at least one ketopyrrole ligand. The polymeric organic iridium compositions of the present invention are referred to as Type (2) organic iridium compositions and are constituted such that at least one ligand of the novel organic iridium compound has a number average molecular weight of 2,000 grams per mole or greater (as measured by gel permeation chromatography). Type (2) organic iridium compositions are referred to herein as comprising “polymeric organic iridium complexes”. The novel organic iridium compositions are useful in optoelectronic electronic devices such as OLED devices and photovoltaic devices. In one aspect, the invention provides novel organic iridium compositions useful in the preparation of OLED devices exhibiting enhanced color properties and light output efficiencies.
    Type: Grant
    Filed: August 14, 2006
    Date of Patent: May 18, 2010
    Assignee: General Electric Company
    Inventors: Kelly Scott Chichak, James Anthony Cella, Kyle Erik Litz, Joseph John Shiang, Qing Ye
  • Patent number: 7718277
    Abstract: The present invention provides electronic devices comprising novel polymeric organic iridium compositions which provide for enhanced device performance. The polymeric organic iridium compositions employed comprise a polymeric organic iridium compound comprising at least one cyclometallated ligand and at least one ketopyrrole ligand. The polymeric organic iridium compositions employed are referred to as Type (2) organic iridium compositions and are constituted such that at least one ligand of the polymeric organic iridium compound has a number average molecular weight of 2,000 grams per mole or greater (as measured by gel permeation chromatography). Type (2) organic iridium compositions are referred to herein as comprising “polymeric organic iridium complexes”. In one aspect, the present invention provides optoelectronic devices, such as OLED devices and photovoltaic devices. In another aspect, the invention provides OLED devices exhibiting enhanced color properties and light output efficiencies.
    Type: Grant
    Filed: August 16, 2006
    Date of Patent: May 18, 2010
    Assignee: General Electric Company
    Inventors: Kelly Scott Chichak, James Anthony Cella, Kyle Erik Litz, Joseph John Shiang, Qing Ye
  • Publication number: 20100120996
    Abstract: The present invention has its object to produce a highly reactive crystalline polyoxyalkylene polyol with a very high isotacticity at low cost, and provide polyurethane resins, and polyester resins which are excellent in sharp meltability. The present invention relates to a method for producing a crystalline polyoxyalkylene polyol having a number average molecular weight of 500 to 20,000 including performing ring-opening polymerization of an alkylene oxide (a) in the presence of a salen complex (B), the crystalline polyoxyalkylene polyol (A), and a polyurethane resin and a polyester resin produced by the crystalline polyoxyalkylene polyol (A).
    Type: Application
    Filed: April 24, 2008
    Publication date: May 13, 2010
    Applicant: SANYO CHEMICAL INDUSTRIES, LTD.
    Inventors: Hironobu Tokunaga, Ichiro Yamada, Yuko Hamano
  • Patent number: 7705528
    Abstract: A halogenated aromatic monomer-metal complex useful for preparing a polymer for electronic devices such as a light-emitting diode (LED) device is described. The aromatic monomer-metal complex is designed to include a linking group that disrupts conjugation, thereby advantageously reducing or preventing electron delocalization between the aromatic monomer fragment and the metal complex fragment. Disruption of conjugation is often desirable to preserve the phosphorescent emission properties of the metal complex in a polymer formed from the aromatic monomer-metal complex. The resultant conjugated electroluminescent polymer has precisely controlled metal complexation and electronic properties that are substantially or completely independent of those of the polymer backbone.
    Type: Grant
    Filed: July 16, 2004
    Date of Patent: April 27, 2010
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Wanglin Yu, James J. O'Brien
  • Patent number: 7700710
    Abstract: A method and a ceramic made therefrom by: providing a composition of a compound having the formula below and a metallic component, and pyrolyzing the composition. R is an organic group. The value n is a positive integer. Q is an acetylenic repeat unit having an acetylene group, crosslinked acetylene group, (MLx)y-acetylene complex, and/or crosslinked (MLx)y-acetylene complex. M is a metal. L is a ligand. The values x and y are positive integers. The metallic component is the (MLx)y-acetylene complex in the compound or a metallic compound capable of reacting with the acetylenic repeat unit to form the (MLx)y-acetylene complex. The ceramic comprises metallic nanoparticles.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: April 20, 2010
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Teddy M Keller, Manoj K. Kolel-Veetil, Syed B Qadri
  • Patent number: 7691493
    Abstract: A main chain-type or side chain-type polymeric compound having a structure wherein at least one metal complex segment having a plurality ligands is introduced into a main chain or a side chain is provided. In the case where the polymeric compound is the main chain-type polymeric compound, the metal complex segment has at least one ligand constituting a polymer main chain of the polymeric compound and having a carbon atom and oxygen atom bonded to a metal atom. On the other hand, in the case where the polymeric compound is the side chain-type polymeric compound, a polymer main chain thereof has a conjugated structure, preferably a conjugated double bond. A ligand for the polymeric compound includes a chain or cyclic ligand, of which a bidentate ligand having an organic cyclic structure is preferred, and the ligand has at least one carbon atom or oxygen atom and is bonded to a center metal atom, preferably iridium, via the carbon atom or oxygen atom.
    Type: Grant
    Filed: May 9, 2005
    Date of Patent: April 6, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventors: Jun Kamatani, Shinjiro Okada, Akira Tsuboyama, Takao Takiguchi, Satoshi Igawa
  • Publication number: 20100029896
    Abstract: Provided are a complex prepared from ammonium salt-containing ligands and having such an equilibrium structural formula that the metal center takes a negative charge of 2 or higher, and a method for preparing polycarbonate via copolymerization of an epoxide compound and carbon dioxide using the complex as a catalyst. When the complex is used as a catalyst for copolymerizing an epoxide compound and carbon dioxide, it shows high activity and high selectivity and provides high-molecular weight polycarbonate, and thus easily applicable to commercial processes. In addition, after forming polycarbonate via carbon dioxide/epoxide copolymerization using the complex as a catalyst, the catalyst may be separately recovered from the copolymer.
    Type: Application
    Filed: July 29, 2009
    Publication date: February 4, 2010
    Inventors: Myungahn Ok, Jisu Jeong, Bun Yeoul Lee, Sujith S., Anish Cyriac, JaeKi Min, JongEon Seong
  • Patent number: 7635527
    Abstract: A polymer light emitting material, wherein the material has a light emitting mechanism based on transition from an excited triplet state to a ground state or transition through an excited triplet state to a ground state of an electron energy level, and the material comprises a nonionic light emitting part which constitutes a part of the polymer or is bound to the polymer. The polymer light emitting material exhibits high light emission efficiency above 5%, which is the limit of external quantum efficiency of fluorescence and can be designed so as to have a large area and hence are suitable for mass production of organic light emitting devices.
    Type: Grant
    Filed: February 6, 2008
    Date of Patent: December 22, 2009
    Assignee: Showa Denko K.K.
    Inventors: Masataka Takeuchi, Shuichi Naijo, Naoko Ito, Koro Shirane, Takeshi Igarashi, Yoshiaki Takahashi, Motoaki Kamachi
  • Patent number: 7608677
    Abstract: The present invention provides a method for the preparation of polymeric organic iridium complexes useful in electronic devices such as OLEDs. The method provides polymeric organic iridium compositions comprising at least one cyclometallated ligand and at least one ketopyrrole ligand. The polymeric organic iridium compositions provided are referred to as Type (2) organic iridium compositions and are constituted such that at least one ligand of the polymeric organic iridium compound has a number average molecular weight of 2,000 grams per mole or greater (as measured by gel permeation chromatography). Type (2) organic iridium compositions are referred to herein as comprising “polymeric organic iridium complexes”.
    Type: Grant
    Filed: November 15, 2006
    Date of Patent: October 27, 2009
    Assignee: General Electric Company
    Inventors: James Anthony Cella, Kelly Scott Chichak
  • Patent number: 7582363
    Abstract: The present invention provides an organic polymer light-emitting element material having a gold complex structure as a part of the side chain or crosslinking group as represented by formulae (5) and (8) and an organic polymer light-emitting element comprising layer(s) comprising the organic polymer light-emitting element material. The present invention provides a polymer-based phosphorescent material useful for a multicolor or white light-emitting organic EL device having high luminous efficiency and capable of large-area formation and mass production.
    Type: Grant
    Filed: April 28, 2004
    Date of Patent: September 1, 2009
    Assignee: Showa Denko K.K.
    Inventors: Yoshiaki Takahashi, Isamu Taguchi, Koro Shirane
  • Patent number: 7579430
    Abstract: A metallized polymer having a backbone having an acetylenic repeat unit and —SiR2—(O—SiR2)n— and/or —SiR2—(O—SiR2)n-[Cb-SiR2—(O—SiR2)n]m—. At least one of the acetylenic repeat units contains a (MLx)y-acetylene complex. M is a metal, L is a ligand, x and y are positive integers, R is an organic group, Cb is a carborane, and n and m are greater than or equal to zero. A composition containing a siloxane polymer and a metallic compound. The siloxane polymer has a backbone having one or more acetylene groups and —SiR2—(O—SiR2)n— and/or —SiR2—(O—SiR2)n-[Cb-SiR2—(O—SiR2)n]m—. The metallic compound is capable of reacting with the acetylene group to form a (MLx)y-acetylene complex.
    Type: Grant
    Filed: September 27, 2005
    Date of Patent: August 25, 2009
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Teddy M. Keller, Manoj Kolel-Veetil
  • Patent number: 7576168
    Abstract: A metallized thermoset containing a crosslinked metallized polymer having a backbone having an acetylenic repeat unit and —SiR2—(O—SiR2)n— and/or —SiR2—(O—SiR2)n-[Cb-SiR2—(O—SiR2)n]m—. At least one of the acetylenic repeat units contains a (MLx)y-acetylene complex. The metallized thermoset contains a crosslink between acetylene groups and/or a polycarbosiloxane crosslink. M is a metal, L is a ligand, x and y are positive integers, R is an organic group, Cb is a carborane, and n and m are greater than or equal to zero. A method of making a metallized thermoset by providing a metallized polymer and heating the metallized polymer. The metallized polymer contains the above backbone. Heating the metallized polymer forms crosslinks between acetylene groups and/or polycarbosiloxane crosslinks.
    Type: Grant
    Filed: September 27, 2005
    Date of Patent: August 18, 2009
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Teddy M. Keller, Manoj Kolel-Veetil
  • Patent number: 7572881
    Abstract: Hafnium containing preceramic polymer is made through the reaction of hafnium halide compound with any of the following compounds: ethylene diamine, dimethyl ethylene diamine, piperazine, allylamine and or polyethylene-imine.
    Type: Grant
    Filed: January 25, 2007
    Date of Patent: August 11, 2009
    Inventors: Edward J. A. Pope, Jozsef Hepp, Kenneth M. Kratsch
  • Publication number: 20090156783
    Abstract: Polymers including at least one structural unit derived from a compound of formula I or including at least one pendant group of formula II may be used in optoelectronic devices wherein R1, R3, R4 and R6 are independently hydrogen, alkyl, alkoxy, oxaalkyl, alkylaryl, aryl, arylalkyl, heteroaryl, substituted alkyl; substituted alkoxy, substituted oxaalkyl, substituted alkylaryl, substituted aryl, substituted arylalkyl, or substituted heteroaryl; R1a is hydrogen or alkyl; R2 is alkylene, substituted alkylene, oxaalkylene, CO, or CO2; R2a is alkylene; R5 is independently at each occurrence hydrogen, alkyl, alkylaryl, aryl, arylalkyl, alkoxy, carboxy, substituted alkyl; substituted alkylaryl, substituted aryl, substituted arylalkyl, or substituted alkoxy, X is halo, triflate, —B(OR1a)2, or ?located at the 2, 5- or 2, 7-positions; and L is derived from phenylpyridine, tolylpyridine, benzothienylpyridine, phenylisoquinoline, dibenzoquinozaline, fluorenylpyridine, ketopyrrole, 2-(1-naphthyl)benzo
    Type: Application
    Filed: December 17, 2007
    Publication date: June 18, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Joseph John Shiang, Kelly Scott Chichak, James Anthony Cella, Larry Neil Lewis, Kevin Henry Janora
  • Publication number: 20090131564
    Abstract: Stabilizer system for chlorinated polymers, especially PVC, comprising at least one coordination-polymeric triethanolamineperchlorato(triflato)metal inner complex comprising the monomer unit of the formula (A) The stabilizer system may additionally comprise substituted cyanoacetylureas or/and 6-aminouracils or/and 3-aminocrotonic esters or/and hydantoins or/and monomeric or polymeric dihydropyridines or alkaline earth metal hydroxides or/and hydrotalcites or/and dawsonites or/and zeolites or/and glycidyl compounds or/and cyanamides or/and cyanoguanidines or/and melamines. In addition, phosphites or/and sterically hindered amines or/and NOR-HALS compounds may be present.
    Type: Application
    Filed: December 26, 2007
    Publication date: May 21, 2009
    Inventors: Wolfgang Wehner, Trupti Dave, Thomas Wannemacher
  • Publication number: 20090062409
    Abstract: A coordination polymer includes a plurality of metal atoms or metal clusters linked together by a plurality of organic linking ligands. Each linking ligand comprises a residue of a negatively charged polydentate ligand. Characteristically, the plurality of multidentate ligands include a first linking ligand having first hydrocarbon backbone and a second ligand having a second hydrocarbon backbone. The first hydrocarbon backbone is different than the second hydrocarbon backbone.
    Type: Application
    Filed: August 30, 2007
    Publication date: March 5, 2009
    Applicant: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Adam J. Matzger, Antek G. Wong-Foy, Kyoungmoo Koh
  • Patent number: 7473781
    Abstract: A polymer carrier to which a prescribed zinc complex group is binding directly or through a spacer, having property to bond, under a certain condition, to an anionic substituent (a phosphate group, for example), showing low solubility to a solvent (preferably insolubility to a solvent) as a whole, and being capable of capturing, separating and purifying easily a substance having an anionic substituent (a phosphate group, for example).
    Type: Grant
    Filed: March 4, 2004
    Date of Patent: January 6, 2009
    Assignee: Manac Inc.
    Inventors: Tohru Koike, Yohsuke Yamamoto, Hironori Takeda, Yoshio Sano, Satoko Yougai
  • Publication number: 20080306227
    Abstract: An oxygen-bridged bimetallic complex of the general formula (I) Cp2R1M1-O-M2R22Cp, ??(I) wherein Cp is independently a cyclopentadienyl, indenyl or fluorenyl ligand which can be substituted, or a ligand isolobal to cyclopentadienyl, R1, R2 independently are halide, linear or branched or cyclic alkyl, aryl, amido, phosphido, alkoxy or aryloxy groups, which can be substituted, M1 is Zr, Ti or Hf, and M2 is Ti, Zn, Zr or a rare earth metal. The complex can be useful as a polymerization catalyst.
    Type: Application
    Filed: April 28, 2008
    Publication date: December 11, 2008
    Inventors: Herbert W. Roesky, Prabhuodeyara M. Gurubasavaraj
  • Publication number: 20080300381
    Abstract: To provide an electrode material excellent in output characteristics and cycle property and an electrochemical device using the electrode material. The electrode material comprising polymer complex compound represented by the following graphical formula: and the electrochemical device using the electrode material. Even if such a large size ion is employed, enhanced output characteristics could be obtained in the present invention. Polymer complex compound is polarized due to an electron attracting substituent, or steric hindrance occurs due to a substituent having a branch structure so that interval of polymer complex compound formed on the electrode is increased and doping reaction. Therefore, even if using large size ions smooth and rapid doping and undoping reaction could take place.
    Type: Application
    Filed: September 30, 2004
    Publication date: December 4, 2008
    Applicant: NIPPON CHEMI-CON CORPORATION
    Inventors: Hidenori Uchi, Kenji Tamamitsu, Shunzo Suematsu, Satoru Tsumeda, Alexander M. Timonov, Sergey A. Logvinov, Nikolay Shkolnik, Sam Kogan
  • Patent number: 7449500
    Abstract: The invention relates to an ink composition containing a multimetallic oligomeric or polymeric azo colorant wherein the colorant is derived from the polymerization reaction of a polyvalent metal cation with a dimeric tridentate ligand containing a coordinating azo group.
    Type: Grant
    Filed: June 10, 2004
    Date of Patent: November 11, 2008
    Assignee: Eastman Kodak Company
    Inventors: Mihaela L. Madaras, Steven Evans, Marcel B. Madaras, David T. Southby
  • Publication number: 20080262195
    Abstract: Disclosed herein is a method of preparing a perfluoroalkadiene. A dihaloperfluorocarbon used as a starting material is added dropwise to a nonpolar organic solvent, a metal powder and an organic metal compound. The dihaloperfluorocarbon is slowly added dropwise in a temperature range from 30° C. to 150° C. for a certain period of time. Moreover, the nonpolar organic solvent used may be benzene, toluene, xylene, etc., and the organic metal compound is used by being dissolved in ethyl ether or tetrahydrofuran at a concentration of 1 to 3M. The metal powder used may be Mg, Zn, Cd, etc.
    Type: Application
    Filed: May 2, 2007
    Publication date: October 23, 2008
    Inventors: Hae-Seok Ji, Ook-Jae Cho, Jae-Gug Ryu, Young-Hoon Ahn, Bong-Suk Kim, Dong-Hyun Kim
  • Publication number: 20080171814
    Abstract: An alpha-halocarbo aromatic monomer or comonomer and/or an allyl halide monomer or comonomer can be reacted with aluminum or an aluminum-containing catalyst to form a polymer.
    Type: Application
    Filed: August 20, 2007
    Publication date: July 17, 2008
    Inventors: Richard H. Hall, Daniel F. Hall
  • Publication number: 20080169756
    Abstract: A light emitting polymer includes a phosphorescence unit and a fluorescence unit. An organic light emitting device includes the light emitting polymer. The light emitting polymer can emit light of two or more colors according to a phosphorescent and fluorescent mechanisms, and thus the organic light emitting device including the light emitting polymer can have long lifetime, high brightness and excellent efficiency, and emit white light.
    Type: Application
    Filed: October 19, 2007
    Publication date: July 17, 2008
    Inventors: Jhun-Mo Son, Young-Hun Byun, Yu-Jin Kim, O-Hyun Kwon, Young-Mok Son
  • Patent number: 7396598
    Abstract: A polymer light emitting material, wherein the material has a light emitting mechanism based on transition from an excited triplet state to a ground state or transition through an excited triplet state to a ground state of an electron energy level, and the material comprises a nonionic light emitting part which constitutes a part of the polymer or is bound to the polymer. The polymer light emitting material exhibits high light emission efficiency above 5%, which is the limit of external quantum efficiency of fluorescence and can be designed so as to have a large area and hence are suitable for mass production of organic light emitting devices.
    Type: Grant
    Filed: June 20, 2002
    Date of Patent: July 8, 2008
    Assignee: Showa Denko K.K.
    Inventors: Masataka Takeuchi, Shuichi Naijo, Naoko Ito, Koro Shirane, Takeshi Igarashi, Yoshiaki Takahashi, Motoaki Kamachi
  • Publication number: 20080146773
    Abstract: The present invention discloses a nucleophilic acyl substitution-based polymerization catalyzed by mononuclear oxometallic complexes. In the first place, the first monomers with a plurality of carboxyl groups, and the second monomers with a plurality of protic nucleophilic groups are provided, wherein the protic nucleophilic groups comprise hydroxyl, amine, or thiol group. Next, catalyzed by the mentioned mononuclear oxometallic complex, the first monomers and the second monomers are polymerized into the designed polymer. On the other hand, this invention discloses another nucleophilic acyl substitution-based polymerization catalyzed by mononuclear oxometallic complexes. In the first place, monomers with at least one carboxyl (phosphonyl) group and at least one masked protic nucleophilic group are provided. Then, monomers are polymerized into the designed polymer, catalyzed by the mentioned mononuclear oxometallic complexes.
    Type: Application
    Filed: December 5, 2007
    Publication date: June 19, 2008
    Applicant: NATIONAL TAIWAN NORMAL UNIVERSITY
    Inventor: Chien-Tien Chen
  • Patent number: 7387732
    Abstract: The invention relates to organic/inorganic hybrid polymer blends and hybrid polymer blend membranes that are composed of: one polymer acid halide containing SO2X, POX2 or COX groups (X?, Cl, Br, I); one elemental or metallic oxide or hydroxide, obtained by the hydrolysis and/or the sol/gel reaction of an elemental and/or organometallic compound during the membrane forming process and/or by subsequently treating the membrane in aqueous acidic, alkaline or neutral electrolytes. The invention further relates to hybrid blends and hybrid blend membranes containing polymers that carry SO3H, PO3H2 and/or COOH groups, obtained by aqueous, alkaline or acidic hydrolysis of the polymer acid halides contained in the polymer blend or the polymer blend membrane. The invention also relates to methods for producing the inventive hybrid blends and hybrid blend membranes.
    Type: Grant
    Filed: December 15, 2005
    Date of Patent: June 17, 2008
    Inventors: Jochen Kerres, Thomas Häring
  • Publication number: 20080114151
    Abstract: A polymer compound comprising in the same molecule a structure of (A) a conjugated polymer and a structure of (B) a metal complex having at least one tridentate ligand and having a central metal of which atomic number is 21 or more.
    Type: Application
    Filed: December 22, 2005
    Publication date: May 15, 2008
    Applicant: SUMITOMO CHEMICAL COMPANY LIMITED
    Inventors: Nobuhiko Shirasawa, Nobuhiko Akino, Tomoya Nakatani
  • Patent number: 7335717
    Abstract: The in vitro polymerization of silica, silicone, non-silicon metalloid-oxane and metallo-oxane polymer networks, by combining a catalyst and a substrate to polymerize the substrate to form silica, polysiloxanes, polymetalloid-oxanes polymetallo-oxanes (metal oxides), polyorganometalloid oxanes, polyorganometallo oxanes, and the polyhydrido derivatives thereof, at about neutral pH.
    Type: Grant
    Filed: March 22, 2004
    Date of Patent: February 26, 2008
    Assignee: The Regents of the University of California
    Inventors: Daniel E. Morse, David Kisailus, Kristian M. Roth
  • Publication number: 20080023672
    Abstract: The present invention provides novel polymer compositions comprising a polymeric component and a novel organic iridium compound comprising at least one cyclometallated ligand and at least one ketopyrrole ligand. The organic iridium compounds used in the polymer compositions are referred to as Type (1) organic iridium compositions and are constituted such that no ligand of the novel organic iridium compound has a number average molecular weight of 2,000 grams per mole or greater (as measured by gel permeation chromatography). Type (1) organic iridium compositions are referred to herein as comprising “organic iridium complexes”. In one aspect, the polymeric component may be an electroactive polymer. The novel polymer compositions of the invention are useful in optoelectronic electronic devices such as OLED devices and photovoltaic devices. In one aspect, the invention provides novel polymer compositions useful in the preparation of OLED devices exhibiting enhanced color properties and light output efficiencies.
    Type: Application
    Filed: August 17, 2006
    Publication date: January 31, 2008
    Inventors: Kelly Scott Chichak, Kyle Erik Litz, James Anthony Cella, Joseph John Shiang, Qing Ye
  • Publication number: 20080023671
    Abstract: The present invention provides compositions comprising at least one novel polymeric organic iridium compound which comprises at least one cyclometallated ligand and at least one ketopyrrole ligand. The polymeric organic iridium compositions of the present invention are referred to as Type (2) organic iridium compositions and are constituted such that at least one ligand of the novel organic iridium compound has a number average molecular weight of 2,000 grams per mole or greater (as measured by gel permeation chromatography). Type (2) organic iridium compositions are referred to herein as comprising “polymeric organic iridium complexes”. The novel organic iridium compositions are useful in optoelectronic electronic devices such as OLED devices and photovoltaic devices. In one aspect, the invention provides novel organic iridium compositions useful in the preparation of OLED devices exhibiting enhanced color properties and light output efficiencies.
    Type: Application
    Filed: August 14, 2006
    Publication date: January 31, 2008
    Inventors: Kelly Scott Chichak, James Anthony Cella, Kyle Erik Litz, Joseph John Shiang, Qing Ye
  • Publication number: 20070197768
    Abstract: Disclosed herein are ferrocene-containing polymers in which ferrocene is conjugated to the backbone of conductive conjugated polymers. Further disclosed are organic memory devices comprising the ferrocene-containing polymers. Because the organic memory devices possess the advantages of decreased switching time, decreased operating voltage, decreased fabrication costs and increased reliability, they may be used as highly integrated large-capacity memory devices.
    Type: Application
    Filed: December 4, 2006
    Publication date: August 23, 2007
    Inventors: Tae Lim Choi, Kwang Hee Lee, Sang Kyun Lee, Won Jae Joo
  • Patent number: 7238435
    Abstract: A main chain-type or side chain-type polymeric compound having a structure wherein at least one metal complex segment having a plurality ligands is introduced into a main chain or a side chain is provided. In the case where the polymeric compound is the main chain-type polymeric compound, the metal complex segment has at least one ligand constituting a polymer main chain of the polymeric compound and having a carbon atom and oxygen atom bonded to a metal atom. On the other hand, in the case where the polymeric compound is the side chain-type polymeric compound, a polymer main chain thereof has a conjugated structure, preferably a conjugated double bond. A ligand for the polymeric compound includes a chain or cyclic ligand, of which a bidentate ligand having an organic cyclic structure is preferred, and the ligand has at least one carbon atom or oxygen atom and is bonded to a center metal atom, preferably iridium, via the carbon atom or oxygen atom.
    Type: Grant
    Filed: August 30, 2002
    Date of Patent: July 3, 2007
    Assignee: Canon Kabushiki Kaisha
    Inventors: Jun Kamatani, Shinjiro Okada, Akira Tsuboyama, Takao Takiguchi, Satoshi Igawa
  • Patent number: 7192650
    Abstract: A photo-functional molecule element having, on a substrate, a porphyrin polymer containing covalently-fixed porphyrin units, and the method of preparing the same. The photo-functional molecule element may be used as a photoelectric conversion element such as an organic solar cell or a three-dimensional, non-linear organic material.
    Type: Grant
    Filed: February 27, 2004
    Date of Patent: March 20, 2007
    Assignee: Nara Institute of Science and Technology
    Inventors: Yoshiaki Kobuke, Akiharu Satake
  • Patent number: 7101942
    Abstract: Dental material containing a cluster according to the general formula [(M1)a(M2)bOc(OH)d(OR)e(L-Sp-Z)f] (I) in which M1, M2, independently of each other, stand in each case for a metal atom of the IIIrd or Vth main groups or the Ist to VIIIth sub-groups of the periodic table; R is an alkyl group with 1 to 6 carbon atoms; L is a co-ordinating group with 2 to 6 complexing centres; Sp is a spacer group or is absent; Z is a polymerizable group; c is a number from 1 to 30; d, e, independently of each other, are in each case a number from 1 to 30; f is a number from 2 to 30, any charge of the cluster (I) present being equalized by counterions.
    Type: Grant
    Filed: January 18, 2002
    Date of Patent: September 5, 2006
    Assignee: Ivoclar Vivadent AG
    Inventors: Norbert Moszner, Thomas Völkel, Volker Rheinberger, Ulrich Schubert
  • Patent number: 7094866
    Abstract: A covalently linked linear porphyrin polymer represented by formula (1): wherein R represents an alkyl group or ?(wherein a, b and d independently represent H, an alkyl group or aryl group); X represents —O—, —S—, >NR101 (wherein R101 represents H or an alkyl group), —CH2— or a single bond; Y represents ?O, ?S, or 2H; m represents an integer of 0 to 4; n represents an integer of 0 to 6; Z represents a five- or six-membered, nitrogen-containing, coordinating hetero aromatic ring group; M represents an ion of metal selected from typical metals and transition metals; Q1 represents a single bond or a linear, divalent linking group; and p1 represents an integer of 2 or more.
    Type: Grant
    Filed: April 22, 2003
    Date of Patent: August 22, 2006
    Assignee: Nara Institute of Science and Technology
    Inventors: Yoshiaki Kobuke, Akiharu Satake
  • Patent number: 6965006
    Abstract: A method of synthesizing metal alkoxide polymers is provided, for use, as an example, in synthesizing hybrid organic/inorganic materials with low optical absorption for optical applications. The method involves a plurality of acidolysis steps involving acidolysis of a metal alkoxide compound with an acid to produce an intermediate acidolysed solution, and combining and condensing the intermediate acidolysed solutions to produce the metal alkoxide polymer.
    Type: Grant
    Filed: April 10, 2002
    Date of Patent: November 15, 2005
    Assignee: rpo Pty Ltd.
    Inventor: Congji Zha
  • Patent number: 6949620
    Abstract: The invention relates to a polymeric micellar structure which comprising an ionic porphyrin dendrimer represented by general formula (1): q(c)PM (where q represents the number of charged atoms on the periphery of the dendrimer; c represents a negative (?) or positive (+) charge; and PM is represented by the following general formula (2): wherein M represents two hydrogen atoms or a metal atom, R1, R2, R3 and R4 are the same or different and represents hydrogen or identical or different aryl ether dendrosubunits, provided that at least one of R1, R2, R3 and R4 represent an aryl ether dendrosubunits and that each aryl ether dendrosubunit has an anionic or cationic group at the end optionally though a spacer molecule chain.
    Type: Grant
    Filed: January 26, 2001
    Date of Patent: September 27, 2005
    Assignee: Japan Science and Technology Corporation
    Inventors: Takuzo Aida, Dong-Lin Jiang, Daisuke Ohno, Hendrick Stapert, Nobuhiro Nishiyama, Kazunori Kataoka
  • Patent number: 6930166
    Abstract: A polymer compound which is a polyphenylene co-condensation polymer consisting substantially of paraphenylene group and metaphenylene group and improved in forming ability and functions, wherein the ratio of metaphenylene group is in the range of 60 to 95%.
    Type: Grant
    Filed: January 9, 2001
    Date of Patent: August 16, 2005
    Assignee: Japan Science and Technology Agency
    Inventor: Takakazu Yamamoto
  • Patent number: 6838536
    Abstract: A substantially reactive and gel-free composition which comprises: a. particles capable of reaction with a radiation curable resin; b. a coupling agent for modification of the surface of said particles; c. a radiation curable resin; d. a radiation curable salt capable of inhibiting gel formation in said composition.
    Type: Grant
    Filed: August 30, 2002
    Date of Patent: January 4, 2005
    Assignee: UCB, S.A.
    Inventors: Zhikai Wang, Carol Black, Jun Qiao
  • Patent number: 6815528
    Abstract: The invention provides generally a new type of organic electrochromic Near Infrared (NIR)-active materials capable of absorbing and attenuating the light in the NIR region around 1550 nm and forming thin films on electrodes for variable optical attenuator (VOA) applications. They have utility in planar VOA devices. The materials are ruthenium complexes. Unsymmetrical complexes having two different substituents are disclosed, where one substituent is more electron-donating than the other. Complexes which are dimers or trimers (symmetrical or unsymmetrical) are disclosed, as are polymeric complexes. Crosslinked polymeric complex films are also disclosed.
    Type: Grant
    Filed: May 22, 2002
    Date of Patent: November 9, 2004
    Assignee: TWLinks Inc.
    Inventor: Zhi Yuan Wang
  • Patent number: 6727343
    Abstract: A new type of polymer is described that represents a new composition of matter. This polymer contains alternating electronegative group III-VI elements connected with hydrocarbon or fluorocarbon linkages to form a polyalkyl or polyfluoroalkyl heteroatomic polymer. These polymers can be combined with lithium salts to form a solid polymer electrolyte for use in electrochemical systems such as batteries. These new solid polymer electrolytes exhibit lithium cation diffusion and lithium cation transport numbers that are superior to similar solid polymer electrolytes composed of polyethylene oxide.
    Type: Grant
    Filed: April 17, 2001
    Date of Patent: April 27, 2004
    Assignee: Phoenix Innovation, Inc.
    Inventors: Robert Scott Morris, Brian Gilbert Dixon
  • Publication number: 20040072988
    Abstract: A covalently linked linear porphyrin polymer represented by formula (1): 1 2
    Type: Application
    Filed: April 22, 2003
    Publication date: April 15, 2004
    Inventors: Yoshiaki Kobuke, Akiharu Satake
  • Publication number: 20040062988
    Abstract: The present invention relates to a unique polymeric battery system of electrochemical cells that are connected in series, and can be of nanometer size. The polymers possess conjugated bonds along their backbones and high levels of metals. The invention also concerns methods for the fabrication of the polymers and battery system as well as methods for the use of the polymers as a nanoscale solid-state battery.
    Type: Application
    Filed: March 17, 2003
    Publication date: April 1, 2004
    Inventors: Peter Kofinas, Steven Bullock