Oxide Or Hydroxide Patents (Class 528/489)
  • Patent number: 7825213
    Abstract: A method of making a metal-terephthalate polymer from polyester ethylene terephthalate includes reacting polyester ethylene terephthalate with a metal compound in a non-aqueous melt environment at an elevated temperature. The elevated temperature will be greater than 270° C., and preferably rises to a temperature of about 520° C. The method is preferably carried out at a low pressure. The method may be used in the recycling of passenger vehicle tire shreds to produce a carbon black rrich ppowder that is enriched in the metal-terephthalate polymer.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: November 2, 2010
    Assignee: Chem Engineering Energy, LLC
    Inventors: Daniel Eric Steinmeyer, Alan Marc Levine, James Matthew Williams
  • Patent number: 7799836
    Abstract: The invention relates to a process for making modified polybutylene terephthalate random copolymers from a polyethylene terephthalate component. The invention relates to a three step process in which a diol component selected from the group consisting of ethylene glycol, propylene glycol, and combinations thereof reacts with a polyethylene terephthalate component under conditions sufficient to depolymerize the polyethylene terephthalate component into a first molten mixture; and where the first molten mixture is combined with 1,4-butanediol under conditions that create a second molten mixture that is subsequently placed under subatmospheric conditions that produce the modified polybutylene terephthalate random copolymers. The invention also relates to compositions made from the process.
    Type: Grant
    Filed: January 24, 2007
    Date of Patent: September 21, 2010
    Assignee: Sabic Innovative Plastics IP B.V.
    Inventors: Parminder Agarwal, Kristen Cohoon, Sandeep Dhawan, Robert Russell Gallucci, Ganesh Kannan, Kenneth Frederick Miller, Deepak Ramaraju, Gomatam Raghavan Ravi, Dhaval Shah
  • Patent number: 7781563
    Abstract: The present invention relates to a preparing method of methoxypolyethyleneglycol (mPEG) with high purity and derivatives thereof. More precisely, the method of the present invention to prepare high purity mPEG with at least 99% of purity, up to 1.05 of molecular weight distribution and 350˜100,000 of molecular weight includes the process of reacting commercial mPEG having low purity to give highly purified intermediates, mPEG-acetic acid of formula 1 and mPEG-phthalate of formula 2.
    Type: Grant
    Filed: August 3, 2006
    Date of Patent: August 24, 2010
    Assignee: ID Biochem, Inc.
    Inventors: Pyeong-Uk Park, Seong-Neon Kim, Chong-Gu Lee, Ju-Sung Lee
  • Patent number: 7767783
    Abstract: A dehydration step is conducted by heating a mixture containing an organic amide solvent and a sulfur source including an alkali metal hydrosulfide, and a part of an overall charged amount of an alkali metal hydroxide as needed. The mixture remaining within the system after the dehydration step is mixed with a dihalo-aromatic compound, the resultant mixture is heated to conduct a polymerization reaction, and the alkali metal hydroxide is added to the mixture for polymerization reaction continuously or in portions to control the pH of the mixture for polymerization reaction within a range of from 7 to 12.5 from the beginning to the end of the polymerization reaction. The poly(arylene sulfide) according to the present invention has a nitrogen content of at most 800 ppm.
    Type: Grant
    Filed: February 12, 2009
    Date of Patent: August 3, 2010
    Assignee: Kureha Corporation
    Inventors: Hirohito Kawama, Mitsuhiro Matsuzaki, Michihisa Miyahara, Koichi Suzuki, Hiroyuki Sato
  • Publication number: 20100184944
    Abstract: The present invention relates to processes for removing phosphorus from a fiber or yarn.
    Type: Application
    Filed: March 27, 2006
    Publication date: July 22, 2010
    Inventors: Steven R. Allen, Doetze Jakob Sikkema
  • Patent number: 7754848
    Abstract: In a process for producing a poly(arylene sulfide) by polymerizing a sulfur source and a dihalo-aromatic compound in the presence of an alkali metal hydroxide in an organic amide solvent, the production process comprises washing a polymer obtained by the polymerization with a hydrophilic organic solvent containing water in a proportion of 1 to 30% by weight, thereby collecting a purified polymer, the content of nitrogen contained in an extract extracted by a mixed solvent containing 40% by weight of acetonitrile and 60% by weight of water from the purified polymer is at most 50 ppm on the basis of the weight of the polymer, and a poly(arylene sulfide), the content of nitrogen contained in an extract extracted by a mixed solvent containing 40% by weight of acetonitrile and 60% by weight of water from the purified polymer is at most 50 ppm on the basis of the weight of the polymer.
    Type: Grant
    Filed: December 20, 2004
    Date of Patent: July 13, 2010
    Assignee: Kureha Corporation
    Inventors: Hiroyuki Sato, Koichi Suzuki, Hirohito Kawama
  • Patent number: 7732503
    Abstract: The conventional techniques for recycling an electrical equipment including a hardened epoxy resin and electroconductive material has involved conventional problems that a catalyst is degraded to an extent that it can be no longer reused when a water is contained in a dissolving system. Moreover, moisture, when present in the dissolving system for treating an electrical equipment including an electroconductive material of aluminum, may react with aluminum to produce an aluminate compound which is transformed into aluminum oxide (alumina) under heating, which, in turn, may cause abnormal temperature rise to melt aluminum. This may be accompanied by formation of hydrogen which can cause danger of explosion. The present invention manages moisture content in the dissolving system by drying an object to be treated, a catalyst and a solvent prior to the dissolving treatment.
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: June 8, 2010
    Assignee: Hitachi Industrial Equipment Systems Co., Ltd.
    Inventors: Kohei Sato, Tomohiro Kaizu
  • Patent number: 7728047
    Abstract: The invention relates to an enhanced process for the recycling of expanded polystyrene. Said process essentially comprises the reduction in volume of expanded polystyrene by means of dissolution in a solvent, separation of the insoluble components, selective precipitation of the polystyrene with an anti-solvent, separation, drying and extrusion of the precipitated polystyrene, recovery by distillation and recycling of the solvent. The process is characterized in that the anti-solvent is a butanol selected form n-butanol, iso-butanol or sec-butanol and the solvent is dimethyl carbonate, alone or in a mixture containing up to 25% by weight of butanol.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: June 1, 2010
    Assignee: Polimeri Europa S.p.A.
    Inventors: Marcello Notari, Franco Rivetti, Maurizio Ghirardini, Sergio Lombardini
  • Patent number: 7718760
    Abstract: The present invention provides a ?-conjugated polymer containing a repeating unit expressed by the following General Formula (I): where, in the General Formula (I), Y and Ar represent one of a substituted or unsubstituted aromatic hydrocarbon and a substituted or unsubstituted divalent group of aromatic heterocyclic ring, Y1 represents one of a substituted or unsubstituted unsaturated aliphatic hydrocarbon, a substituted or unsubstituted aromatic hydrocarbon and a substituted or unsubstituted divalent group of aromatic heterocyclic ring and R represents one of a hydrogen atom, a substituted or unsubstituted alkyl group and a substituted or unsubstituted aromatic hydrocarbon group.
    Type: Grant
    Filed: March 10, 2006
    Date of Patent: May 18, 2010
    Assignee: Ricoh Company, Ltd.
    Inventors: Masaomi Sasaki, Toshiya Sagisaka, Masafumi Torii, Takashi Okada, Shinichi Kawamura
  • Patent number: 7705092
    Abstract: The present invention has its object to provide a process for producing a vinyl polymer which can provide a vinyl polymer in such form that a polymerization catalyst is effectively removed from that. The present invention relates to a process for producing a vinyl polymer wherein a vinyl polymer at the time of completion of the polymerization is treated with oxygen in the presence of a polar solvent. More preferably, the present invention relates to a process for bringing a polymer added with a polar solvent having a relative dielectric constant at 20° C. of not lower than 10 into contact with mixed gases of oxygen and an inert gas such as nitrogen with an oxygen concentration below the explosion limit oxygen concentration of this solvent as in the state of occurrence as a pure component.
    Type: Grant
    Filed: March 3, 2006
    Date of Patent: April 27, 2010
    Assignee: Kaneka Corporation
    Inventors: Yousuke Asai, Nao Fujita
  • Patent number: 7700196
    Abstract: Organosilicon compounds bearing keto or aldehyde groups are easily prepared in high yield by oxidation of a carbinol-functional precursor by an oxidizing agent in the presence of a nitrogen-containing free radical mediator which contains aliphatic, cycloaliphatic, heterocyclic, or aromatic NO—, NOH—, or H—N—OH group. The oxidation may be conventional, i.e. using air, oxygen, or other oxidant, may be electrochemical, or enzymatic.
    Type: Grant
    Filed: November 18, 2004
    Date of Patent: April 20, 2010
    Assignee: Wacker Chemie AG
    Inventors: Christian Ochs, Elke Fritz-Langhals
  • Patent number: 7687602
    Abstract: There are provided natural rubber free from substances which cause Type I allergy, a rubber compositions having good processability and physical properties which comprises the natural rubber and other rubber, and a tire product comprising the natural rubber. The natural rubber of the present invention exhibits the above properties by containing substantially no proteins specified by the bands of 14, 31 and 45 kDa by SDS-PAGE.
    Type: Grant
    Filed: December 18, 2003
    Date of Patent: March 30, 2010
    Assignee: Sumitomo Rubber Industries, Ltd.
    Inventors: Yasuyuki Tanaka, Jitladda Sakdapipanich
  • Patent number: 7655748
    Abstract: A poly(arylene sulfide) having properties that a melt viscosity is 1 to 3,000 Pa·s as measured under conditions of a temperature of 310° C. and a shear rate of 1,216 sec?1, a pH is 7.0 to 12.0 as measured in a mixed solvent of water/acetone (volume ratio=2/1), a crystallization temperature is at most 220° C. as measured in the course of lowing the temperature of the polymer at a rate of 10° C./min from a molten state, and a whiteness degree is at least 70 as measured in the form of a melt molded or formed product, and a production process thereof.
    Type: Grant
    Filed: February 9, 2005
    Date of Patent: February 2, 2010
    Assignee: Kureha Corporation
    Inventors: Hiroyuki Sato, Koichi Suzuki, Hirohito Kawama
  • Patent number: 7622415
    Abstract: Provided are a polymerization catalyst composition for ethylene oxide which can give polyethylene oxide having a molecular weight lower than that of the prior art and a relatively narrow molecular weight distribution, and a process for the production of polyethylene oxide by the use of the catalyst composition. The catalyst composition makes it possible to produce polyethylene oxide having a molecular weight ranging from about 20,000 to 200,000 through direct polymerization in a high yield with economic advantage, and is characterized by comprising an organoaluminum compound and at least one member selected from among alkali metal alkoxides and alkali metal hydroxides. According to the process, polyethylene oxide having a molecular weight failing within the above range can be produced by the use of the catalyst composition under the same polymerication conditions as those of the prior art.
    Type: Grant
    Filed: October 30, 2003
    Date of Patent: November 24, 2009
    Assignee: Meisei Chemical Works, Ltd.
    Inventor: Hideki Izumi
  • Patent number: 7595367
    Abstract: Capped poly(arylene ether)s are prepared by a method that includes reacting a poly(arylene ether) with a capping agent to form a capping reaction mixture, washing the capping reaction mixture with a concentrated basic aqueous solution, and isolating the capped poly(arylene ether) by a total isolation method. The washing method is effective for removal of capping-related impurities, and surprisingly does not result in decomposition of the capped poly(arylene ether).
    Type: Grant
    Filed: August 28, 2007
    Date of Patent: September 29, 2009
    Assignee: Sabic Innovative Plastics IP B.V.
    Inventors: Alvaro Carrillo, Hua Guo, Alexey Kruglov, Edward Norman Peters
  • Patent number: 7524923
    Abstract: Methods for synthesizing aryl polymers, and uses for such polymers, are provided.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: April 28, 2009
    Assignee: Dupont Displays, Inc.
    Inventors: Sean Lee, Hailiang Wang
  • Patent number: 7510739
    Abstract: An assembled hematin is formed by depositing hematin on an electrically charged substrate in one or more layers alternating with one or more layers of polyelectrolyte, preferably a cationic polymer. In a method for polymerizing an aromatic monomer, the assembled hematin is contacted with the monomer and a template, preferably an anionic polymer. In a method for polymerizing aniline, the aniline, sulfonated multi walled carbon nano tubes, PEG hematin and a reaction initiator are dispersed in water.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: March 31, 2009
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Ferdinando Bruno, Lynne A. Samuelson, Ramaswamy Nagarajan, Jayant Kumar, Michael Sennett
  • Patent number: 7504476
    Abstract: A dehydration step is conducted by heating a mixture containing an organic amide solvent and a sulfur source including an alkali metal hydrosulfide, and a part of an overall charged amount of an alkali metal hydroxide as needed. The mixture remaining within the system after the dehydration step is mixed with a dihalo-aromatic compound, the resultant mixture is heated to conduct a polymerization reaction, and the alkali metal hydroxide is added to the mixture for polymerization reaction continuously or in portions to control the pH of the mixture for polymerization reaction within a range of from 7 to 12.5 from the beginning to the end of the polymerization reaction. The poly(arylene sulfide) according to the present invention has a nitrogen content of at most 800 ppm.
    Type: Grant
    Filed: January 21, 2004
    Date of Patent: March 17, 2009
    Assignee: Kureha Corporation
    Inventors: Hirohito Kawama, Mitsuhiro Matsuzaki, Michihisa Miyahara, Koichi Suzuki, Hiroyuki Sato
  • Patent number: 7446164
    Abstract: A technique is described for the preparation of polymers according to a process in which the starting compound of formula (I) is polymerized in the presence of a base in an organic solvent. No end chain controlling agents are required during the polymerisation to obtain soluble precursor polymers. The precursor polymer such obtained comprises structural units of the formula (II). In a next step, the precursor polymer (II) is subjected to a conversion reaction towards a soluble or insoluble conjugated polymer by thermal treatment. The arylene or heteroarylene polymer comprises structural units of the formula III. In this process the dithiocarbamate group acts as a leaving group and permits the formation of a precursor polymer of structural formula (II), which has an average molecular weight from 5000 to 1000000 Dalton and is soluble in common organic solvents. The precursor polymer with structural units of formula (II) is thermally converted to the conjugated polymer with structural formula (III).
    Type: Grant
    Filed: July 18, 2007
    Date of Patent: November 4, 2008
    Assignees: Interuniversitair Microelektronica Centrum (IMEC), Limburgs Universitair Centrum
    Inventors: Dirk Vanderzande, Laurence Lutsen, Anja Henckens, Kristof Colladet
  • Patent number: 7442759
    Abstract: The invention provides a water-soluble polymer having formula I: where R1 and R2 are independently —H, -alkylCO2A, —(CH2)n-aryl-(CH2)nCO2A, —(CH2)n-heterocycle-(CH2)nCO2A, or —(CH2)n-cycloalkyl-(CH2)nCO2A, where n is an integer from 0 to 200, and A is an alkali metal cation, with the proviso that only one of R1 and R2 is —H. Methods of preparing the water-soluble polymers and thin films prepared therefrom are also described.
    Type: Grant
    Filed: June 22, 2006
    Date of Patent: October 28, 2008
    Assignee: Rieke Metals, Inc.
    Inventor: Reuben Rieke
  • Patent number: 7399529
    Abstract: Resin compositions, methods of forming such resin compositions, methods of using such resin compositions and substrates treated with such resin compositions are disclosed. One of such resin compositions contains no formaldehyde and is useful as a binder. Such resin composition comprises the reaction product of: a—melamine, b—at least one aldehyde of formula (1) as defined in the specification, c—a cross linking agent, wherein the cross linking agent is glyoxylic acid, and d—at least one polyol having 2 or more than 2 hydroxyl groups. The resin composition of the present invention can provide performance characteristics to which they are applied.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: July 15, 2008
    Assignee: Clariant (France)
    Inventors: Gregory J. Hopkins, William C. Floyd
  • Patent number: 7358327
    Abstract: An assembled hematin is formed by depositing hematin on an electrically charged substrate in one or more layers alternating with one or more layers of polyelectrolyte, preferably a cationic polymer. In a method for polymerizing an aromatic monomer, the assembled hematin is contacted with the monomer and a template, preferably an anionic polymer. In a method for polymerizing aniline, the aniline, sulfonated multi walled carbon nano tubes, PEG hematin and a reaction initiator are dispersed in water.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: April 15, 2008
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Ferdinando Bruno, Lynne A. Samuelson, Ramaswamy Nagarajan, Jayant Kumar, Michael Sennett
  • Patent number: 7348396
    Abstract: The invention relates to polymeric phosphinic acids and their salts of the formula (I) where X is hydrogen or 1/m of a metal of valency m, or is a protonated nitrogen base, R1 and R2 are identical or different and are hydrogen, a carboxy group, a carboxylic acid derivative, an unsubstituted or substituted alkyl group having from 1 to 10 carbon atoms, phenyl, benzyl, or alkyl-substituted aromatic systems, R3 and R4 may be identical or different and are an unsubstituted or substituted alkyl group having from 2 to 20 carbon atoms, or are OX, with the above meaning for X, and ? is the average number of monomer units. The invention further relates to a process for preparing the abovementioned compounds, and to their use.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: March 25, 2008
    Assignee: Clariant Produkte (Deutschland) GmbH
    Inventors: Martin Sicken, Werner Krause, Norbert Weferling, Hans-Peter Schmitz
  • Patent number: 7344751
    Abstract: An assembled hematin is formed by depositing hematin on an electrically charged substrate in one or more layers alternating with one or more layers of polyelectrolyte, preferably a cationic polymer. In a method for polymerizing an aromatic monomer, the assembled hematin is contacted with the monomer and a template, preferably an anionic polymer. In a method for polymerizing aniline, the aniline, sulfonated multi walled carbon nano tubes, PEG hematin and a reaction initiator are dispersed in water.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: March 18, 2008
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Ferdinando Bruno, Lynne A. Samuelson, Ramaswamy Nagarajan, Jayant Kumar, Michael Sennett
  • Patent number: 7297415
    Abstract: A method for producing a polymeric fluorescent substance characterized by comprising the step of treating with an acid a polymeric fluorescent substance that is fluorescent in a solid state and has a polystyrene equivalent number average molecular weight of 1×104 to 1×108. A method for producing a polymeric fluorescent substance characterized by comprising the steps of treating with an acid a polymeric fluorescent substance that is fluorescent in a solid state and has a polystyrene equivalent number average molecular weight of 1×104 to 1×108 and treating it with an alkali. A method for producing a polymeric fluorescent substance characterized by comprising the steps of treating with an acid a polymeric fluorescent substance that is fluorescent in a solid state and has a polystyrene equivalent number average molecular weight of 1×104 to 1×108, treating it with an alkali and finally treating it with a substance that does not contain an acid or an alkali.
    Type: Grant
    Filed: June 26, 2001
    Date of Patent: November 20, 2007
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Takanobu Noguchi, Masato Ueda
  • Patent number: 7259231
    Abstract: A method for the extraction, separation, fractionation and purification of biopolymers from plant materials using supercritical and/or subcritical solvent extractions is disclosed. Specifically, the process can be used for the separation of resins and rubber from guayule shrub (Parthenium argentatum), and other rubber and/or resin containing plant materials, using supercritical solvent extraction, for example supercritical carbon dioxide extraction. Additionally, polar and/or non-polar co-solvents can be used with supercritical carbon dioxide to enhance the selective extraction of resins and rubbers from the shrub.
    Type: Grant
    Filed: October 12, 2005
    Date of Patent: August 21, 2007
    Assignee: Yulex Corporation
    Inventors: Katrina Cornish, Jeffrey A. Martin, Rodger T. Marentis, Sebastian Plamthottam
  • Patent number: 7259228
    Abstract: A technique is described for the preparation of polymers according to a process in which the starting compound of formula (I) is polymerized in the presence of a base in an organic solvent. No end chain controlling agents are required during the polymerization to obtain soluble precursor polymers. The precursor polymer such obtained comprises structural units of the formula (II). In a next step, the precursor polymer (II) is subjected to a conversion reaction towards a soluble or insoluble conjugated polymer by thermal treatment. The arylene or heteroarylene polymer comprises structural units of the formula III. In this process the dithiocarbamate group acts as a leaving group and permits the formation of a precursor polymer of structural formula (II), which has an average molecular weight from 5000 to 1000000 Dalton and is soluble in common organic solvents.
    Type: Grant
    Filed: October 21, 2004
    Date of Patent: August 21, 2007
    Assignees: Interuniversitair Microelektronica Centrum (IMEC), Limburgs Universitair Centrum
    Inventors: Dirk Vanderzande, Laurence Lutsen, Anja Henckens, Kristof Colladet
  • Patent number: 7186791
    Abstract: A method for polymerizing electronic and photonic polymers, wherein an aromatic monomer is combined with a hematin catalyst derivatized with at least one non-proteinaceous amphipathic group, and a peroxide initiator, and employing a template, wherein the aromatic monomer aligns along the template and polymerizes to form a complex comprising the polymerized monomer and the template.
    Type: Grant
    Filed: May 2, 2005
    Date of Patent: March 6, 2007
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Ferdinando Bruno, Lynne A. Samuelson, Ramaswamy Nagarajan, Jayant Kumar
  • Patent number: 7169881
    Abstract: Resin compositions, methods of forming such resin compositions, methods of using such resin compositions and substrates treated with such resin compositions are disclosed. One of such resin compositions contains no formaldehyde and is useful as a binder. Such resin composition comprises the reaction product of: a—melamine, b—at least one aldehyde of formula (1) as defined in the specification, c—a cross linking agent, wherein the cross linking agent is glyoxylic acid, and d—at least one polyol having 2 or more than 2 hydroxyl groups. The resin composition of the present invention can provide performance characteristics to which they are applied.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: January 30, 2007
    Assignee: Clariant (France)
    Inventors: Gregory J. Hopkins, William C. Floyd
  • Patent number: 7129320
    Abstract: The invention relates to polymeric phosphinic acids and their salts of the formula (I) where X is hydrogen or 1/m of a metal of valency m, or is a protonated nitrogen base, R1 and R2 are identical or different and are hydrogen, a carboxy group, a carboxylic acid derivative, an unsubstituted or substituted alkyl group having from 1 to 10 carbon atoms, phenyl, benzyl, or alkyl-substituted aromatic systems, R3 and R4 may be identical or different and are an unsubstituted or substituted alkyl group having from 2 to 20 carbon atoms, or are OX, with the above meaning for X, and ? is the average number of monomer units. The invention further relates to a process for preparing the above-mentioned compounds, and to their use.
    Type: Grant
    Filed: March 4, 2004
    Date of Patent: October 31, 2006
    Assignee: Clariant GmbH
    Inventors: Martin Sicken, Werner Krause, Norbert Weferling, Hans-Peter Schmitz
  • Patent number: 7105193
    Abstract: The present invention relates to a process for baking a food product utilizing a confectionery mould made from silicone. The confectionery mould is obtained by mixing and reacting a crosslinkable silicone, especially methyl-vinyl siloxane (VMQ), and a peroxide as a cross-linking agent.
    Type: Grant
    Filed: August 15, 2001
    Date of Patent: September 12, 2006
    Inventor: Ricky K. C. Yeung
  • Patent number: 7098299
    Abstract: The present invention is generally directed to a process for separating and recovering post-consumer polyester from various contaminant materials. The invention can be utilized to separate post-consumer polyester from various contaminants including glass, dirt, paper, metal, glue, dye, and the like. The disclosed process includes several stages including a preparation stage, in which a portion of the contaminants can be removed from the polyester, as well as a reaction stage, in which a portion of the polyester can be saponified and contaminants can be physically separated from the polyester. In addition, during the reaction stage, certain hard-to-separate contaminants, such as aluminum and polyvinyl chloride, can react to a form more easily separable from the polyester.
    Type: Grant
    Filed: March 16, 2005
    Date of Patent: August 29, 2006
    Assignee: United Resource Recovery Corporation
    Inventors: Carlos Gutierrez, Alfred Gerald Fishbeck
  • Patent number: 7091305
    Abstract: Disclosed are copolymers based on aspartic acid or its precursor molecules and methods of their production. The copolymers are water-soluble over a wide range of composition and molecular weight. Their preparation involves conversion of a polysuccinimide to copolymers of defined composition, containing aspartate and succinimide residues and/or residues of asparagine. In particular, the copolymers include water-soluble terpolymers of aspartate, asparagine, and succinimide.
    Type: Grant
    Filed: October 12, 2004
    Date of Patent: August 15, 2006
    Assignee: Aquero Company
    Inventor: C. Steven Sikes
  • Patent number: 7074877
    Abstract: A resin for use in manufacturing wet friction materials which contributes to enhancing durability of manufactured wet friction materials, a manufacturing method thereof, and a wet friction material having excellent durability are provided. The resin for use in manufacturing wet friction materials can be obtained by reacting phenols with aldehydes in the presence of at least one basic catalyst, which contains a water-soluble phenolic resin as a main component. Further, the manufacturing method of the resin for wet friction materials includes a step of reacting phenols with aldehydes in the presence of at least one basic catalyst to obtain a water-soluble phenolic resin having a predetermined water percentage. Furthermore, the wet friction material is manufactured by impregnating a base material with the resin for wet friction materials.
    Type: Grant
    Filed: December 12, 2002
    Date of Patent: July 11, 2006
    Assignees: Sumitomo Bakelite Company Limited, NSK-Warner K.K.
    Inventors: Hiroshi Aiba, Masahiro Mori
  • Patent number: 7070624
    Abstract: The present invention is directed to a process for separating polyester, and particularly polyethylene terephthalate, from various contaminants and impurities. In general, the process includes the steps of mixing materials containing polyester with an alkaline composition in a mixer. The mixer imparts sufficient energy to the slurry to provide substantially complete, even coating of the polyester containing materials with the alkaline composition and cause saponification of the outer surface of the polyester with the alkaline composition. After reaction in the mixer, the mixture is heated causing some of the impurities to be chemically modified into a more separable form. After heating, the mixture can be washed with water and the polyester can be easily separated from the remaining impurities. Through the process of the present invention, polyester can be separated and recovered from waste materials such as those containing polyvinyl chloride and aluminum.
    Type: Grant
    Filed: June 19, 2002
    Date of Patent: July 4, 2006
    Assignee: United Resource Recovery Corporation
    Inventors: John Mitchell Holmes, III, Richard Philip Zink
  • Patent number: 7049010
    Abstract: Provided is a conjugated poly(1,4-arylene vinylene) compound comprising an arylene unit having adjacent substituents, said substituents being oriented such as to affect the electronic structure of the compound sufficiently to cause a blue-shift in the photoluminescence and/or electroluminescence of the compound.
    Type: Grant
    Filed: October 21, 1998
    Date of Patent: May 23, 2006
    Assignee: Cambridge Display Technology Limited
    Inventors: Andrew Bruce Holmes, Beng Sim Chuah, Franco Cacialli, Steven Carl Moratti
  • Patent number: 6995234
    Abstract: In the present invention, an inorganic reactant is, or reactants are, localized with respect to a dendritic polymer by physical constraint within or by a non-covalent conjugation to the dendritic polymer. The localized inorganic reactant or reactants is/are subsequently transformed to form a reaction product which is immobilized with respect to the dendritic polymer. This immobilization occurs on a nanoscopic scale as a consequence of the combined effects of structural, chemical and physical changes without having covalent bonds between the product(s) and the dendritic container and results in new compositions of matter called dendritic nanocomposites. The resulting nanocomposite material can be used to produce revolutionary products such as water soluble elemental metals, with specific applications including magnetic resonance imaging, catalytic, magnetic, optical, photolytic and electroactive applications.
    Type: Grant
    Filed: October 9, 2003
    Date of Patent: February 7, 2006
    Assignee: The Dow Chemical Company
    Inventors: Donald A. Tomalia, Lajos Balogh
  • Patent number: 6984717
    Abstract: The present invention is directed towards phosphorous containing organic materials, processes for making them and uses thereof. These materials preferably impart and/or exhibit resistance to attack, for example they may be useful as flame retardant additives and/or materials. The materials are especially radiation-curable polyester polymers. The phosphorous component used has at least one P—C bond resistant to hydrolysis or transesterification. It can be bis(hydroxymethyl)isobutylphosphineoxide, bis(hydroxypropyl)isobutylphosphine oxide and trishydroxymethylphosphine oxide. In other embodiments, it is 9,10-dihydro-9-oxa-10-phosphaphenantrene-10-oxide.
    Type: Grant
    Filed: March 5, 2002
    Date of Patent: January 10, 2006
    Assignee: Surface Specialties, S.A.
    Inventor: Hugues Van Den Bergen
  • Patent number: 6936685
    Abstract: The invention relates to a method for isolating polyorganosiloxanes from an aqueous dispersion, wherein the polyorganosiloxanes are separated from water in a dissolved form with the aid of an extraction agent.
    Type: Grant
    Filed: March 29, 2001
    Date of Patent: August 30, 2005
    Assignee: Wacker-Chemie GmbH
    Inventors: Jochen Ebenhoch, Thomas Köhler, Hans Wintrich
  • Patent number: 6911518
    Abstract: Processes have been developed for the manufacture of polyhedral oligomeric silsesquioxanes (POSS), polysilsesquioxanes, polyhedral oligomeric silicates (POS), and siloxane molecules bearing reactive ring-strained cyclic olefins (e.g. norbornenyl, cyclopentenyl, etc. functionalities). The preferred manufacturing processes employ the silation of siloxides (Si—OA, where A=H, alkaline or alkaline earth metals) with silane reagents that contain at least one reactive ring-strained cyclic olefin functionality [e.g., X3-ySi(CH3)y(CH2)2 where y=1-2 and X=OH, Cl, Br, I, alkoxide OR, acetate OOCR, peroxide OOR, amine NR2, isocyanate NCO, and R]. Alternatively, similar products can be prepared through hydrosilation reactions between silanes containing at least one silicon-hydrogen bond (Si—H) with ring-strained cyclic olefin reagents [e.g., 5-vinyl, 2 norbornene CH2?CH, cyclopentadiene]. The two processes can be effectively practiced using polymeric silsesquioxanes [RSiO1.
    Type: Grant
    Filed: December 21, 2000
    Date of Patent: June 28, 2005
    Assignee: Hybrid Plastics, LLC
    Inventors: Joseph D. Lichtenhan, Joseph J. Schwab, Yi-Zong An, William Reinerth, Frank J. Feher
  • Patent number: 6833430
    Abstract: A process for the production of polyacetylene derivatives by which polyacetylene derivatives having an ability to discriminate asymmetry can be easily obtained in a few steps and in high yield and which is also advantageous in respects of economical efficiency, environmental problems, and so on. This process is characterized by polymerizing an acetylene derivative having a hydrophilic functional group in an aqueous solvent in the presence of a water-soluble transition metal complex catalyst and a base.
    Type: Grant
    Filed: October 9, 2002
    Date of Patent: December 21, 2004
    Assignee: Japan Science and Technology Agency
    Inventors: Eiji Yashima, Katsuhiro Maeda
  • Patent number: 6825313
    Abstract: Disclosed are copolymers based on aspartic acid or its precursor molecules and methods of their production. The copolymers are water-soluble over a wide range of composition and molecular weight. Their preparation involves conversion of a polysuccinimide to copolymers of defined composition, containing aspartate and succinimide residues and/or residues of asparagine. In particular, the copolymers include water-soluble terpolymers of aspartate, asparagine, and succinimide.
    Type: Grant
    Filed: May 7, 2003
    Date of Patent: November 30, 2004
    Assignee: Aquero Company
    Inventor: C. Steven Sikes
  • Patent number: 6803082
    Abstract: The invention is a method for the late introduction of additives into polyethylene terephthalate. The method employs a reactive carrier that functions as a delivery vehicle for one or more additives. The reactive carrier reacts with the polyethylene terephthalate, thereby binding the reactive carrier in the polyethylene terephthalate resin and preventing the emergence of the reactive carrier and additives from the polyethylene terephthalate during subsequent thermal processing.
    Type: Grant
    Filed: July 25, 2003
    Date of Patent: October 12, 2004
    Assignee: Wellman, Inc.
    Inventors: Carl Steven Nichols, Tony Clifford Moore
  • Patent number: 6780955
    Abstract: The present invention provides a process for preparing a mixture, which mixture includes catenate and cyclic siloxanes of formula I R3Si—O—(SiR2—O—)mSiR3   (I) and cyclic siloxanes of formula II wherein m is an integer from 0 to 40 and n is an integer from 2 to 40, wherein R2 and R3 are each independently an organic functional group selected from the group including alkyl, aryl, vinyl, and alkoxy groups, and wherein there is not more than one vinyl group or aryl group per silicon atom, said process including a controlled hydrolysis, condensation or cocondensation reaction of at least one monomeric silane in alcoholic solution in the presence of an acidic catalyst, which reaction includes contacting alcohol, water, and at least one chlorosilane component selected from the group including (i), (ii), (iii): (i) at least one arylchlorosilane; (ii) at least one admixture selected from the group including alkylchlorosilane and arylchlorosilane, arylchlorosi
    Type: Grant
    Filed: January 23, 2003
    Date of Patent: August 24, 2004
    Assignee: Degussa AG
    Inventors: Dieter Barfurth, Helmut Mack
  • Patent number: 6770680
    Abstract: A process for the recycling of PET flakes from comminuted PET bottles, wherein the flakes are subjected to a washing treatment, are treated for at least 20 minutes in at least one washer at an elevated temperature higher than 70° C. with a cleaning solution which contains caustic soda, and at the same time are also mechanically and hydraulically treated.
    Type: Grant
    Filed: December 20, 2001
    Date of Patent: August 3, 2004
    Assignee: Krones AG
    Inventor: Klaus Klenk
  • Patent number: 6737504
    Abstract: A method for preparing a wide range of substituted poly(aniline)s from a single precursor is described. The method uses a variety of reactions, including a boron activation/electrophilic displacement reaction resulting in ipso-substitution. The ability to tune the properties of poly(aniline) through the generation of new structures is useful in numerous fields ranging from polymer-based electronics to sensors.
    Type: Grant
    Filed: July 29, 2002
    Date of Patent: May 18, 2004
    Assignee: California Institute of Technology
    Inventors: Michael S. Freund, Eiichi Shoji
  • Patent number: 6699958
    Abstract: The present invention is directed to compositions and a process leading to colorless or light colored aqueous phicinol-formaldelhyde resoles. Unlike previous technologies, these compositions lead to clear storage stable fast curing, high molecular weight resins. These materials are also capable of producing composite wood panels with superior water absorption and thickness swell test results when soaked in water. The invention essentially consists of an aqueous copolymer of phenol, formaldehyde, and a phenolic carboxylate (e.g. salicylic acid). Methylol phenols are formed under alkaline conditions in the presence of metal chelating agents. These are then condensed into a polymer under alkaline, neutral or acidic conditions. The finished aqueous polymer solution is then acidified to the desired pH using a benzoic acid or a phelnol-carboxylic acid.
    Type: Grant
    Filed: February 13, 2003
    Date of Patent: March 2, 2004
    Assignee: Borden Chemical, Inc.
    Inventor: William D. Detlefsen
  • Patent number: 6664366
    Abstract: Thermally stable polymers comprising chain members derived from at least one 1,3-dihydroxybenzene moiety and at least one aromatic dicarboxylic acid moiety, said polymer being substantially free of anhydride linkages linking at least two mers of the polymer chain, are prepared using an interfacial method comprising the steps of: (a) combining at least one 1,3-dihydroxybenzene moiety and at least one catalyst in a mixture of water and at least one organic solvent substantially immiscible with water; (b) adding to the mixture from (a) a controlled stoichiometric ratio of at least one acid chloride and at least one base while maintaining the pH between about 4 and about 8.5, and (c) adjusting the pH of the reaction mixture to a value in the range of about 7 and about 9 following complete addition of acid chloride, and stirring the reaction mixture for a time sufficient to destroy any anhydride linkages in the polymer chain.
    Type: Grant
    Filed: March 25, 2002
    Date of Patent: December 16, 2003
    Assignee: General Electric Company
    Inventors: James Manio Silva, David Michel Dardaris, Gregory Allen O'Neil, Joseph Anthony Suriano
  • Patent number: 6657044
    Abstract: An improved process for the polymerization of polytrimethylene terephthalate by esterification of terephthalic acid or dimethylterephthalate with 1,3-propanediol (PDO), precondensation of the esterification product to produce a precondensation product, and polycondensation of the precondensation product to produce polytrimethylene terephthalate wherein excess PDO is removed from the esterification and/or polycondensation stages and PDO vapor is separated from the high boiling fraction (solid byproduct). The improvement comprises: (a) heating the solid byproduct in the presence of about 5 ppm to about 5000 ppm, based on metal, of a metal catalyst selected from the group consisting of one or more 3rd, 4th, or 5th row metal compounds from Groups 3-12 and Groups 14-15 of the Periodic Table (IUPAC 1989) at a temperature of from about 100° C. to about 240° C.
    Type: Grant
    Filed: October 18, 2002
    Date of Patent: December 2, 2003
    Assignee: Shell Oil Company
    Inventors: Donald Ross Kelsey, Kathleen Suzanne Kiibler, Wen Tzung Tang
  • Patent number: 6646094
    Abstract: A phenol-formaldehyde resole resin is prepared using a high level of catalyst at a polymerization temperature of about 63° C. The endpoint, measured by salt water tolerance, is selected so that the resulting resin has a water dilutability of 20:1 at neutral pH after storage for three weeks at a temperature of about 13° C., with a free phenol level of no more than 0.50 percent.
    Type: Grant
    Filed: December 17, 2001
    Date of Patent: November 11, 2003
    Assignees: CertainTeed Corporation, Borden Chemical, Inc.
    Inventors: Vinay Malhotra, Wayne Walliser, Susan G. Watson, Pierre C. Herault, Domenic Tessari, Philippe Espiard, Serge Tetart, Bruno Malhieuxe