Mixed Carboxylate Esters Patents (Class 536/64)
  • Patent number: 9458248
    Abstract: The present invention relates to cellulose mixed esters, processes for preparing these and uses of the cellulose mixed esters, for example in coating compositions. The cellulose mixed esters have glass transition temperatures that fall within an appropriate range to allow for film formation to occur at ambient temperatures and have a total degree of substitution per anhydroglucose unit of about 2.5 to about 3.5; a residual hydroxyl functionality per anhydroglucose unit of 0 to about 0.5; a degree of substitution per anhydroglucose unit by C2-C6 ester groups of about 0.5 to about 2.8; and a degree of substitution per anhydroglucose unit by Ievulinyl ester groups of about 0.2 to about 2.6.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: October 4, 2016
    Assignee: Resene Paints Limited
    Inventors: Mark Glenny, Colin Gooch, Simon Hinkley, Jennifer Mason, Cameron Tristram, Dennis Williams
  • Patent number: 9309385
    Abstract: The present invention relates to cellulose fibers wherein a part of the hydroxyl groups of the cellulose have been substituted with at least one of a carboxy group and formyl group of 0.1 mmol/g or larger based on the weight of the cellulose fibers, and have been further substituted with a chemical modification group other than the carboxy and formyl groups.
    Type: Grant
    Filed: August 21, 2013
    Date of Patent: April 12, 2016
    Assignee: Oji Holdings Corporation
    Inventors: Tomokazu Umemoto, Naohide Ogita, Takanori Shimizu, Yasutomo Noishiki, Hiroyuki Nagatani, Go Banzashi
  • Patent number: 9040685
    Abstract: This invention provides cellulose ester interpolymers, and methods of oxidizing cellulose interpolymers and cellulose ester interpolymers. The invention also provides routes to access carboxylated cellulose ester derivatives with high acid numbers wherein the carboxyl group is attached directly to the cellulose backbone by a carbon-carbon bond. Through functionalization of an intermediate aldehyde, the corresponding cationic or zwitterionic cellulose ester derivatives can also be accessed. The interpolymers of the present invention have a number of end-use applications, for example, as binder resins in various types of coating compositions and as drug delivery agents.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: May 26, 2015
    Assignee: EASTMAN CHEMICAL COMPANY
    Inventors: Charles Michael Buchanan, Norma Lindsey Buchanan, Susan Northrop Carty, Chung-Ming Kuo, Juanelle Little Lambert, Michael Orlando Malcolm, Jessica Dee Posey-Dowty, Thelma Lee Watterson, Matthew Davie Wood, Margaretha Soderqvist Lindblad
  • Patent number: 9040683
    Abstract: This invention provides cellulose ester interpolymers, and methods of oxidizing cellulose interpolymers and cellulose ester interpolymers. The invention also provides routes to access carboxylated cellulose ester derivatives with high acid numbers wherein the carboxyl group is attached directly to the cellulose backbone by a carbon-carbon bond. Through functionalization of an intermediate aldehyde, the corresponding cationic or zwitterionic cellulose ester derivatives can also be accessed. The interpolymers of the present invention have a number of end-use applications, for example, as binder resins in various types of coating compositions and as drug delivery agents.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: May 26, 2015
    Assignee: EASTMAN CHEMICAL COMPANY
    Inventors: Charles Michael Buchanan, Norma Lindsey Buchanan, Susan Northrop Carty, Chung-Ming Kuo, Juanelle Little Lambert, Michael Orlando Malcolm, Jessica Dee Posey-Dowty, Thelma Lee Watterson, Matthew Davie Wood, Margaretha Soderqvist Lindblad
  • Patent number: 9040684
    Abstract: This invention provides cellulose ester interpolymers, and methods of oxidizing cellulose interpolymers and cellulose ester interpolymers. The invention also provides routes to access carboxylated cellulose ester derivatives with high acid numbers wherein the carboxyl group is attached directly to the cellulose backbone by a carbon-carbon bond. Through functionalization of an intermediate aldehyde, the corresponding cationic or zwitterionic cellulose ester derivatives can also be accessed. The interpolymers of the present invention have a number of end-use applications, for example, as binder resins in various types of coating compositions and as drug delivery agents.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: May 26, 2015
    Assignee: EASTMAN CHEMICAL COMPANY
    Inventors: Charles Michael Buchanan, Norma Lindsey Buchanan, Susan Northrop Carty, Chung-Ming Kuo, Juanelle Little Lambert, Michael Orlando Malcolm, Jessica Dee Posey-Dowty, Thelma Lee Watterson, Matthew Davie Wood, Margaretha Soderqvist Lindblad
  • Publication number: 20150135990
    Abstract: Provided is a cellulose resin composition wherein roll contamination during processing and reduction in the productivity caused by roll contamination are inhibited. The cellulose resin composition is obtained by adding a polyester-based plasticizer to a cellulose resin, the cellulose resin composition being characterized in that the polyester-based plasticizer is produced from a polybasic acid, a polyhydric acid and, as required, a stopper, in which polyester-based plasticizer, components having a molecular weight of 430 or less are removed to an amount of 5 wt % or less.
    Type: Application
    Filed: May 7, 2013
    Publication date: May 21, 2015
    Applicant: ADEKA CORPORATION
    Inventors: Masashi Harada, Yuji Yamazaki, Satoshi Kamimura, Yuki Tanaka
  • Patent number: 8940800
    Abstract: Disclosed are polymers of hydroxypropyl methyl cellulose acetate succinate (HPMCAS) and hydroxypropyl methyl cellulose acetate (HPMCA) with unique degrees of substitution of hydroxypropoxy, methoxy, acetyl, and succinoyl groups. When used in making compositions comprising a low-solubility drug and such polymers, the polymers provide enhanced aqueous concentrations and/or improved physical stability.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: January 27, 2015
    Assignee: Bend Research, Inc.
    Inventors: Walter C. Babcock, Dwayne T. Friesen, David Keith Lyon, Warren Kenyon Miller, Daniel Tod Smithey
  • Publication number: 20140331895
    Abstract: The present invention relates to cellulose mixed esters, processes for preparing these and uses of the cellulose mixed esters, for example in coating compositions. The cellulose mixed esters have glass transition temperatures that fall within an appropriate range to allow for film formation to occur at ambient temperatures and have a total degree of substitution per anhydroglucose unit of about 2.5 to about 3.5; a residual hydroxyl functionality per anhydroglucose unit of 0 to about 0.5; a degree of substitution per anhydroglucose unit by C2-C6 ester groups of about 0.5 to about 2.8; and a degree of substitution per anhydroglucose unit by Ievulinyl ester groups of about 0.2 to about 2.6.
    Type: Application
    Filed: December 5, 2012
    Publication date: November 13, 2014
    Inventors: Mark Glenny, Colin Gooch, Simon Hinkley, Jennifer Mason, Cameron Tristram, Dennis Williams
  • Patent number: 8865923
    Abstract: A method for separating neutral and polar lipids from an oil of biological material, wherein the oil is fractionated using a mixture of a polar solvent comprising at least one carbon atom, water and an additional substance selected from the group consisting of: mono-, di- and oligosaccharides comprising from 3 to 10 monosaccharide units, said additional substance is present in an amount of at least 0.1 wt % calculated on the total weight of solvent, water and additional substance, to form at least two liquid fractions having different densities, wherein one fraction is rich in polar lipids and another fraction is rich in neutral lipids. An oil rich in polar lipids obtained from the method is disclosed, said oil I contains at least 40, preferably at least 50 lipid % polar lipids as calculated on the total amount of lipids in said oil and that the total amount of polar solvent and water in said oil is between 20 and 30 wt %. An oat oil containing high amounts of estolides of DGDG can further be obtained.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: October 21, 2014
    Assignee: Swedish Oat Fiber AB
    Inventor: Magnus Härröd
  • Patent number: 8729253
    Abstract: Regioselectively substituted cellulose esters having a plurality of aryl-acyl substituents and a plurality of alkyl-acyl substituents are disclosed along with methods for making the same. Such cellulose esters may be suitable for use in optical films, such as optical films having certain Nz values, ?A optical films, and/or +C optical films. Optical films prepared employing such cellulose esters have a variety of commercial applications, such as, for example, as compensation films in liquid crystal displays and/or waveplates in creating circular polarized light used in 3-D technology.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: May 20, 2014
    Assignee: Eastman Chemical Company
    Inventors: Charles Michael Buchanan, Michael Eugene Donelson, Elizabeth Guzman-Morales, Peter Borden Mackenzie, Bin Wang
  • Publication number: 20130116425
    Abstract: This invention provides cellulose ester interpolymers, and methods of oxidizing cellulose interpolymers and cellulose ester interpolymers. The invention also provides routes to access carboxylated cellulose ester derivatives with high acid numbers wherein the carboxyl group is attached directly to the cellulose backbone by a carbon-carbon bond. Through functionalization of an intermediate aldehyde, the corresponding cationic or zwitterionic cellulose ester derivatives can also be accessed. The interpolymers of the present invention have a number of end-use applications, for example, as binder resins in various types of coating compositions and as drug delivery agents.
    Type: Application
    Filed: December 27, 2012
    Publication date: May 9, 2013
    Applicant: Eastman Chemical Company
    Inventor: Eastman Chemical Company
  • Publication number: 20130116427
    Abstract: This invention provides cellulose ester interpolymers, and methods of oxidizing cellulose interpolymers and cellulose ester interpolymers. The invention also provides routes to access carboxylated cellulose ester derivatives with high acid numbers wherein the carboxyl group is attached directly to the cellulose backbone by a carbon-carbon bond. Through functionalization of an intermediate aldehyde, the corresponding cationic or zwitterionic cellulose ester derivatives can also be accessed. The interpolymers of the present invention have a number of end-use applications, for example, as binder resins in various types of coating compositions and as drug delivery agents.
    Type: Application
    Filed: December 27, 2012
    Publication date: May 9, 2013
    Applicant: Eastman Chemical Company
    Inventor: Eastman Chemical Company
  • Publication number: 20130116426
    Abstract: This invention provides cellulose ester interpolymers, and methods of oxidizing cellulose interpolymers and cellulose ester interpolymers. The invention also provides routes to access carboxylated cellulose ester derivatives with high acid numbers wherein the carboxyl group is attached directly to the cellulose backbone by a carbon-carbon bond. Through functionalization of an intermediate aldehyde, the corresponding cationic or zwitterionic cellulose ester derivatives can also be accessed. The interpolymers of the present invention have a number of end-use applications, for example, as binder resins in various types of coating compositions and as drug delivery agents.
    Type: Application
    Filed: December 27, 2012
    Publication date: May 9, 2013
    Applicant: Eastman Chemical Company
    Inventor: Eastman Chemical Company
  • Patent number: 8354525
    Abstract: This invention relates to novel compositions comprising regioselectively substituted cellulose esters. One aspect of the invention relates to processes for preparing regioselectively substituted cellulose esters from cellulose dissolved in ionic liquids. Another aspect of the invention relates to the utility of regioselectively substituted cellulose esters in applications such as protective and compensation films for liquid crystalline displays.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: January 15, 2013
    Assignee: Eastman Chemical Company
    Inventors: Charles Michael Buchanan, Norma Lindsey Buchanan, Michael Eugene Donelson, Maryna Grigorievna Gorbunova, Thauming Kuo, Bin Wang
  • Patent number: 8344134
    Abstract: The present invention relates to cellulose esters having low hydroxyl content for use in optical applications, such as liquid crystal display (LCD) films. Films made with low hydroxyl levels and a given ratio of non-acetyl ester to hydroxyl level have been found to have low intrinsic birefringence. Therefore, these films can be cast, molded, or otherwise oriented without an appreciable birefringence or optical distortion (i.e. retardation). Such features make these films useful in polarizer, protective, and compensator films as well as molded optical parts, such as lenses. Furthermore, it has also been found that resins of the present invention can also be made to have “+C plate” behavior either by melt or solvent based processing, a characteristic which is not typical of cellulose esters. Such +C behavior allows films to be produced having unique compensatory behavior. Other embodiments of the invention relate to methods melt casting films while minimizing birefringence formation.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: January 1, 2013
    Assignee: Eastman Chemical Company
    Inventors: Marcus David Shelby, Michael Eugene Donelson, Bradley Howard Dayvolt, Alan Kent Wilson, Bryan Kirkman
  • Publication number: 20120330002
    Abstract: This invention concerns the first environmentally benign heterogeneous modification of polysaccharide-based material in native solid state by thiol-ene “click chemistry”. The direct reaction of a thiol with an un-activated double or triple bond by thiol-ene and thiol-enyne click modification is thermally or photochemically catalyzed and is completely metal-free and allows for a highly modular approach to modifications of fibers and fiber-based materials.
    Type: Application
    Filed: January 19, 2011
    Publication date: December 27, 2012
    Applicant: ORGANOCLICK AB
    Inventors: Armando Cordova, Jonas Hafren
  • Patent number: 8329893
    Abstract: The present invention relates to cellulose esters having low hydroxyl content for use in optical applications, such as liquid crystal display (LCD) films. Films made with low hydroxyl levels and a given ratio of non-acetyl ester to hydroxyl level have been found to have low intrinsic birefringence. Therefore, these films can be cast, molded, or otherwise oriented without an appreciable birefringence or optical distortion (i.e. retardation). Such features make these films useful in polarizer, protective, and compensator films as well as molded optical parts, such as lenses. Furthermore, it has also been found that resins of the present invention can also be made to have “+C plate” behavior either by melt or solvent based processing, a characteristic which is not typical of cellulose esters. Such +C behavior allows films to be produced having unique compensatory behavior. Other embodiments of the invention relate to methods melt casting films while minimizing birefringence formation.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: December 11, 2012
    Assignee: Eastman Chemical Company
    Inventors: Marcus David Shelby, Michael Eugene Donelson, Bradley Howard Dayvolt, Alan Kent Wilson, Bryan Kirkman
  • Publication number: 20120264833
    Abstract: Disclosed are polymers of hydroxypropyl methyl cellulose acetate succinate (HPMCAS) and hydroxypropyl methyl cellulose acetate (HPMCA) with unique degrees of substitution of hydroxypropoxy, methoxy, acetyl, and succinoyl groups. When used in making compositions comprising a low-solubility drug and such polymers, the polymers provide enhanced aqueous concentrations and/or improved physical stability.
    Type: Application
    Filed: June 26, 2012
    Publication date: October 18, 2012
    Inventors: Walter C. Babcock, Dwayne T. Friesen, David Keith Lyon, Warren Kenyon Miller, Daniel Tod Smithey
  • Publication number: 20120264930
    Abstract: Regioselectively substituted cellulose esters having a plurality of aryl-acyl substituents and a plurality of alkyl-acyl substituents are disclosed along with methods for making the same. Such cellulose esters may be suitable for use in optical films, such as optical films having certain Nz values, ?A optical films, and/or +C optical films. Optical films prepared employing such cellulose esters have a variety of commercial applications, such as, for example, as compensation films in liquid crystal displays and/or waveplates in creating circular polarized light used in 3-D technology.
    Type: Application
    Filed: March 1, 2012
    Publication date: October 18, 2012
    Applicant: EASTMAN CHEMICAL COMPANY
    Inventors: Charles Michael Buchanan, Michael Eugene Donelson, Elizabeth Guzman-Morales, Peter Borden Mackenzie, Bin Wang
  • Publication number: 20120263889
    Abstract: Regioselectively substituted cellulose esters having a plurality of aryl-acyl substituents and a plurality of alkyl-acyl substituents are disclosed along with methods for making the same. Such cellulose esters may be suitable for use in optical films, such as optical films having certain Nz values, ?A optical films, and/or +C optical films. Optical films prepared employing such cellulose esters have a variety of commercial applications, such as, for example, as compensation films in liquid crystal displays and/or waveplates in creating circular polarized light used in 3-D technology.
    Type: Application
    Filed: March 1, 2012
    Publication date: October 18, 2012
    Applicant: EASTMAN CHEMICAL COMPANY
    Inventors: Charles Michael Buchanan, Michael Eugene Donelson, Elizabeth Guzman-Morales, Peter Borden Mackenzie, Bin Wang
  • Publication number: 20120262650
    Abstract: Regioselectively substituted cellulose esters having a plurality of aryl-acyl substituents and a plurality of alkyl-acyl substituents are disclosed along with methods for making the same. Such cellulose esters may be suitable for use in optical films, such as optical films having certain Nz values, ?A optical films, and/or +C optical films. Optical films prepared employing such cellulose esters have a variety of commercial applications, such as, for example, as compensation films in liquid crystal displays and/or waveplates in creating circular polarized light used in 3-D technology.
    Type: Application
    Filed: March 1, 2012
    Publication date: October 18, 2012
    Applicant: EASTMAN CHEMICAL COMPANY
    Inventors: Charles Michael Buchanan, Michael Eugene Donelson, Elizabeth Guzman-Morales, Peter Borden Mackenzie, Bin Wang
  • Publication number: 20120263890
    Abstract: Regioselectively substituted cellulose esters having a plurality of aryl-acyl substituents and a plurality of alkyl-acyl substituents are disclosed along with methods for making the same. Such cellulose esters may be suitable for use in optical films, such as optical films having certain Nz values, ?A optical films, and/or +C optical films. Optical films prepared employing such cellulose esters have a variety of commercial applications, such as, for example, as compensation films in liquid crystal displays and/or waveplates in creating circular polarized light used in 3-D technology.
    Type: Application
    Filed: March 1, 2012
    Publication date: October 18, 2012
    Applicant: EASTMAN CHEMICAL COMPANY
    Inventors: Charles Michael Buchanan, Michael Eugene Donelson, Elizabeth Guzman-Morales, Peter Borden Mackenzie, Bin Wang
  • Patent number: 8273872
    Abstract: Ionic liquids and cellulose ester compositions and processes for producing ionic liquids and cellulose esters. Cellulose esters can be produced by esterifying cellulose in a reaction medium comprising one or more halide ionic liquids and at least one binary component. Cellulose esters prepared via the methods of the present invention can have a degree of substitution (“DS”) of at least 1.5 and can comprise a plurality of ester substituents, where at least 50 percent of the ester substituents comprise alkyl esters having a carbon chain length of at least 6 carbons.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: September 25, 2012
    Assignee: Eastman Chemical Company
    Inventors: Charles Michael Buchanan, Norma Lindsey Buchanan
  • Publication number: 20120238741
    Abstract: Ionic liquids and cellulose ester compositions and processes for producing ionic liquids and cellulose esters. Cellulose esters can be produced by subjecting a cellulose-ionic liquid solution comprising cellulose, one or more ionic liquids, and one or more co-solvents to esterification to thereby produce an esterified medium comprising a cellulose ester. The co-solvents employed in the present invention can be either miscible or immiscible with the cellulose-ionic liquid solution but can be readily dispersed or soluble in the esterified medium.
    Type: Application
    Filed: June 1, 2012
    Publication date: September 20, 2012
    Applicant: EASTMAN CHEMICAL COMPANY
    Inventors: Charles Michael Buchanan, Norma Lindsey Buchanan
  • Publication number: 20120238742
    Abstract: Ionic liquids and cellulose ester compositions and processes for producing ionic liquids and cellulose esters. Cellulose esters can be produced by subjecting a cellulose-ionic liquid solution comprising cellulose, one or more ionic liquids, and one or more co-solvents to esterification to thereby produce an esterified medium comprising a cellulose ester. The co-solvents employed in the present invention can be either miscible or immiscible with the cellulose-ionic liquid solution but can be readily dispersed or soluble in the esterified medium.
    Type: Application
    Filed: June 1, 2012
    Publication date: September 20, 2012
    Applicant: EASTMAN CHEMICAL COMPANY
    Inventors: Charles Michael Buchanan, Norma Lindsey Buchanan
  • Patent number: 8263195
    Abstract: A cellulose ester film is provided and includes a polycondensate obtained from a diol and a dicarboxylic acid, and the polycondensate contains the following (1) and (2). (1) A dicarboxylic acid residue containing an aromatic dicarboxylic acid residue and an aliphatic dicarboxylic acid residue having an average carbon number of 4.0 to 5.0, in which a ratio of the aromatic dicarboxylic acid residue represented by the following equation is from 40% by mole to 95% by mole: The ratio of the aromatic dicarboxylic acid residue=[(the number of moles of the aromatic dicarboxylic acid residue)/((the number of moles of the aromatic dicarboxylic acid residue)+(the number of moles of the aliphatic dicarboxylic acid residues))]×100. (2) An aliphatic diol residue having an average carbon number of 2.0 to 3.0.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: September 11, 2012
    Assignee: FUJIFILM Corporation
    Inventors: Hiromichi Furukawa, Mamoru Sakurazawa
  • Publication number: 20120197011
    Abstract: The present invention relates to esters of diacids and cellulosic materials and methods for making thereof. The ester has the chemical composition of Formula (I) Formula I where R1, R2, and R3 can be the same or different, and each of which is selected from —H, —COR?, —R??, or —COR? COOH, with the proviso that at least one of the R1, R2, or R3 is —COR? COOH; R? is an alkyl, alkenyl, alkynyl, or aromatic group; R? is an alkyl, alkenyl, or alkynyl group having 4 or more carbon atoms (?C4); and R?? is an alkyl, alkenyl, alkynyl, polyol, or aromatic group.
    Type: Application
    Filed: September 21, 2010
    Publication date: August 2, 2012
    Applicant: Virginia Tech Intellectual Properties, Inc.
    Inventors: Kevin J. Edgar, Nilanjana Kar
  • Publication number: 20120146468
    Abstract: A cellulose derivative, contains A) a hydrocarbon group; B) a group containing an acyl group: —CO—RB and an ethyleneoxy group: —C2H4—O— (RB represents a hydrocarbon group); and C) an acyl group: —CO—RC (RC represents a hydrocarbon group). A method for preparing the cellulose derivative, a resin composition containing the cellulose derivative, a case for an electric and electronic device and a method for preparing a molded body are also provided.
    Type: Application
    Filed: August 11, 2010
    Publication date: June 14, 2012
    Applicant: FUJIFILM CORPORATION
    Inventors: Shigeki Uehira, Youichirou Takeshima
  • Publication number: 20120095207
    Abstract: Ionic liquids and cellulose ester compositions and processes and apparatus for producing ionic liquids and cellulose esters. Cellulose esters can be produced by dissolving cellulose in carboxylated ionic liquids and thereafter contacting the cellulose solution with at least one acylating reagent. Cellulose esters produced via the present invention can comprise ester groups that originate from the carboxylated ionic liquid and/or the acylating reagent.
    Type: Application
    Filed: December 20, 2011
    Publication date: April 19, 2012
    Applicant: EASTMAN CHEMICAL COMPANY
    Inventors: Charles Michael Buchanan, Norma Lindsey Buchanan, Robert Thomas Hembre, Juanelle Little Lambert
  • Patent number: 8158777
    Abstract: Ionic liquids and cellulose ester compositions and processes for producing ionic liquids and cellulose esters. Cellulose esters can be produced by esterifying cellulose in a reaction medium comprising one or more halide ionic liquids and at least one binary component. Cellulose esters prepared via the methods of the present invention can have a degree of substitution (“DS”) of at least 1.5 and can comprise a plurality of ester substituents, where at least 50 percent of the ester substituents comprise alkyl esters having a carbon chain length of at least 6 carbons.
    Type: Grant
    Filed: August 11, 2008
    Date of Patent: April 17, 2012
    Assignee: Eastman Chemical Company
    Inventors: Charles Michael Buchanan, Norma Lindsey Buchanan
  • Patent number: 8153782
    Abstract: Processes for recycling an ionic liquid comprising employing an initial ionic liquid as a solvent and/or reagent resulting in a modified ionic liquid and thereafter subjecting at least a portion of the modified ionic liquid to at least one anion exchange process to produce a reformed ionic liquid. The initial ionic liquid can be employed in a cellulose esterification process, thereby producing the modified ionic liquid. At least a portion of the reformed ionic liquid can be recycled to a point upstream in the cellulose esterification process.
    Type: Grant
    Filed: February 13, 2008
    Date of Patent: April 10, 2012
    Assignee: Eastman Chemical Company
    Inventors: Charles Michael Buchanan, Norma Lindsey Buchanan
  • Patent number: 8148518
    Abstract: Ionic liquids and cellulose ester compositions and processes and apparatus for producing ionic liquids and cellulose esters. Cellulose esters can be produced by dissolving cellulose in carboxylated ionic liquids and thereafter contacting the cellulose solution with at least one acylating reagent. Cellulose esters produced via the present invention can comprise ester groups that originate from the carboxylated ionic liquid and/or the acylating reagent.
    Type: Grant
    Filed: February 13, 2008
    Date of Patent: April 3, 2012
    Assignee: Eastman Chemical Company
    Inventors: Charles Michael Buchanan, Norma Lindsey Buchanan, Robert Thomas Hembre, Juanelle Little Lambert
  • Publication number: 20110301525
    Abstract: This invention relates to biomaterial compositions, methods and kits for producing hydrogels with tunable physico-chemical properties. Specifically, the invention relates to producing cellulosic hydrogels having optimized physico-chemical properties enabling support of cell growth or as replacement or filler for tissue repair, reconstruction or augmentation.
    Type: Application
    Filed: November 12, 2009
    Publication date: December 8, 2011
    Inventors: Steven B. Nicoll, Simone S. Stalling, Anna T. Reza
  • Patent number: 8026357
    Abstract: A cellulose acylate film, comprising a cellulose acylate having at least one substituent (Substituent A) comprising an aromatic group having at least one C4 or longer aliphatic group, is disclosed.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: September 27, 2011
    Assignee: FUJIFILM Corporation
    Inventors: Tomoko Kuwabara, Kunihiro Atsumi
  • Patent number: 7879994
    Abstract: This invention provides cellulose ester interpolymers, and methods of oxidizing cellulose interpolymers and cellulose ester interpolymers. The invention also provides routes to access carboxylated cellulose ester derivatives with high acid numbers wherein the carboxyl group is attached directly to the cellulose backbone by a carbon-carbon bond. Through functionalization of an intermediate aldehyde, the corresponding cationic or zwitterionic cellulose ester derivatives can also be accessed. The interpolymers of the present invention have a number of end-use applications, for example, as binder resins in various types of coating compositions and as drug delivery agents.
    Type: Grant
    Filed: November 23, 2004
    Date of Patent: February 1, 2011
    Assignee: Eastman Chemical Company
    Inventors: Charles Michael Buchanan, Norma Lindsey Buchanan, Susan Northrop Carty, Chung-Ming Kuo, Juanelle Little Lambert, Jessica Dee Posey-Dowty, Thelma Lee Watterson, Matthew Davie Wood, Michael Orlando Malcolm, Margaretha Soderqvist Lindblad
  • Publication number: 20110001904
    Abstract: A cellulose ester film comprising at least one polycondensate ester that comprises a dicarboxylic acid residue mixture having an average carbon number of from 5.5 to 10.0 and comprising an aromatic dicarboxylic acid residue and an aliphatic dicarboxylic acid residue, and an aliphatic diol residue having an average carbon number of from 2.5 to 7.0.
    Type: Application
    Filed: July 1, 2010
    Publication date: January 6, 2011
    Applicant: FUJIFILM Corporation
    Inventors: Hiromichi Tachikawa, Jun Takeda, Yoshiaki Hisakado, Ryousuke Takada, Akira Ikeda, Mamoru Sakurazawa
  • Publication number: 20110001907
    Abstract: Thanks to a cellulose ester film comprising at least one kind of a polycondensed ester obtained from at least one kind of an aliphatic diol having an average carbon number of 2.0 to 2.5 and a dicarboxylic acid mixture containing at least one kind of an aromatic ring-containing dicarboxylic acid and at least one kind of an aliphatic dicarboxylic acid and having an average carbon number of 6.0 to 10.0, an excellent cellulose ester film yielding little process contamination at the production and ensuring high production efficiency, a retardation film with excellent characteristics, and a polarizing plate and a liquid crystal display device each using the film, are provided.
    Type: Application
    Filed: December 22, 2008
    Publication date: January 6, 2011
    Applicant: FUJIFILM Corporation
    Inventors: Mamoru Sakurazawa, Yasuo Mukunoki, Hiroaki Sata
  • Patent number: 7709034
    Abstract: A process for extracting the water soluble fiber from corn fiber hulls is provided comprising the steps of subjecting the corn fiber hulls to a destarching process, a dewatering process, and exposing the destarched and dewatered corn fiber hulls to a thermochemical treatment to obtain a water-soluble non-caloric corn fiber. A water-soluble non-caloric corn fiber composition is disclosed comprising a destarched corn fiber hull produced by subjecting corn fiber hulls to a non-alkaline destarching process to obtain a destarched corn fiber, dewatering said destarched corn fiber hull, and exposing said destarched and dewatered corn fiber hull to one or more thermochemical treatments to obtain a water-soluble non-caloric corn fiber. Foods and a pharmaceutical comprising the water-soluble non-caloric corn fiber composition are disclosed.
    Type: Grant
    Filed: April 19, 2006
    Date of Patent: May 4, 2010
    Assignee: Archer-Daniels-Midland Company
    Inventors: Charles Abbas, Kyle E. Beery, Thomas P. Binder
  • Publication number: 20100093996
    Abstract: The present invention relates to cellulose esters having low hydroxyl content for use in optical applications, such as liquid crystal display (LCD) films. Films made with low hydroxyl levels and a given ratio of non-acetyl ester to hydroxyl level have been found to have low intrinsic birefringence. These films can be cast, molded, or otherwise oriented without an appreciable birefringence or optical distortion (i.e. retardation). Such features make these films useful in polarizer, protective, and compensator films as well as molded optical parts, such as lenses. Furthermore, it has also been found that resins of the present invention can also be made to have “+C plate” behavior either by melt or solvent based processing, a characteristic which is not typical of cellulose esters. Such +C behavior allows films to be produced having unique compensatory behavior. Other embodiments of the invention relate to methods melt casting films while minimizing birefringence formation.
    Type: Application
    Filed: December 10, 2009
    Publication date: April 15, 2010
    Applicant: Eastman Chemical Company
    Inventors: Marcus David Shelby, Michael Eugene Donelson, Bradley Howard Dayvolt, Alan Kent Wilson, Bryan Kirkman
  • Patent number: 7662801
    Abstract: The present invention relates to the preparation of a series of oxidized cellulose esters suitable for use as a drug carrier in the development of biodegradable controlled and/or sustained release pharmaceutical, agricultural, and veterinary compositions, such as films, compacts, microspheres, and pellets. The esters are prepared by acylation of oxidized cellulose having at least 3% carboxyl groups. The resulting oxidized cellulose esters are soluble in aqueous alkaline solutions, water, and a variety of organic solvents.
    Type: Grant
    Filed: December 13, 2005
    Date of Patent: February 16, 2010
    Assignee: University of Iowa Research Foundation
    Inventors: Vijay Kumar, Yang Dang
  • Patent number: 7649089
    Abstract: A new cellulose excipient, OCCAE, suitable for use as a binder, filler, and/or disintegrant in the development of solid dosage forms and as a bodying agent or a drug carrier in the preparation of topical formulations is described. The cellulose excipient is formed by reacting an oxidized cellulose ester with an alcohol in the presence of a catalyst. The invention also describes the formation of controlled release microspheres using OCCAE and/or oxidized cellulose esters that may be used to control the release of drug in a patient over a time period of several hours to several days.
    Type: Grant
    Filed: October 28, 2004
    Date of Patent: January 19, 2010
    Assignee: University of Iowa Research Foundation
    Inventors: Vijay Kumar, Yang Dong
  • Patent number: 7604852
    Abstract: A process for producing a cellulose acylate film, the process comprising melt-cast filming a composition comprising a cellulose acylate that has a specific acyl substitution degree, and that has a residual sulfate in an amount equal to or less than a definite amount (in terms of an amount of a sulfur atom), and a a cellulose acylate film produced by the process, a high-quality retardation film, a polarizing plate, an optical compensatory film, an anti-reflective film and an image display device using same.
    Type: Grant
    Filed: September 15, 2005
    Date of Patent: October 20, 2009
    Assignee: Fujifilm Corporation
    Inventor: Toyohisa Oya
  • Patent number: 7595392
    Abstract: The present invention relates to the preparation of a series of oxidized cellulose esters suitable for use as a drug carrier in the development of biodegradable controlled and/or sustained release pharmaceutical, agricultural, and veterinary compositions, such as films, compacts, microspheres, and pellets. The esters are prepared by acylation of oxidized cellulose having at least 3% carboxyl groups. The resulting oxidized cellulose esters are soluble in aqueous alkaline solutions, water, and a variety of organic solvents.
    Type: Grant
    Filed: December 6, 2001
    Date of Patent: September 29, 2009
    Assignee: University of Iowa Research Foundation
    Inventors: Vijay Kumar, Yang Dong
  • Publication number: 20090224217
    Abstract: A cellulose acylate film is provided and contains an additive. Tg of the cellulose acylate film is lower by 5 to 50° C. or the half value width of the diffraction peak at 2?=10 to 15° in the X-ray diffraction pattern of the cellulose acylate film after heating at 200° C. for 3 hours is 110 to 300%, each compared with a cellulose acylate film not containing the additive. An optically compensatory film, and a polarizing plate and a liquid crystal display using the film are provided.
    Type: Application
    Filed: April 6, 2006
    Publication date: September 10, 2009
    Applicant: FUJIFILM Corporation
    Inventors: Hajime Nakayama, Yousuke Nishiura, Takako Nishiura
  • Publication number: 20090054638
    Abstract: The present invention relates to cellulose esters having low hydroxyl content for use in optical applications, such as liquid crystal display (LCD) films. Films made with low hydroxyl levels and a given ratio of non-acetyl ester to hydroxyl level have been found to have low intrinsic birefringence. Therefore, these films can be cast, molded, or otherwise oriented without an appreciable birefringence or optical distortion (i.e. retardation). Such features make these films useful in polarizer, protective, and compensator films as well as molded optical parts, such as lenses. Furthermore, it has also been found that resins of the present invention can also be made to have “+C plate” behavior either by melt or solvent based processing, a characteristic which is not typical of cellulose esters. Such +C behavior allows films to be produced having unique compensatory behavior. Other embodiments of the invention relate to methods melt casting films while minimizing birefringence formation.
    Type: Application
    Filed: August 22, 2008
    Publication date: February 26, 2009
    Applicant: EASTMAN CHEMICAL COMPANY
    Inventors: Marcus David Shelby, Michael Eugene Donelson, Bradley Howard Dayvolt, Alan Kent Wilson, Bryan Kirkman
  • Patent number: 7413662
    Abstract: A modified sorptive lignocellulosic fibre material with hydroxyl groups on the lignocellulosic fibres doubly modified by esterification with a combination of monocarboxylic and dicarboxylic acid ester groups. A process for the preparation of the sorptive material. The sorptive fibre material is effective for the removal of oils and other contaminants including heavy metals from a fluid such as contaminated water by a combined sorption of hydrophobic contaminants and ion exchange.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: August 19, 2008
    Assignee: Danish Plant Fibre Technologies Holding A/S
    Inventors: Per Berre Eriksen, John Mark Lawther, Peter Larsen
  • Patent number: 7189464
    Abstract: In a multi-layer structure of a cellulose acylate film, the averaged degree of acylation of surface layers is controlled in the range of 0.5 to 2.8 by mixing several sorts of cellulose acylates having different averaged degrees of acyation. One of the surface layers is formed on a substrate by casting a solution containing cellulose acylate made of cotton linter. Lubricant particles are added to a solution for the surface layers, and emission compounds to a solution for the inner layers. The obtained cellulose acylate film is excellent in adhesive property to the hydrophobic material without saponification, and adequately used for the polarizing filter, an optical compensation sheet, and liquid crystal display.
    Type: Grant
    Filed: March 4, 2004
    Date of Patent: March 13, 2007
    Assignee: Fuji Photo Film Co., Ltd.
    Inventor: Masaru Sugiura
  • Patent number: 7122660
    Abstract: Using the dope containing the following cellulose acetate (1), (2), or (3), a film is prepared by the casting process: (1) a cellulose acetate having carboxyl groups binding to at least one member selected from the group consisting of a cellulose acetate and a hemicellulose acetate, wherein at least a part of said carboxyl groups are in an acidic form; (2) a cellulose acetate containing at least one member selected from the group consisting of an acid having an acid dissociation exponent pKa of 1.93 to 4.50 in water, an alkali metal salt of said acid and an alkaline earth metal of said acid; or (3) a cellulose acetate containing an alkali metal or an alkaline earth metal wherein the total content of an alkaline metal and an alkaline earth metal in 1 gram of the cellulose acetate is from an effective amount to 5.5×10?6 equivalent (in terms of ion equivalent). The above cellulose acetate is also useful for spinning process. The cellulose acetate includes a cellulose diacetate and a cellulose triacetate.
    Type: Grant
    Filed: September 3, 1998
    Date of Patent: October 17, 2006
    Assignee: Daicel Chemical Industries, Ltd.
    Inventors: Yukiko Nakanishi, Hiroki Taniguchi, Katako Ueda
  • Patent number: 6897303
    Abstract: A cellulose acetate film is produced from a solution of a cellulose acylate in a mixed solvent. The mixed solvent comprises a main solvent and an alcohol. The mixed solvent essentially does not contain chlorine atom. The main solvent comprises an ester and a ketone. The ester has a solubility parameter of 16 to 23. The ketone has a solubility parameter of 16 to 23. The alcohol has a solubility parameter of 20 to 30. The mixed solvent comprises the ester in an amount of 58 to 96 wt. %, the ketone in an amount of 2 to 15 wt. %, and the alcohol in an amount of 2 to 40 wt. %.
    Type: Grant
    Filed: March 20, 2003
    Date of Patent: May 24, 2005
    Assignee: Fuji Photo Film Co., Ltd.
    Inventor: Tsukasa Yamada
  • Patent number: 6730374
    Abstract: Disclosed is a triacetyl cellulose film comprising (a) a triphenyl monophosphate compound and (b) an aromatic polyol-bridged polyphosphate compound. Such a film exhibits a reduced rate of water vapor transmission.
    Type: Grant
    Filed: December 13, 2001
    Date of Patent: May 4, 2004
    Assignee: Eastman Kodak Company
    Inventors: William J. Gamble, Joseph L. Lippert