Organic Hydroperoxide Reactant Patents (Class 549/529)
  • Patent number: 10807961
    Abstract: A method for producing propylene oxide involves an oxidation step, a distillation step, an epoxidation step, and a separation step. The distillation step involves distilling the reaction mixture containing cumene hydroperoxide to separate it into a concentrate containing cumene hydroperoxide and a distillate. The reaction mixture is continuously distilled so that the ratio of the flow rate of the distillate to the flow rate of the reaction mixture to be distilled is 0.037 to 0.13. The epoxidation step involves obtaining a reaction mixture containing propylene oxide and cumyl alcohol by contacting the concentrate with propylene in the presence of a catalyst in one or more reactors to cause a reaction between propylene and cumene hydroperoxide in the concentrate, in which the outlet temperature of the final reactor is adjusted to 115° C. or more and less than 140° C.
    Type: Grant
    Filed: July 25, 2017
    Date of Patent: October 20, 2020
    Assignee: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Hirofumi Koike, Tomonori Kawabata, Takuo Takemoto, Motoshi Nakamura, Satoru Takemoto
  • Patent number: 10780431
    Abstract: A method of using biopolymer to synthesize titanium-containing silicon oxide material and applications thereof are disclosed. The method comprises steps: mixing a titanium source, a silicon source, an acid source, a base source, a biopolymer and a solvent to form an aqueous solution, and letting the aqueous solution react to form a semi-product; performing aging, solid-liquid separation and drying of the semi-product to obtain a dried solid; and performing calcination or extraction of the dried solid to obtain a titanium-containing silicon oxide material with a high specific surface area. The present invention adopts a biopolymer as the templating agent, which makes the fabrication process of titanium-containing silicon oxide material more environment-friendly. After calcination or extraction, the product still has superior catalytic activity, able to catalyze epoxidation of olefins and favorable for the production of epoxide.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: September 22, 2020
    Assignee: ORIENTAL UNION CHEMICAL CORP.
    Inventors: Yu-Chuan Hsu, Pin-Hsuan Huang, Chien-Chang Chiang, Ying-Shih Chang, Hsi-Chin Tsai, Hong-Ping Lin
  • Patent number: 10744493
    Abstract: A method of using biopolymer to synthesize titanium-containing silicon oxide material and applications includes mixing a titanium source, a silicon source, an acid source, a base source, a biopolymer and a solvent to form an aqueous solution, and letting the aqueous solution react to form a semi-product; performing aging, solid-liquid separation and drying of the semi-product to obtain a dried solid; and performing calcination or extraction of the dried solid to obtain a titanium-containing silicon oxide material with a high specific surface area. The present invention adopts a biopolymer as the templating agent, which makes the fabrication process of titanium-containing silicon oxide material more environment-friendly. After calcination or extraction, the product still has superior catalytic activity, able to catalyze epoxidation of olefins and favorable for the production of epoxide.
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: August 18, 2020
    Assignee: Oriental Union Chemical Corp.
    Inventors: Yu-Chuan Hsu, Pin-Hsuan Huang, Chien-Chang Chiang, Ying-Shih Chang, Hsi-Chin Tsai, Hong-Ping Lin
  • Patent number: 10702856
    Abstract: Disclosed is a supported catalyst and methods to prepare and use the supported catalyst in an oxidative coupling of methane (OCM) reaction. The supported catalyst can contain MnWO4 or MnWO4 nanostructures that are in contact with the surface of a sodium containing silicon dioxide support material. The supported MnWO4 catalyst can have an active MnWO4 crystal phase.
    Type: Grant
    Filed: May 16, 2017
    Date of Patent: July 7, 2020
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Wugeng Liang, Sagar Sarsani, David West
  • Patent number: 10493430
    Abstract: The present invention discloses a method for fabricating a titanium-containing silicon oxide material with high thermal stability and applications of the same, wherein a titanium source, a silicon source, an alkaline source, a template molecule and a peroxide are formulated into an aqueous solution; the aqueous solution reacts to generate a solid product; the solid product is separated from the aqueous solution with a solid-liquid separation process and dried; the solid product is calcined to obtain a titanium-containing silicon oxide material with high specific surface area. The titanium-containing silicon oxide material fabricated by the present invention has high thermal stability. Therefore, it still possesses superior catalytic activity after calcination. The titanium-containing silicon oxide material can be used to catalyze epoxidation of olefin and is very useful in epoxide production.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: December 3, 2019
    Assignee: Oriental Union Chemical Corp.
    Inventors: Yu-Chuan Hsu, Hsi-Chin Tsai
  • Patent number: 10428036
    Abstract: In a process for the epoxidation of propene, comprising the steps of reacting propene with hydrogen peroxide, separating propene oxide and a recovered propene stream from the reaction mixture, separating propane from all or a part of the recovered propene stream in a C3 splitter column, and passing the overhead product stream of the C3 splitter column to the epoxidation step, a propane starting material with a propane fraction of from 0.002 to 0.10 is used, the epoxidation is operated to provide a propane fraction in the reaction mixture of from 0.05 to 0.20 and the C3 splitter column is operated to provide an overhead product stream which comprises a propane fraction of at least 0.04 in order to reduce the size and the energy consumption of the C3 splitter column.
    Type: Grant
    Filed: November 25, 2016
    Date of Patent: October 1, 2019
    Assignees: Evonik Degussa GmbH, thyssenkrupp Industrial Solutions AG
    Inventors: Willi Hofen, Thomas Haas, Wolfgang Wöll, Bärbel Kolbe, Hans-Christian Dietz, Marc Brendel, Bernd Jaeger, Manfred Bärz, Michael Kleiber
  • Patent number: 10428035
    Abstract: In a process for the epoxidation of an olefin by continuously reacting the olefin with hydrogen peroxide in a methanol solvent on a fixed bed epoxidation catalyst comprising a titanium zeolite, the hydrogen peroxide is used as an aqueous hydrogen peroxide solution made by an anthraquinone process, the aqueous hydrogen peroxide solution is mixed with methanol to give a feed mixture and this feed mixture is filtered before being contacted with the fixed bed epoxidation catalyst.
    Type: Grant
    Filed: November 1, 2016
    Date of Patent: October 1, 2019
    Assignees: Evonik Degussa GmbH, thyssenkrupp Industrial Solutions AG
    Inventors: Matthias Pascaly, Manfred Bärz, Marc Brendel, Robert Jahn, Jürgen Schemel, Michael Dopfer
  • Patent number: 10160700
    Abstract: An apparatus for recycling propylene includes a first propylene recovery column, a flash tank, a second propylene recovery column, and a depropanizing column. The apparatus can effectively solve the problem of high power consumption in the prior art, and can be used for the industrial manufacturing of propylene recovery from a propylene oxide apparatus. A process for recycling and refining propylene also is described.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: December 25, 2018
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, SHANGHAI RESEARCH INSTITUTE OF PETROCHEMICAL TECHNOLOGY SINOPEC
    Inventors: Weisheng Yang, Mujin Li, De Shi, Zhi He
  • Patent number: 10100009
    Abstract: A process for forming a concentrated solution, including distilling in a distillation zone comprised of 10 or more theoretical distillation stages, at a pressure of no greater than 300 mm Hg and a reflux ratio (D/L) of at least 1:1, an amount of an initial solution comprised of tert-butyl hydroperoxide (TBHP) in tert-butyl alcohol (TBA) having a TBHP concentration of up to 60 wt. % and a total impurity content greater than 0.01 wt. %, for a time and under distillation conditions to form a concentrated solution comprised of TBHP in TBA; and separating an overhead distillate from the distillation zone so that the concentrated solution thereafter has a TBHP concentration greater than 60 wt. %, a TBA concentration less than 40 wt. %, a water impurity content no greater than 0.1 wt. % and a total impurity content of no greater than 1 wt. %. Related epoxidation catalyst formation and epoxidation processes are also described.
    Type: Grant
    Filed: October 5, 2017
    Date of Patent: October 16, 2018
    Assignee: Lyondell Chemical Technology, L.P.
    Inventors: Ha H. Nguyen, Te Chang, William H. McDowell
  • Patent number: 10017484
    Abstract: A catalyst composition which comprises titanium, wherein part of the titanium is present as a titanium dioxide phase and at least some of the titanium dioxide phase is in the brookite polymorphic form is provided. In some embodiments, the catalyst also comprises a silica support which exhibits a high surface area and pore volume. Methods of preparing the catalyst and its use in an epoxidation reaction are also provided.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: July 10, 2018
    Assignee: Lyondell Chemical Technology, L.P.
    Inventors: Sandor Nagy, Barbara Kimmich, Xueyong Yang, Jenny M. Oran Osment, Debra L. Jackson
  • Patent number: 10011575
    Abstract: A method for fabricating a titanium-containing silicon oxide material and an application of the same are disclosed. The method needn't use a template but directly use an amorphous silicon dioxide and a titanium source as the reactants. The reactants are mixed with a solvent and react in the solvent. The suspension generated by the reaction is processed by solid-liquid separation, flushing and drying to obtain a titanium-containing silicon oxide material. The method features a simplified fabrication process and a low fabrication cost. The titanium-containing silicon oxide material fabricated by the method has a superior catalytic activity, able to catalyze an epoxidation reaction of an olefin-group compound to generate an epoxide.
    Type: Grant
    Filed: July 25, 2016
    Date of Patent: July 3, 2018
    Assignee: Oriental Union Chemical Corp.
    Inventors: Yu-Chuan Hsu, Chia-Yao Tseng, Po-Sung Wu, Hsi-Chin Tsai
  • Patent number: 9738616
    Abstract: A continuous process for the preparation of propylene oxide, comprising (i) providing a liquid feed stream comprising propene, hydrogen peroxide, acetonitrile, water, optionally propane, and at least one dissolved potassium salt; (ii) passing the feed stream provided in (i) into an epoxidation reactor comprising a catalyst comprising a titanium zeolite of structure type MWW, and subjecting the feed stream to epoxidation reaction conditions in the epoxidation reactor, obtaining a reaction mixture comprising propylene oxide, acetonitrile, water, the at least one potassium salt, optionally propene, and optionally pane; (iii) removing an effluent stream from the epoxidation reactor, the effluent stream comprising propylene oxide, acetonitrile, water, at least a portion of the at least one potassium salt, optionally propene, and optionally propane.
    Type: Grant
    Filed: July 16, 2014
    Date of Patent: August 22, 2017
    Assignees: BASF SE, Dow Global Technologies LLC
    Inventors: Dominic Riedel, Joaquim Henrique Teles, Ulrike Wegerle, Andrei-Nicolae Parvulescu, Alexander Schroeder, Luise Spiske, Daniel Urbanczyk, Ulrich Mueller, Werner Witzl, Meinolf Weidenbach
  • Patent number: 9617233
    Abstract: The present disclosure generally relates to a silica-titanium catalyst prepared by first reacting a solid support with a metal alkoxide and then depositing titanium onto the solid support for the epoxidation of alkenes and aralkenes and a method of preparing the catalyst thereof. In some embodiments, the present disclosure relates to methods of using the catalyst described herein for the production of epoxides.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: April 11, 2017
    Assignee: Lyondell Chemical Technology, L.P.
    Inventors: Sandor Nagy, Vu A. Dang, Roger A. Grey
  • Patent number: 9498762
    Abstract: Embodiments of the present disclosure are directed to a system and a process for producing an oxirane. For the various embodiments, the system and process of the present disclosure includes: a reaction vessel having a reaction mixture of an olefin, a peroxide compound, a solvent mixture with an alcohol and a non-reactive co-solvent, a solid phase, and reaction products of the reaction mixture, where the reaction products include an oxirane; a separation vessel coupled to the reaction vessel, where an effluent of the reaction mixture and reaction products from the reaction vessel separates in the separation vessel into a liquid aqueous phase and a liquid organic phase; and an extraction vessel coupled to an outlet of the separation vessel, where the liquid aqueous phase taken from the outlet of the separation vessel mixes with an extraction solvent to extract oxirane from the aqueous phase.
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: November 22, 2016
    Assignee: BLUE CUBE IP LLC
    Inventors: Philip J. Carlberg, Hannah L. Crampton, Anna Forlin, Esteban Pedernera, Cesar E. Meza
  • Patent number: 9464239
    Abstract: The present invention relates to improving heavy crude oil, and extra through a scheme considering the use of ionic liquids catalysts based on Mo and Fe catalyst is highly miscible with crude oil and are in the homogeneous phase crude oil. Furthermore, this invention relates to improving heavy crude in two stages, the first ionic liquid catalyst, and the second supported catalyst. The API gravity crude is increased from 12.5 to 19 points in the first stage and viscosities up to 5600-1600 decreased from 60-40 cSt certain to 37.8° C. While in the second stage, you get an upgraded crude oil with 32.9° API, viscosity of 4.0 cSt, reduction in total sulphur content of 0.85 wt % nitrogen and 0295 ppm by weight, respectively. As a considerable reduction of asphaltenes from 28.65 to 3.7% weight.
    Type: Grant
    Filed: July 7, 2008
    Date of Patent: October 11, 2016
    Assignee: INSTITUTO MEXICANO DEL PETROLEO
    Inventors: Rubén Nares Ochoa, Persi Schacht Hernández, María del Carmen Cabrera Reyes, Marco Antonio Ramírez Garnica, Fernando Castrejón Vacío, Ricardo Jesús Ramírez López
  • Patent number: 9371300
    Abstract: Methods and compositions are provided for the manufacture of an epoxide. In one embodiment, the invention provides a process for the manufacture of an epoxide including providing an olefin, an oxidant, alkaline earth metal ions, a catalyst component, a buffer component, and water to form a reaction mixture and reacting the olefin with the oxidant in the reaction mixture.
    Type: Grant
    Filed: October 7, 2013
    Date of Patent: June 21, 2016
    Assignee: Evonik Degussa GmbH
    Inventors: Mark Kapellen, Joachim Lienke, Jimmy Antonius Van Rijn
  • Patent number: 9266849
    Abstract: A process for recovering a divinylarene dioxide from a crude feed stream comprising the steps of: (a) providing an effluent reaction stream containing at least one divinylarene dioxide product and other compounds; and (b) separating/recovering the divinylarene dioxide product from the other compounds of the reaction effluent from step (a); wherein the percent recovery of the divinylarene dioxide product recovered comprises greater than about 85 percent; and wherein the percent purity of the divinylarene dioxide product recovered comprises greater than about 85 percent.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: February 23, 2016
    Assignee: Blue Cube IP LLC
    Inventors: Leming Gu, William W. Fan, Bruce D. Hook, David Jean, Dennis W. Jewell
  • Patent number: 9221775
    Abstract: A process for preparing an alkylene oxide comprising contacting an alkyl phenyl hydroperoxide with an alkene in an epoxidation reaction to obtain an alkylene oxide and an alkyl phenyl alcohol, wherein the alkyl phenyl hydroperoxide is prepared by a process comprising reacting an alkyl aryl compound and oxygen to produce a reaction mixture comprising alkyl phenyl hydroperoxide, alkyl aryl compound and oxygen; separating at least a part of the reaction mixture into a product stream comprising alkyl phenyl hydroperoxide and an alkyl aryl compound stream; mixing at least a part of the alkyl aryl compound stream with a basic aqueous solution; separating at least a part of the mixture of alkyl aryl compound and basic aqueous solution with the help of a coalescer to obtain an organic phase containing alkyl aryl compound, and an aqueous phase; and recycling at least a part of the organic phase to the reacting step.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: December 29, 2015
    Assignee: Shell Oil Company
    Inventors: Arian Van Mourik, Ingmar Hubertus Josephina Ploemen
  • Patent number: 9102641
    Abstract: A method for producing propylene oxide in which the concentration of an organic peroxide in a reaction solution after an epoxidation step is from 20 to 5,000 ppm by weight based on the amount excluding propylene in the reaction solution, the method comprising an epoxidation step of reacting an organic peroxide with propylene in the presence of a catalyst to obtain propylene oxide and an alcohol, a propylene recovery step of recovering the unreacted propylene in the epoxidation step and recycling the resulting propylene as a raw material of the epoxidation step, and a propylene oxide purification step of distilling the propylene oxide obtained in the epoxidation step to obtain purified propylene oxide.
    Type: Grant
    Filed: March 21, 2008
    Date of Patent: August 11, 2015
    Assignee: SUMITOMO CHEMICAL COMPANY LIMITED
    Inventors: Jun Yamamoto, Shigeru Goto
  • Patent number: 9091766
    Abstract: Embodiments relate to an advanced fast and thermal neutron detector material composition with the properties useful for Special Nuclear Material (SNM) detection. Specific embodiments of the material composition result in two excimer scintillation light production mechanisms that provide two corresponding independent techniques for gamma discrimination; namely Pulse Shape Discrimination and Pulse Height Discrimination. A dual discrimination method, Pulse Shape and Pulse Height Discrimination (PSHD), can be implemented relying on both pulse height discrimination and pulse shape discrimination, and can allow the operation of large area, fast and thermal neutron detectors.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: July 28, 2015
    Assignee: NANOPTICS, INCORPORATED
    Inventors: James K. Walker, Youngwook Noh, Richard T. Farley
  • Patent number: 9062019
    Abstract: The present invention relates to an improved process for preparing mono and poly epoxy functionalized fatty acids, their esters and mixtures thereof using solid catalyst i.e. supported group VIb metal oxide, said support comprising silica, alumina and mixtures thereof, optionally with a promoter from group VA wherein the group VIB metal oxide content in the catalyst is 5-20 wt % of support.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: June 23, 2015
    Assignee: Council of Scientific and Industrial Research
    Inventors: Srinivas Darbha, Jitendra Kumar Satyarthi
  • Patent number: 8981133
    Abstract: The disclosure relates to a process for separating propylene oxide for a crude propylene oxide stream, for example an intermediate stream from a PO/TBA process. The crude propylene oxide stream can be passed through an extractive distillation column. The distillation column is operated at a pressure in a range of greater than 25 up to 50 psig, and/or at a temperature in a range of from 70 to 150 degrees Celsius using C8-C20 paraffin as extractive solvent with an overhead distillate water wash drum. The crude propylene oxide stream include from 0.001 to 0.1 wt % methanol, based on the total composition of the crude propylene oxide stream. The systems, methods, and apparatuses can produce a propylene oxide stream having less formaldehyde and acetaldehyde than the prior art.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: March 17, 2015
    Assignees: Lyondell Chemical Technology, L.P., Equistar Chemicals, LP
    Inventors: Xiangmin Li, David W. Leyshon, Te Chang
  • Patent number: 8927744
    Abstract: Embodiments of the present disclosure provide processes and systems for the epoxidation of an olefin using a fixed bed reactor. The fixed bed reactor is maintained at a temperature from 0 to 40 degrees Celsius. The processes and systems regulate a superficial liquid velocity of a non-homogeneous reaction mixture and recycled portion of effluent of the fixed bed reactor.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: January 6, 2015
    Assignee: Dow Global Technologies LLC
    Inventors: Cesar E. Meza, Philip J. Carlberg, Hannah L. Crampton
  • Publication number: 20140309441
    Abstract: Embodiments of the present disclosure provide processes and systems for the epoxidation of an olefin using a fixed bed reactor. The fixed bed reactor is maintained at a temperature from 0 to 40 degrees Celsius. The processes and systems regulate a superficial liquid velocity of a non-homogeneous reaction mixture and recycled portion of effluent of the fixed bed reactor.
    Type: Application
    Filed: November 2, 2012
    Publication date: October 16, 2014
    Applicant: Dow Global Technologies LLC
    Inventors: Cesar E. Meza, Philip J. Carlberg, Hannah L. Crampton
  • Patent number: 8822710
    Abstract: The invention relates to an integrated process for preparing an epoxide from an oxygenate, wherein the production of a lower olefin from the oxygenate and the subsequent epoxidation of the lower olefin is combined and wherein isobutene, a by-product of the lower olefin production, is converted into a hydroperoxide that is used for the conversion of the lower olefin into the corresponding epoxide.
    Type: Grant
    Filed: October 16, 2012
    Date of Patent: September 2, 2014
    Assignee: Shell Oil Company
    Inventors: Leslie Andrew Chewter, Hervé Henry, Pieter Oldenhove, Rajaram Ramesh, Jeroen Van Westrenen
  • Patent number: 8481764
    Abstract: A process for producing propylene oxide, which comprises supplying an organic peroxide and propylene to an epoxidation reactor in which a solid catalyst is packed thereby continuously producing propylene oxide through epoxidation reaction, wherein said process comprises cooling at least a part of the propylene before supplying to separate and remove water contained in the propylene, and supplying the propylene in which water has been separated and removed to the epoxidation reactor.
    Type: Grant
    Filed: August 22, 2006
    Date of Patent: July 9, 2013
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Junpei Tsuji, Koji Shinohara
  • Patent number: 8470729
    Abstract: Provided is a method for storing a high active titanium-containing silicon oxide catalyst, characterized in that the catalyst is stored at a relative humidity of 60% or less. The method can be used for a reaction, for example, wherein an oxirane compound is prepared from hydroperoxide and olefinic compound, even after the catalyst has been stored for a long period of time. The titanium-containing silicon oxide catalyst can be suitably employed as a catalyst satisfying the following requirements: (1) an average pore diameter is 10 ? or more, (2) the pores accounting for 90% or more of the total pore volume have a pore diameter of 50 to 200 ?, and (3) a specific pore volume is 0.2 cm cm3/g or more.
    Type: Grant
    Filed: March 13, 2006
    Date of Patent: June 25, 2013
    Assignee: Sumitomo Chemical Company, Limited
    Inventor: Jun Yamamoto
  • Publication number: 20130116454
    Abstract: The present invention relates to an epoxidation process for the preparation of alkylene oxide comprising contacting a hydroperoxide with an olefin in the presence of a catalyst, wherein the catalyst is a titanium containing catalyst obtainable by a method comprising the steps of (a) making a support by a method comprising reacting a silicate with water in the presence of a surfactant selected from block copolymers based on ethylene oxide (EO) and propylene oxide (PO), and calcining the obtained re-action product; and (b) impregnating the support of step (a) with a titanium containing agent.
    Type: Application
    Filed: July 14, 2011
    Publication date: May 9, 2013
    Inventor: Jan-Karel Frederik Buijink
  • Patent number: 8389750
    Abstract: The invention is a method of purifying propylene oxide containing acetone, water, methanol, methyl formate, aldehydes, and hydrocarbons impurities. The method comprises contacting the propylene oxide with a glycol and a C7 or greater alkane in a liquid/liquid solvent extraction, and separating propylene oxide having reduced impurities content. The purified propylene oxide may be produced by reacting propylene and a hydroperoxide to produce a crude propylene oxide effluent, distilling the crude effluent to produce a propylene oxide stream which contains 1-5 weight percent of the impurities, contacting the propylene oxide stream with a glycol and a C7 or greater alkane in a liquid/liquid solvent extraction, then separating an alkane fraction comprising propylene oxide from a glycol fraction, and distilling the alkane fraction in one or more steps to produce an alkane bottoms stream and a propylene oxide product having less than 0.1 weight percent impurities.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: March 5, 2013
    Assignee: Lyondell Chemical Technology, L.P.
    Inventor: Gary A. Sawyer
  • Publication number: 20120253055
    Abstract: A process for preparing a divinylarene dioxide including reacting (a) at least one divinylarene; (b) at least one peroxycarboximidic acid; (c) at least one solvent; and (d) at least one basic compound, under conditions to form a reaction mixture containing a divinylarene dioxide product; and then separating the divinylarene dioxide product from the other reaction mixture components to obtain a purified divinylarene dioxide product.
    Type: Application
    Filed: December 17, 2010
    Publication date: October 4, 2012
    Inventors: Eric B. Ripplinger, David Jean, David L. Burow, Khiet T. Pham, Gyongyi Gulyas, Bruce D. Hook
  • Patent number: 8273879
    Abstract: The present invention relates to a pyrimidine compound (I) useful as a pharmaceutical intermediate, to a process for preparing said pyrimidine compound, to intermediates used in said process, and to the use of said pyrimidine compound in the preparation of pharmaceuticals.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: September 25, 2012
    Assignee: AstraZeneca AB
    Inventors: Ulf Larsson, Mattias Magnusson, Tibor Musil, Andreas Palmgren
  • Publication number: 20120136165
    Abstract: The present invention provides a continuous process for the epoxidation of an olefinic compound with an oxidant, which process comprises reaction of an olefinic compound with an oxidant in the presence of a catalyst in an apparatus that comprises a reactive distillation column, which column comprises (i) a reactive section, which comprises the catalyst (ii) a rectifying section situated above the reactive section and adapted to allow separation of reagents and/or by-products from products (ix) a stripping section situated below the reactive section and adapted to allow separation of product from reagents and/or by-products (x) a vessel situated below the stripping section and adapted to provide a source of heat for the column and in which initial vaporisation of one or more of the reagents can occur, wherein the temperature in the reactive section (i) is a temperature at which the reaction between the olefinic compound and the oxidant takes place and the temperature in the stripping section (iii) is higher
    Type: Application
    Filed: July 30, 2010
    Publication date: May 31, 2012
    Applicant: SOUTH BANK UNIVERSITY ENTERPRISES LTD.
    Inventors: Basudeb Saha, Krzysztof Ambroziak, David C. Sherrington, Rene Mbeleck
  • Publication number: 20120077996
    Abstract: The invention is a method of purifying propylene oxide containing acetone, water, methanol, methyl formate, aldehydes, and hydrocarbons impurities. The method comprises contacting the propylene oxide with a glycol and a C7 or greater alkane in a liquid/liquid solvent extraction, and separating propylene oxide having reduced impurities content. The purified propylene oxide may be produced by reacting propylene and a hydroperoxide to produce a crude propylene oxide effluent, distilling the crude effluent to produce a propylene oxide stream which contains 1-5 weight percent of the impurities, contacting the propylene oxide stream with a glycol and a C7 or greater alkane in a liquid/liquid solvent extraction, then separating an alkane fraction comprising propylene oxide from a glycol fraction, and distilling the alkane fraction in one or more steps to produce an alkane bottoms stream and a propylene oxide product having less than 0.1 weight percent impurities.
    Type: Application
    Filed: September 28, 2010
    Publication date: March 29, 2012
    Inventor: Gary A. Sawyer
  • Patent number: 8119550
    Abstract: The present invention relates to a process for treating a solid material containing at least one zeolite and being at least partly crystalline or treating a shaped body obtained from said solid material wherein said solid material or shaped body is brought in contact with a composition containing water after at least one of the following steps of an integrated process for producing a solid material or a shaped body containing at least one zeolite: (i) after step (II) of separating the at least partly crystalline solid material from its mother liquor or (ii) after step (S) of shaping said solid material into a shaped body or (iii) after a step (C) of calcining said solid material or said shaped body. The present invention furthermore relates to the solid material obtainable by the inventive process and the shaped body obtainable by the inventive process.
    Type: Grant
    Filed: September 16, 2003
    Date of Patent: February 21, 2012
    Assignee: BASF Aktiengesellschaft
    Inventors: Ulrich Mueller, Georg Krug, Peter Bassler, Hans-Georg Goebbel, Peter Rudolf, Joaquim Henrique Teles
  • Patent number: 8080678
    Abstract: The invention is a method of purifying propylene oxide containing 25-100 ppm aldehyde impurities. The method comprises contacting the propylene oxide in the liquid phase with an amine-functionalized ion exchange resin, and recovering a purified propylene oxide product containing 10 ppm, or less, aldehydes.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: December 20, 2011
    Assignee: Lyondell Chemical Technology, L.P.
    Inventors: Xiangmin Li, Lawrence M. Candela, Brian A Salisbury
  • Patent number: 8017794
    Abstract: A process for the preparation of alkylene oxide, which process involves mixing fresh feed containing organic hydroperoxide and alkene with a recycle stream to obtain a reaction mixture containing of from 5 to 80% wt of alcohol, based on total amount of reaction mixture, contacting the reaction mixture with a heterogeneous epoxidation catalyst to obtain a stream containing alkylene oxide and alcohol, and recycling of from 30 to 95% wt of the stream obtained in step (ii) to step (i).
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: September 13, 2011
    Assignee: Shell Oil Company
    Inventors: Ingmar Hubertus Josephina Ploemen, Eduardus Petrus Simon Schouten, Alexander Jan Van Der Veen
  • Patent number: 7994348
    Abstract: A process for producing propylene oxide, which comprises: supplying a solution containing a peroxide selected from the group consisting of hydrogen peroxide and organic hydroperoxide having 2 or more of carbon atoms as a raw material and propylene to an epoxidation step to react the peroxide with propylene, and controlling a concentration of methyl hydroperoxide in the solution to be supplied to the epoxidation step.
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: August 9, 2011
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Kenji Chiwaki, Kazuo Suzuki, Shigenori Shiraishi
  • Patent number: 7985868
    Abstract: We describe the preparation and characterization of two zinc hybrid luminescent structures based on the flexible and emissive linker molecule, trans-(4-R,4?-R?) stilbene, where R and R? are mono- or poly-coordinating groups, which retain their luminescence within these solid materials. For example, reaction of trans-4,4?-stilbenedicarboxylic acid and zinc nitrate in the solvent dimethylformamide (DMF) yielded a dense 2-D network featuring zinc in both octahedral and tetrahedral coordination environments connected by trans-stilbene links. Similar reaction in diethylformamide (DEF) at higher temperatures resulted in a porous, 3-D framework structure consisting of two interpenetrating cubic lattices, each featuring basic to zinc carboxylate vertices joined by trans-stilbene, analogous to the isoreticular MOF (IRMOF) series. We demonstrate that the optical properties of both embodiments correlate directly with the local ligand environments observed in the crystal structures.
    Type: Grant
    Filed: May 4, 2007
    Date of Patent: July 26, 2011
    Assignee: Sandia Corporation
    Inventors: Christina A. Bauer, Mark D. Allendorf, F. Patrick Doty, Blake A. Simmons
  • Publication number: 20110028745
    Abstract: A process for the preparation of alkylene oxide, which process involves mixing fresh feed containing organic hydroperoxide and alkene with a recycle stream to obtain a reaction mixture containing of from 5 to 80% wt of alcohol, based on total amount of reaction mixture, contacting the reaction mixture with a heterogeneous epoxidation catalyst to obtain a stream containing alkylene oxide and alcohol, and recycling of from 30 to 95% wt of the stream obtained in step (ii) to step (i).
    Type: Application
    Filed: October 13, 2010
    Publication date: February 3, 2011
    Inventors: Ingmar Hubertus Josephina Ploemen, Eduardus Petrus Simon Schouten, Alexander Jan Van Der Veen
  • Patent number: 7875570
    Abstract: A process for producing a titanium-containing silicon oxide catalyst, which comprises the following steps A and B; a catalyst obtainable by the process; and a process for producing an olefin oxide using the catalyst.
    Type: Grant
    Filed: November 30, 2005
    Date of Patent: January 25, 2011
    Assignee: Sumitomo Chemical Company, Limited
    Inventor: Jun Yamamoto
  • Patent number: 7833498
    Abstract: Process and apparatus for the continuous preparation of a chemical compound in at least one reactor, where at least one of the reactors is a shell-and-tube reactor which has a shell and at least one internal tube located within the shell, wherein at least one of the internal tubes has, at least in part, a noncircular cross section and a helical configuration in the region in which it is surrounded by the shell.
    Type: Grant
    Filed: January 20, 2005
    Date of Patent: November 16, 2010
    Assignee: BASF Aktiengesellschaft
    Inventors: Hans-Georg Goebbel, Peter Bassler, Joaquim Henrique Teles, Peter Rudolf
  • Patent number: 7763756
    Abstract: A method for collecting an object material from a solution, which comprises the following steps: a step of adding a second solvent to a solution composed of an object material to be collected and a first solvent, then mixing therewith to form an emulsion containing the object material in a state under which the emulsion is not uniformly dissolved in the second solvent, in the second solvent; and a step of separating thus obtained emulsion from the solution.
    Type: Grant
    Filed: September 16, 2004
    Date of Patent: July 27, 2010
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Shigenori Shiraishi, Shigeru Goto, Masaaki Katao
  • Patent number: 7745544
    Abstract: Disclosed are processes for preparing an epoxidized and/or hydroxylated ?-olefin/diene copolymer materials such as ethylene/dicyclopentadiene. These processes comprise contacting in a reaction medium a) a copolymeric precursor component with b) a hydrogen peroxide oxidizing agent, in the presence of alkyl-trioxorhenium-based catalyst, under certain reaction conditions. The copolymeric precursor component comprises copolymers of ?-olefins and dienes with these copolymers containing at least one double bond in each diene-derived comonomer. The reaction medium is maintained under reaction conditions which promote formation of oxirane rings at, and/or diol formation across, the sites of the diene-derived co-monomer double bonds in the copolymeric precursor material. Epoxidation and hydroxylation generally increases the glass transition temperature, Tg, of these copolymers and imbues polarity which imparts oil resistance.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: June 29, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Abhimanyu Onkar Patil
  • Publication number: 20100145081
    Abstract: A process for producing propylene oxide, which comprises supplying an organic peroxide and propylene to an epoxidation reactor in which a solid catalyst is packed thereby continuously producing propylene oxide through epoxidation reaction, wherein said process comprises cooling at least a part of the propylene before supplying to separate and remove water contained in the propylene, and supplying the propylene in which water has been separated and removed to the epoxidation reactor.
    Type: Application
    Filed: August 22, 2006
    Publication date: June 10, 2010
    Applicant: SUMITOMO CHEMIAL COMPANY, LIMITED
    Inventors: Junpei Tsuji, Koji Shinohara
  • Patent number: 7713906
    Abstract: A catalyst composition comprising titanium incorporated into a silica support, characterized in that the silica support is a shaped extrudate of silica powder. The catalyst composition is useful in the epoxidation of olefins into alkylene oxides using organic hydroperoxides. The composition can be prepared by extruding silica powder into an extrudate having a selected shape; calcining the extrudate; impregnating the extrudate with a titanium-containing impregnating agent; and drying and calcining the impregnated extrudate.
    Type: Grant
    Filed: June 21, 2001
    Date of Patent: May 11, 2010
    Assignee: Shell Oil Company
    Inventors: Paul Blankenstein, Mark Crocker, Carl Johan Gerrit Van Der Grift, Johannes Jacobus Maria Van Vlaanderen
  • Patent number: 7705166
    Abstract: A process for producing propylene oxide, which comprises the following steps: oxidation step: a step of obtaining cumene hydroperoxide by oxidizing cumene; epoxidation step: a step of obtaining propylene oxide and cumyl alcohol by reacting cumene hydroperoxide obtained in the oxidation step with propylene; and conversion step: a step of obtaining cumene by subjecting cumyl alcohol obtained in the epoxidation step to hydrogenation-containing reaction and recycling the cumene to the oxidation step, wherein a concentration of 1,2-epoxy-2-phenylpropane contained in the reaction mixture after the oxidation step, is 1% by weight or less.
    Type: Grant
    Filed: September 16, 2004
    Date of Patent: April 27, 2010
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Junpei Tsuji, Yoshiaki Itou
  • Patent number: 7705167
    Abstract: A process for purifying propylene oxide, which comprises washing propylene oxide containing aldehydes and subsequently contacting an aqueous phase obtained with an extractant.
    Type: Grant
    Filed: September 15, 2004
    Date of Patent: April 27, 2010
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Koji Shinohara, Toshio Nakayama
  • Patent number: 7683191
    Abstract: The invention relates to a method for producing chiral organic compounds by asymmetric catalysis, using ionic catalysts comprising a chiral catalyst anion. The claimed method is suitable for reactions which are carried out over cationic intermediate stages, such as iminium ions or acyl pyridinium ions. The invention enables the production of chiral compounds with high ee values, that until now could only be obtained by means of costly purification methods.
    Type: Grant
    Filed: February 27, 2007
    Date of Patent: March 23, 2010
    Assignee: Studiangesellschaft Kohle mbH
    Inventors: Benjamin List, Sonja Mayer, Martin Nolwenn, Wang Xingwang
  • Publication number: 20100048925
    Abstract: A method for producing propylene oxide in which the concentration of an organic peroxide in a reaction solution after an epoxidation step is from 20 to 5,000 ppm by weight based on the amount excluding propylene in the reaction solution, the method comprising an epoxidation step of reacting an organic peroxide with propylene in the presence of a catalyst to obtain propylene oxide and an alcohol, a propylene recovery step of recovering the unreacted propylene in the epoxidation step and recycling the resulting propylene as a raw material of the epoxidation step, and a propylene oxide purification step of distilling the propylene oxide obtained in the epoxidation step to obtain purified propylene oxide.
    Type: Application
    Filed: March 21, 2008
    Publication date: February 25, 2010
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Jun Yamamoto, Shigeru Goto
  • Publication number: 20090227807
    Abstract: Provided is a method for storing a high active titanium-containing silicon oxide catalyst, characterized in that the catalyst is stored at a relative humidity of 60% or less. The method can be used for a reaction, for example, wherein an oxirane compound is prepared from hydroperoxide and olefinic compound, even after the catalyst has been stored for a long period of time. The titanium-containing silicon oxide catalyst can be suitably employed as a catalyst satisfying the following requirements: (1) an average pore diameter is 10 ? or more, (2) the pores accounting for 90% or more of the total pore volume have a pore diameter of 50 to 200 ?, and (3) a specific pore volume is 0.2 cm cm3/g or more.
    Type: Application
    Filed: March 13, 2006
    Publication date: September 10, 2009
    Applicant: Sumitomo Chemical Company, Limited
    Inventor: Jun Yamamoto