Ruthenium, Rhodium, Palladium, Osmium, Iridium, Or Platinum Containing (ru, Rh, Pd, Os, Ir, Or Pt) Patents (Class 556/136)
  • Publication number: 20140220115
    Abstract: The present invention relates to nanoparticle encapsulated arsenic and platinum compositions and methods of use thereof. In particular, the present invention provides co-encapsulation of active forms of arsenic and platinum drugs into liposomes, and methods of using such compositions for the diagnosis and treatment of cancer.
    Type: Application
    Filed: April 7, 2014
    Publication date: August 7, 2014
    Applicant: NORTHWESTERN UNIVERSITY
    Inventors: Thomas V. O'Halloran, Haimei Chen, Andrew Mazar
  • Patent number: 8796418
    Abstract: Novel polypeptides and methods of making and using the same are described herein. The polypeptides include cross-linking (“hydrocarbon stapling”) moieties to provide a tether between two amino acid moieties, which constrains the secondary structure of the polypeptide. The polypeptides described herein can be used to treat diseases characterized by excessive or inadequate cellular death.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: August 5, 2014
    Assignees: Dana-Farber Cancer Institute, Inc., President and Fellows of Harvard College
    Inventors: Loren D. Walensky, Gregory L. Verdine, Susan Korsmeyer
  • Patent number: 8766006
    Abstract: The present invention relates to the use of a nitroaniline derivative of Formula I for the production of nitric oxide and for the preparation of a medicament for the treatment of a disease wherein the administration of nitric oxide is beneficial. The present invention furthermore relates to a method for the production of NO irradiating a nitroaniline derivative of Formula I, a kit comprising a nitroaniline derivative of Formula I and a carrier and to a system comprising a source of radiations and a container associated to a nitroaniline derivative of Formula I. In Formula I, R and RI are each independently hydrogen or a C1-C3 alkyl group; RII is hydrogen or an alkyl group.
    Type: Grant
    Filed: April 8, 2013
    Date of Patent: July 1, 2014
    Assignee: STMicroelectronics S.r.l.
    Inventors: Sabrina Conoci, Salvatore Petralia, Salvatore Sortino
  • Patent number: 8759480
    Abstract: According to the present invention, there is provided a range of new conotoxin derivatives and methods for synthesizing these analogues and other intramolecular dicarba bridge-containing peptides, including dicarba-disulfide bridge-containing peptides.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: June 24, 2014
    Assignee: Syngene Limited
    Inventors: Andrea Robinson, Jomana Elaridi
  • Patent number: 8754249
    Abstract: Chelating ligand precursors for the preparation of olefin methathesis catalysts are disclosed. The resulting catalysts are air stable monomeric species capable of promoting various methathesis reactions efficiently, which can be recovered from the reaction mixture and reused. Internal olefin compounds, specifically beta-substituted styrenes, are used as ligand precursors. Compared to terminal olefin compounds such as unsubstituted styrenes, the beta-substituted styrenes are easier and less costly to prepare, and more stable since they are less prone to spontaneous polymerization. Methods of preparing chelating-carbene methathesis catalysts without the use of CuCl are disclosed. This eliminates the need for CuCl by replacing it with organic acids, mineral acids, mild oxidants or even water, resulting in high yields of Hoveyda-type methathesis catalysts.
    Type: Grant
    Filed: July 5, 2012
    Date of Patent: June 17, 2014
    Assignee: Materia, Inc.
    Inventors: Richard L. Pederson, Jason K. Woertink, Christopher M. Haar, David E. Gindelberger, Yann Schrodi
  • Patent number: 8753718
    Abstract: The invention concerns the use of the ruthenium-containing precursor having the formula (Rn-chd)Ru(CO)3, wherein: (Rn-chd) represents a cyclohexadiene (chd) ligand substituted with n substituents R, any R being in any position on the chd ligand; n is an integer comprised between 1 and 8 (1?n?8) and represents the number of substituents on the chd ligand; R is selected from the group consisting of C1-C4 linear or branched alkyls, alkylamides, alkoxides, alkylsilylamides, amidinates, carbonyl and/or fluoroalkyl for R being located in any of the eight available position on the chd ligand, while R can also be oxygen O for substitution on the C positions in the chd cycle which are not involved in a double bond for the deposition of a Ru containing film on a substrate.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: June 17, 2014
    Assignee: L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude
    Inventors: Christian Dussarrat, Julien Gatineau
  • Patent number: 8754250
    Abstract: The present invention provides a process for the preparation of Pd2(dba)3.CHCl3 comprising the steps of: (a) reacting a Pd(II) complex with an alkali metal halide in at least one alcohol solvent; and (b) reacting the product of step (a) with a mixture comprising dibenzylideneacetone, chloroform and an inorganic base to form Pd2(dba)3.CHCl3.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: June 17, 2014
    Assignee: Johnson Matthey Public Limited Company
    Inventor: Thomas John Colacot
  • Patent number: 8748644
    Abstract: This invention aims at providing (2,4-dimethylpentadienyl)-(ethylcyclopentadienyl)ruthenium which may contain its related structure compound, from which a ruthenium-containing thin film can be produced; a method of producing the same; a method of producing the ruthenium-containing thin film using the same; the ruthenium-containing thin film; and the like. The invention relates to producing the thin film using, as a precursor, (2,4-dimethylpentadienyl)(ethylcyclopentadienyl)ruthenium containing the related structure compound in an amount not more than 5% by weight, which can be obtained by separating the related structure compound from (2,4-dimethylpentadienyl)(ethylcyclopentadienyl)ruthenium containing the related structure compound.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: June 10, 2014
    Assignee: Tosoh Corporation
    Inventors: Taishi Furukawa, Noriaki Oshima, Kazuhisa Kawano, Hirokazu Chiba
  • Patent number: 8748570
    Abstract: A dicarba analogue of insulin comprising an A-chain and a B-chain or fragments, salts, solvates, derivatives, isomers or tautomers of the A-chain, the B-chain or both, provided that the dicarba analogue is not [A7,B7-(2,7-diaminosuberoyl]-des-(B26-B30)-insulin B25-amide.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: June 10, 2014
    Assignee: Syngene Limited
    Inventors: Andrea Robinson, Bianca Van Lierop
  • Publication number: 20140155621
    Abstract: Methods of preparing ruthenium carbene complex precursors are disclosed herein. In some embodiments, the methods include reacting a ruthenium refinery salt with an L-type ligand and a reducing agent to form the ruthenium carbene complex precursor. Methods of preparing a ruthenium vinylcarbene complex are also disclosed. In some embodiments, preparing a ruthenium carbene complex includes converting a ruthenium carbene complex precursor into a ruthenium carbene complex having a structure (PR1R2R3)2Cl2Ru?CH—R4, wherein R1, R2, R3, and R4 are defined herein.
    Type: Application
    Filed: November 22, 2013
    Publication date: June 5, 2014
    Applicant: ELEVANCE RENEWABLE SCIENCES, INC.
    Inventors: Linda A. Kunz, Steven A. Cohen
  • Publication number: 20140155643
    Abstract: This disclosure relates to compositions comprising dirhodium catalysts and uses related thereto, e.g., in enantioselective transformations of donor/acceptor carbenoids. In certain embodiments, the dirhodium catalyst comprises a cyclopropyl ring substituted with a carboxylic acid ligand. In certain embodiments, the disclosure relates to compositions comprising a compound of the following formula, or salts thereof wherein, R1, R2, and R3 are defined herein.
    Type: Application
    Filed: June 1, 2012
    Publication date: June 5, 2014
    Applicant: EMORY UNIVERSITY
    Inventors: Huw M. L. Davies, Jørn H. Hansen, Changming Qin
  • Publication number: 20140155642
    Abstract: The present invention relates to the ruthenium complexes comprising paracyclophane and carbonyl ligands, methods for the preparation thereof and uses of the complexes in isomerisation, hydrogenation, transfer hydrogenation, hydroformylation and carbonylation reactions.
    Type: Application
    Filed: March 16, 2012
    Publication date: June 5, 2014
    Applicant: JOHNSON MATTHEY PUBLIC LIMITED COMPANY
    Inventors: Damian Mark Grainger, Hans Guenter Nedden, Stephen James Roseblade
  • Patent number: 8742153
    Abstract: For forming a thin ruthenium film of good quality by CVD method, it is necessary to form the thin film at low temperature. There hence is a desire for a ruthenium compound having a high reactivity to heat. This invention relates to a method of producing a ruthenium-containing film by CVD or the like using, as a raw material, a ruthenium complex mixture containing (2,4-dimethylpentadienyl)(ethyl-cyclopentadienyl)ruthenium and bis(2,4-dimethylpentadienyl)ruthenium, the amount of the latter compound being 0.1 to 100% by weight based on the weight of (2,4-dimethylpentadienyl)(ethylcyclopentadienyl)ruthenium, and the like.
    Type: Grant
    Filed: November 29, 2010
    Date of Patent: June 3, 2014
    Assignee: Tosoh Corporation
    Inventors: Atsushi Maniwa, Noriaki Oshima, Kazuhisa Kawano, Taishi Furukawa, Hirokazu Chiba, Toshiki Yamamoto
  • Patent number: 8735521
    Abstract: A cycloolefin-based copolymer and a hydrogenation process are disclosed, wherein the cycloolefin-based copolymer is prepared by using: a monomer which can be easily and economically obtained by hydrogenating dicyclopentadiene that occupies much of C5 fractions from naphtha cracking; or a monomer which can be obtained by chemically bonding three molecules of cyclopentadiene via Diels-Alder reactions and then hydrogenating the cyclopentadiene. The copolymer can be used in various fields as an amorphous transparent resin.
    Type: Grant
    Filed: February 11, 2009
    Date of Patent: May 27, 2014
    Assignee: Kolon Industries, Inc.
    Inventors: Ik Kyung Sung, Woon Sung Hwang, Jung Hoon Seo, Bun Yeoul Lee, Sung Jae Na, Seung Taek Yu
  • Publication number: 20140135390
    Abstract: Platinum compounds, modified by conjugation with thiol-containing moieties, such as cysteine or N-acetyl cystein (NAC), and pharmaceutical compositions including the modified platinum compounds. Methods for treatment of a malignancy including administering and activating the modified platinum compounds.
    Type: Application
    Filed: January 21, 2014
    Publication date: May 15, 2014
    Inventor: Amal Ayoub
  • Patent number: 8716488
    Abstract: The present invention refers to novel ruthenium- and osmium-based catalysts for olefin metathesis reactions, particularly to catalysts having stereoselective properties. Z-selectivity is obtained by utilizing two mono-anionic ligands of very different steric requirement. In olefin metathesis reactions these catalysts selectively provide the Z-isomer of disubstituted olefinic products.
    Type: Grant
    Filed: September 25, 2012
    Date of Patent: May 6, 2014
    Assignee: Bergen Teknologioverforing AS
    Inventors: Vidar R. Jensen, Giovanni Occhipinti, Frederick Rosberg Hansen
  • Patent number: 8716456
    Abstract: The present invention relates to per-substituted pentalene compounds, including permethylpentalene and precursors thereof. In particular, the invention provides substituted pentalene compounds and methods of preparing substituted pentalene compounds; complexes of metals with substituted pentalene compounds and methods for their production; and the use of complexes of metals with substituted pentalene compounds in catalysis.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: May 6, 2014
    Assignee: Isis Innovation Limited
    Inventors: Dermot Michael O'Hare, Andrew Edward Ashley
  • Patent number: 8716510
    Abstract: The invention relates to the use of a platinum-dicyano-bisisocyanide complex cluster, having a small ?E distance, in particular between 500 cm?1 and 3000 cm?1, between the lowest triplet state and the overlying singlet state that is populated by means of thermal repopulation from the triplet, in an organic-electronic device for emission of blue light and for absorption in the ultraviolet and blue spectral range. The invention also relates to the use of the singlet harvesting method. Furthermore, the invention relates to the use of the high degrees of absorption of such platinum-dicyano-bisisocyanide complex clusters.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: May 6, 2014
    Assignee: Cynora GmbH
    Inventors: Hartmut Yersin, Rafal Czerwieniec, Tobias Fischer
  • Patent number: 8716509
    Abstract: The present invention relates to a process for preparing ruthenium(0)-olefin complexes of the (arene)(diene)Ru(0) type by reacting a ruthenium starting compound of the formula Ru(+II)(X)p(Y)q (in which X=an anionic group, Y=an uncharged two-electron donor ligand, p=1 or 2, q=an integer from 1 to 6), with a cyclohexadiene derivative or a diene mixture comprising a cyclohexadiene derivative, in the presence of a base. In this process, the arene bound in the (arene)(diene)Ru(0) complex is formed from this cyclohexadiene derivative by oxidation. Suitable ruthenium(II) starting compounds are, for example, RuCl2(acetonitrile)4, RuCl2(pyridine)4 or RuCl2(DMSO)4. The bases used are inorganic or organic bases. The ruthenium(0)-olefin complexes prepared by the process according to the invention have a high purity and can be used as precursors for homogeneous catalysts, for preparation of functional ruthenium- or ruthenium oxide-containing layers and for therapeutic applications.
    Type: Grant
    Filed: November 11, 2010
    Date of Patent: May 6, 2014
    Assignee: Umicore AG & Co. KG
    Inventors: Angelino Doppiu, Andreas Rivas-Nass, Ralf Karch, Roland Winde, Eileen Woerner
  • Patent number: 8703985
    Abstract: The present invention is directed to a method for the preparation of ruthenium indenylidene carbene catalysts of the type (L)(L?)X2Ru(II)(aryl-indenylidene). The method comprises the steps of reacting the precursor compound Ru(PPh3)nX2 (n=3-4) with a propargyl alcohol derivative in an cyclic diether solvent such as 1,4-dioxane at temperatures in the range of 80 to 130° C. and reaction times of 1 to 60 minutes. Optionally, additional neutral electron donor ligands such as PCy3, phobane ligands or NHC ligands are added to the reaction mixture for ligand exchange. The method includes a precipitation step for purification, after which the product is isolated. The ruthenium-indenylidene carbene catalysts are obtained in high purity and are used as catalysts for metathesis reactions (RCM, ROMP and CM) and as precursors for the synthesis of modified ruthenium carbene catalysts.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: April 22, 2014
    Assignee: Umicore AG & Co. KG
    Inventors: Roland Winde, Ralf Karch, Andreas Rivas-Nass, Angelino Doppiu, Gerhard Peter, Eileen Woerner
  • Patent number: 8691998
    Abstract: Novel N-heterocyclic carbene ligand precursors, N-heterocyclic carbene ligands and N-heterocyclic metal-carbene complexes are provided. Metal-carbene complexes comprising N-heterocyclic carbene ligands can be chiral, which are useful for catalyzing enantioselective synthesis. Methods for the preparation of the N-heterocyclic carbene ligands and N-heterocyclic metal-carbene complexes are given.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: April 8, 2014
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Adam S. Veige, Mathew S. Jeletic, Roxy J. Lowry, Khalil A. Abboud
  • Patent number: 8691400
    Abstract: The present invention relates to electronic devices, in particular organic electroluminescent devices, comprising metal complexes which contain isonitrile ligands.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: April 8, 2014
    Assignee: Merck Patent GmbH
    Inventors: Philipp Stoessel, Holger Heil, Dominik Joosten, Christof Pflumm, Anja Gerhard
  • Publication number: 20140087141
    Abstract: A non-catalytic palladium precursor composition is disclosed, including a palladium salt and an organoamine, wherein the composition is substantially free of water. The composition permits the use of solution processing methods to form a palladium layer on a wide variety of substrates, including in a pattern to form circuitry or pathways for electronic devices.
    Type: Application
    Filed: October 16, 2013
    Publication date: March 27, 2014
    Applicant: Xerox Corporation
    Inventors: Yiliang Wu, Ping Liu
  • Patent number: 8674128
    Abstract: The disclosure provides organometallic frameworks, catalysts and sensors. In one aspect, the organometallic framework comprises di-isocyanide group.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: March 18, 2014
    Assignee: The Regents of the University of California
    Inventors: Omar M. Yaghi, Eunwoo Choi
  • Publication number: 20140065060
    Abstract: The present invention relates to a compound of the general formula (I) wherein R1 represents a group selected from the list consisting of methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, linear or branched, saturated or mono- or polyunsaturated aliphatic carbon chain containing from two to ten carbon atoms, phenyl, and phenylacetylen, and wherein R2 and R3 independently of each other represent a group selected from the list consisting of Cl, I, methyl, phenyl, or phenylacetylene.
    Type: Application
    Filed: August 29, 2013
    Publication date: March 6, 2014
    Applicants: Karlsruher Institut fur Technologie (KIT), BASF SE
    Inventors: Wolfgang Gerlinger, Bernd Sachweh, Stefan Bräse, Mirja Enders, Thierry Müller, Gerhard Kasper, Martin Seipenbusch, Kun Gao, Matthias Faust, Linus Reichenbach
  • Publication number: 20140057050
    Abstract: The present invention is an organoruthenium compound for a chemical vapor deposition raw material, including dodecacarbonyl triruthenium represented by the following chemical formula, wherein the iron (Fe) concentration is 1 ppm or less. The DCR in the present invention can be produced by obtaining crude DCR by directly carbonylating ruthenium through allowing a ruthenium salt and carbon monoxide to react with each other and by purifying the crude DCR by a sublimation method. In the synthesis step, the concentration of Fe in the obtained crude DCR is preferably set at 10 ppm or less.
    Type: Application
    Filed: July 24, 2012
    Publication date: February 27, 2014
    Applicant: TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Masayuki Saito, Junichi Taniuchi, Hirofumi Nakagawa
  • Patent number: 8658815
    Abstract: The present invention provides a method for inexpensively producing di-?-chloro-bis[chloro(?6-1-isopropyl-4-methylbenzene)ruthenium (II)] complex used as a catalyst raw material for a hydrogenation or metathesis polymerization reaction at a high yield. In the present invention, the above-described problem can be solved by reacting ruthenium chloride or a hydrate thereof with ?-terpinene in a solvent. In particular, by using an alcohol having a boiling point of 100° C. or higher as a solvent, the yield of the above-described complex can be increased.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: February 25, 2014
    Assignee: Takasago International Corporation
    Inventors: Takahiro Fujiwara, Hideki Nara
  • Patent number: 8658249
    Abstract: The present invention provides a process for the deposition of a iridium containing film on a substrate, the process comprising the steps of providing at least one substrate in a reactor; introducing into the reactor at least one iridium containing precursor having the formula: XIrYA, wherein A is equal to 1 or 2 and i) when A is 1, X is a dienyl ligand and Y is a diene ligand; ii) when A is 2, a) X is a dienyl ligand and Y is selected from CO and an ethylene ligand, b) X is a ligand selected from H, alkyl, alkylamides, alkoxides, alkylsilyls, alkylsilylamides, alkylamino, and fluoroalkyl and each Y is a diene ligand, and c) X is a dienyl ligand and Y is a diene ligand; reacting the at least one iridium containing precursor in the reactor at a temperature equal to or greater than 100° C.; and depositing an iridium containing film formed from the reaction of the at least one iridium containing precursor onto the at least one substrate.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: February 25, 2014
    Assignees: L'Air Liquide, SociétéAnonyme pour l'Etude et l'Exploitation des Procédés Georges Claude, American Air Liquide, Inc.
    Inventors: Julien Gatineau, Christian Dussarrat
  • Publication number: 20140051871
    Abstract: Provided is a ruthenium complex that is represented by general formula (1*) and is useful as an asymmetric reduction catalyst. (In the formula, * is an asymmetric carbon atom; R1 is an arenesulfonyl group, and the like; R2 and R3 are a phenyl group, and the like; R10 through R14 are selected from a hydrogen atom, C1-10 alkyl group, and the like, but R10 through R14 are not simultaneously hydrogen atoms; X is a halogen atom and the like; j and k are each either 0 or 1; and j+k is 0 or 2.
    Type: Application
    Filed: May 2, 2012
    Publication date: February 20, 2014
    Applicant: TAKASAGO INTERNATIONAL CORPORATION
    Inventors: Taichiro Touge, Tomohiko Hakamata, Hideki Nara
  • Patent number: 8642796
    Abstract: An object of the present invention is to provide an organoruthenium compound which has good film formation characteristics as an organoruthenium compound for chemical deposition, has a high vapor pressure, and can easily form a film even when hydrogen is used as a reactant gas. The present invention relates to an organoruthenium compound, dicarbonyl-bis(5-methyl-2,4-hexanediketonato)ruthenium (II) which can have isomers 1 to 3, wherein the content of the isomer 2 is 30% by mass or more, the content of the isomer 3 is 30% by mass or less, and the balance is the isomer 1.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: February 4, 2014
    Assignee: Tanaka Kikinzoku Kogyo K. K.
    Inventors: Masayuki Saito, Kazuharu Suzuki, Shunichi Nabeya
  • Publication number: 20140005428
    Abstract: A metal organic framework (MOF) material including a Brunauer-Emmett-Teller (BET) surface area greater than 7,010 m2/g. Also a metal organic framework (MOF) material including hexa-carboxylated linkers including alkyne bond. Also a metal organic framework (MOF) material including three types of cuboctahedron cages fused to provide continuous channels. Also a method of making a metal organic framework (MOF) material including saponifying hexaester precursors having alkyne bonds to form a plurality of hexa-carboxylated linkers including alkyne bonds and performing a solvothermal reaction with the plurality of hexa-carboxylated linkers and one or more metal containing compounds to form the MOF material.
    Type: Application
    Filed: June 18, 2013
    Publication date: January 2, 2014
    Applicant: Northwestern University
    Inventors: Omar K. Farha, Joseph T. Hupp, Christopher E. Wilmer, Ibrahim Eryazici, Randall Q. Snurr, Diego A. Gomez-Gualdron, Bhaskarjyoti Borah
  • Patent number: 8618319
    Abstract: A novel catalyst component for producing a crystalline ?-olefin polymer or ?-olefin/(meth)acrylate copolymer having few branches, especially a polymer having a high molecular weight, and a method for producing an ?-olefin polymer or an ?-olefin/(meth)acrylate copolymer using the catalyst component. A metal complex represented by the following general formula (D), as well as a method for producing an ?-olefin polymer and a method for producing an ?-olefin/(meth)acrylate copolymer using the metal complex.
    Type: Grant
    Filed: April 27, 2009
    Date of Patent: December 31, 2013
    Assignees: Japan Polypropylene Corporation, Japan Polyethylene Corporation
    Inventors: Fumihiko Shimizu, Shixuan Xin, Akio Tanna, Shiho Goromaru, Koushi Matsubara
  • Publication number: 20130331566
    Abstract: Described are palladium precatalysts, and methods of making and using them. The palladium precatalysts show improved stability and improved reactivity in comparison to previously-described palladium precatalysts.
    Type: Application
    Filed: March 13, 2013
    Publication date: December 12, 2013
    Applicant: Massachusetts Institute of Technology
    Inventors: Nicholas C. Bruno, Stephen L. Buchwald
  • Patent number: 8604231
    Abstract: The invention relates to platinum complexes, to a method for preparing the same and to the use thereof for the chemical vapor deposition of metal platinum. The chemical vapor deposition of platinum onto a substrate is made from a platinum organo-metal compound the includes a ligand with a cyclic structure including at least two non-adjacent C?C double bonds, and the platinum organo-metal compound has a square-lane structure in which the platinum is bonded to each of the C?C double bonds of the ligand, thereby forming a (C?C)—Pt—(C?C) of 60° to 70°.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: December 10, 2013
    Assignee: Centre National de la Recherche Scientifique
    Inventors: Pascal Doppelt, Cyril Thurier
  • Patent number: 8604141
    Abstract: Ruthenium and osmium carbene compounds that are stable in the presence of a variety of functional groups and can be used to catalyze olefin metathesis reactions on unstrained cyclic and acyclic olefins are disclosed. Also disclosed are methods of making the carbene compounds. The carbene compounds are of the formula where M is Os or Ru; R1 is hydrogen; R is selected from the group consisting of hydrogen, substituted or unsubstituted alkyl, and substituted or unsubstituted aryl; X and X1 are independently selected from any anionic ligand; and L and L1 are independently selected from any neutral electron donor. The ruthenium and osmium carbene compounds of the present invention may be synthesized using diazo compounds, by neutral electron donor ligand exchange, by cross metathesis, using acetylene, using cumulated olefins, and in a one-pot method using diazo compounds and neutral electron donors.
    Type: Grant
    Filed: April 24, 2012
    Date of Patent: December 10, 2013
    Assignee: California Institute of Technology
    Inventors: Robert H. Grubbs, Peter Schwab, Sonbinh T. Nguyen
  • Patent number: 8592618
    Abstract: The present invention relates to a kind of novel carbene ligands and ruthenium catalysts, which is highly active and selective for ROMP and RCM reactions, respectively. It discloses the significant electronic and steric effect of different substituted carbene ligands on the catalytic activity and stability of corresponding carbene ruthenium complexes; some of novel ruthenium complexes in the invention can be broadly used as catalysts highly effectively and selective for ROMP and RCM reactions. The invention also relates to preparation of new ruthenium catalysts and the uses in metathesis. Moreover, the invention also provides effective methods of making various functional polymers by ROMP reaction in the presence of new ruthenium catalysts.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: November 26, 2013
    Assignee: Zannan Scitech Co., Ltd.
    Inventor: Zheng-Yun James Zhan
  • Patent number: 8592617
    Abstract: The present application is generally directed to ruthenium or osmium containing complexes and their use as redox mediators in electrochemical biosensors.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: November 26, 2013
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Hugh Oliver Allen Hill, Christopher Paul Newman, Luet Lok Wong, Tai-Chu Lau
  • Patent number: 8575346
    Abstract: The present invention relates to the field of catalysis and, more particularly, to a ruthenium carbonate complex of formula [Ru(diene)(C03)] or [Ru(diene)(C03)2]Mn, wherein M is an alkaline (n is 2) or alkaline earth (n is 1) cation. The invention relates also to the use of said ruthenium carbonate complex as precursors for a number of Ru carboxylate complexes. Said specific ruthenium complexes possess a number of important advantages over the similar prior art known precursors.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: November 5, 2013
    Assignee: Firmenich SA
    Inventors: Lucia Bonomo, Philippe Dupau, Serge Bonnaudet
  • Patent number: 8563465
    Abstract: The hydrogen storage material of the invention is a hydrogen storage material comprising metal fine particles with hydrogen storage capacity, and an organic compound that has at least two specific groups that can bind with the metal fine particles, and that is bonded with the metal fine particles by the specific groups.
    Type: Grant
    Filed: June 16, 2009
    Date of Patent: October 22, 2013
    Assignees: JX Nippon Oil & Energy Corporation, The University of Tokyo
    Inventors: Hiroshi Nishihara, Tetsu Yonezawa, Yoshinori Yamanoi, Yuki Yamamoto, Yoshihiro Kobori, Shinji Oshima, Yukio Kobayashi, Shunsuke Maekawa
  • Publication number: 20130274487
    Abstract: The present invention relates to the field of catalytic hydrogenation and, more particularly, to the use of specific ruthenium catalysts, or pre-catalysts, in hydrogenation processes for the reduction of ketones and/or aldehydes into the corresponding alcohol respectively. Said catalysts are ruthenium complexes comprising a tetradentate ligand (L4) coordinating the ruthenium with: two nitrogen atoms, each in the form of a primary or secondary amine (i.e. a NH2 or NH group) or N-alkyl imine functional groups (i.e. a C?N group), and two sulfur atoms, each in the form of thioether functional groups.
    Type: Application
    Filed: December 19, 2011
    Publication date: October 17, 2013
    Applicant: FIRMENICH SA
    Inventors: Sylvia Joyeuse Adélaïde Ada Saudan, Michel Alfred Joseph Saudan
  • Publication number: 20130264216
    Abstract: The present disclosure relates generally to carbon to carbon coupling processes, and more specifically, to dimerization or trimerization by electrocatalysis of alkenes and alkynes at room temperature.
    Type: Application
    Filed: April 3, 2013
    Publication date: October 10, 2013
    Applicant: Ball State University Board of Trustees
    Inventors: Daesung Chong, Jesse W. Tye
  • Publication number: 20130267725
    Abstract: The present invention relates to compounds and their use as ligands, in particular, in metal catalyst complexes. The ligands of the invention are capable of binding to a solid support. The invention includes the ligands in their own right and when bound to a support and the compounds may be used to prepare metal catalyst complexes.
    Type: Application
    Filed: June 7, 2013
    Publication date: October 10, 2013
    Applicant: UNIVERSITY OF LEEDS
    Inventors: John Blacker, Kevin Treacher, Thomas Screen
  • Patent number: 8552189
    Abstract: A hybrid porous material including at least a first and a second porous material portion which are chemically bonded to each other and are each a different type of material.
    Type: Grant
    Filed: August 10, 2010
    Date of Patent: October 8, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyo-sung Park, Seon-ah Jin, Hyun-chul Lee
  • Patent number: 8530592
    Abstract: The present invention discloses metallic complexes based on hydroxyl-carbonyl fulvene ligands, their method of preparation and their use in the oligomerization or polymerization of ethylene and alpha-olefins.
    Type: Grant
    Filed: July 16, 2008
    Date of Patent: September 10, 2013
    Assignee: Total Research & Technology Feluy
    Inventors: Clément Lansalot-MaTras, Olivier Lavastre, Sabine Sirol
  • Patent number: 8530687
    Abstract: Embodiments of the present disclosure provide for acyclic diaminocarbenes (ADCs) catalysts such as those shown in FIG. 1.1 and in the Examples, methods of making catalysts, methods of using catalysts, and the like. Catalyst of the present disclosure can be useful in various catalytic transformations. Embodiments of the catalyst can be used in hydroamination, cycloisomerization, allylic rearrangement reactions, alkyne hydration reactions, Meyer-Schuster rearrangement reactions, and the like.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: September 10, 2013
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Sukwon Hong, Hwimin Seo
  • Publication number: 20130224083
    Abstract: The present invention relates to the use of a nitroaniline derivative of Formula I for the production of nitric oxide and for the preparation of a medicament for the treatment of a disease wherein the administration of nitric oxide is beneficial. The present invention furthermore relates to a method for the production of NO irradiating a nitroaniline derivative of Formula I, a kit comprising a nitroaniline derivative of Formula I and a carrier and to a system comprising a source of radiations and a container associated to a nitroaniline derivative of Formula I. In Formula I, R and RI are each independently hydrogen or a C1-C3 alkyl group; RII is hydrogen or an alkyl group.
    Type: Application
    Filed: April 8, 2013
    Publication date: August 29, 2013
    Applicant: STMicroelectronics S.r.I.
    Inventor: STMicroelectronics S.r.I.
  • Patent number: 8507398
    Abstract: Catalysts for metathesis reactions, in particular for the metathesis of nitrile rubber, are provided.
    Type: Grant
    Filed: August 18, 2008
    Date of Patent: August 13, 2013
    Assignee: LANXESS Deutschland GmbH
    Inventors: Ludek Meca, Lubica Triscikova, Heinz Berke, Kirsten Langfeld, Martin Schneider, Oskar Nuyken, Werner Obrecht
  • Publication number: 20130204026
    Abstract: Synthetic methods for the in-situ formation of olefin metathesis catalysts are disclosed, as well as the use of such catalysts in metathesis reactions of olefins and olefin compounds.
    Type: Application
    Filed: March 24, 2011
    Publication date: August 8, 2013
    Applicant: MATERIA, INC.
    Inventor: Yann Schrodi
  • Patent number: 8501829
    Abstract: The present invention relates to compounds and their use as ligands, in particular in metal catalyst complexes. The ligands of the invention are capable of binding to a solid support. The invention includes the ligands in their own right and when bound to a support and the compounds may be used to prepare metal catalyst complexes.
    Type: Grant
    Filed: January 9, 2009
    Date of Patent: August 6, 2013
    Assignee: NPIL Pharmaceuticals (UK) Limited
    Inventors: John Blacker, Kevin Treacher, Thomas Screen
  • Patent number: 8487136
    Abstract: A method for selectively producing a monoaryl norbornene derivative represented by a formula (5) involves having a norbornadiene derivative represented by a formula (3) and a bromine compound represented by a formula (4) react with each other in the presence of a reducing agent, palladium and at least one selected from phosphorus compounds represented by the formulas (1) and (2), whereby the norbornene derivative represented by formula (5) having a monoaryl substituent is an exo configuration.
    Type: Grant
    Filed: July 29, 2008
    Date of Patent: July 16, 2013
    Assignee: Nippon Oil Corporation
    Inventors: Shinichi Komatsu, Toshikatsu Shoko, Tadahiro Kaminade