Silicon To Carbon Bond Formed Patents (Class 556/478)
  • Patent number: 10106568
    Abstract: Disclosed are Hafnium-containing film forming compositions comprising Silicon- and Hafnium-containing precursors having one of the following formula: wherein each R1, R2, R3, R4, R5, R6, R7, R8, R9 and R10 is independently selected from H; a C1-C5 linear, branched, or cyclic alkyl group; or a C1-C5 linear, branched, or cyclic fluoroalkyl group. Also disclosed are methods of synthesizing the disclosed compositions and using the same to deposit Hafnium-containing thin films on substrates via vapor deposition processes.
    Type: Grant
    Filed: October 28, 2016
    Date of Patent: October 23, 2018
    Assignee: L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude
    Inventors: Christian Dussarrat, Jean-Marc Girard, Hana Ishii, Clément Lansalot-Matras, Julien Lieffrig
  • Patent number: 10005798
    Abstract: The invention relates to a method for the plasma-assisted synthesis of organohalosilanes in which organohalosilanes of the general empirical formula R1mR2oSiX4-p (X=F, Cl, Br or I; p=1-4; p=m+o; m=1-4; o=0-3; R1, R2=alkyl, alkenyl, alkinyl, aryl) and/or carbosilanes of the general empirical formula R3qSiX3-qCH2SiR4rX3-r (X=F, Cl, Br or I; q=0-3; r=0-3; R3, R4=alkyl, alkenyl, alkinyl, aryl) are formed by activating a plasma in a mixture of one or more volatile organic compounds from the group of alkanes, alkenes, alkines and aromates with SiX4 and/or organohalosilanes RnSiX4-n (X=F, Cl, Br oder I; n=1-4; R=alkyl, alkenyl, alkinyl, aryl).
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: June 26, 2018
    Assignee: Nagarjuna Fertilizers and Chemicals Limited
    Inventors: Norbert Auner, Christian Bauch, Rumen Deltschew, Gerd Lippold, Seyed-Javad Mohsseni-Ala
  • Patent number: 9997334
    Abstract: Carbon materials having carbon aggregates, where the aggregates include carbon nanoparticles and no seed particles, are disclosed. In various embodiments, the nanoparticles include graphene, optionally with multi-walled spherical fullerenes and/or another carbon allotrope. In various embodiments, the nanoparticles and aggregates have different combinations of: a Raman spectrum with a 2D-mode peak and a G-mode peak, and a 2D/G intensity ratio greater than 0.5, a low concentration of elemental impurities, a high Brunauer-Emmett and Teller (BET) surface area, a large particle size, and/or a high electrical conductivity. Methods are provided to produce the carbon materials.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: June 12, 2018
    Assignee: Lyten, Inc.
    Inventors: Bryce H. Anzelmo, Daniel Cook, Hossein-Ali Ghezelbash, Shreeyukta Singh, Michael W. Stowell, David Tanner
  • Patent number: 9758379
    Abstract: Existing methods of producing high quality graphene/graphite oxides are generally accomplished by exfoliating graphite into flakes and oxidizing the graphite flakes with strong oxidizers under extreme conditions and require careful purification. The oxidizers are typically strong acids used in high concentrations at elevated temperatures requiring complicated purification processes to yield oxidized graphene/sheets. The existing processes can cost up to $12,000/gram. This invention uses a mild oxidant combined with mechanical processing where the sole products are oxidized graphite/graphene and water without the need for further purification.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: September 12, 2017
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventor: Richard Blair
  • Patent number: 9518069
    Abstract: New (triorganosilyl)alkynes and their derivatives having general formula R1—C?C—Z are provided along with methods for the preparation of (triorganosilyl)alkynes and their derivatives having the general formula R1—C?C—Z. The methods may include silylative coupling of terminal alkynes with halogenotriorganosilanes in the presence of an iridium catalyst and a tertiary amine.
    Type: Grant
    Filed: July 10, 2015
    Date of Patent: December 13, 2016
    Assignee: ADAM MICKIEWICZ UNIVERSITY
    Inventors: Ireneusz Kownacki, Bogdan Marciniec, Beata Dudziec, Agnieszka Kownacka, Mariusz Majchrzak, Mateusz Szulc, Bartosz Orwat
  • Patent number: 9296765
    Abstract: The application relates to a method for preparing organohalosilanes in a two-step process: Steps (i) contacting a copper catalyst with hydrogen gas and halogenated silanes forming a silicon-containing copper catalyst; and Step (ii) contacting said silicon-containing copper catalyst with an organohalide to form the organohalosilane.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: March 29, 2016
    Assignee: Dow Corning Corporation
    Inventors: Aaron Coppernoll, Catharine Horner, Krishna Janmanchi, Dimitris Katsoulis, Robert Larsen
  • Patent number: 9108994
    Abstract: The present invention relates to new (triorganosilyl)alkynes and their derivatives having general formula 1 R1—C?C—Z (I) In its second aspect, this invention relates to a new selective method for the preparation of new and conventional (triorganosilyl)alkynes and their derivatives having the general formula 1, by the silylative coupling of terminal alkynes with halogenotriorganosilanes in the presence of an iridium catalyst and a tertiary amine.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: August 18, 2015
    Assignee: ADAM MICKIEWICZ UNIVERSITY
    Inventors: Ireneusz Kownacki, Bogdan Marciniec, Beata Dudziec, Agnieszka Kownacka, Mariusz Majchrzak, Mateusz Szulc, Bartosz Orwat
  • Publication number: 20150141648
    Abstract: Disclosed herein are cobalt terpyridine complexes containing a single ligand coordinated to the cobalt, and their use as hydrosilylation and/or dehydrogenative silylation and crosslinking catalysts. The cobalt complexes also exhibit adequate air stability for handling and manipulation.
    Type: Application
    Filed: November 19, 2014
    Publication date: May 21, 2015
    Inventors: Tianning Diao, Paul J. Chirik, Aroop Kumar Roy, Kenrick Lewis, Keith J. Weller, Johannes G. P. Delis, Renyuan Yu
  • Patent number: 9000103
    Abstract: A composition of matter comprising an interpenetrating polymer network of a combination of a silanol-containing polysiloxane phase and a silylated triglyceride oil phase. The two phases are mixed and covalently bound to each other via siloxane crosslinks. A method for producing interpenetrating polymer networks. The method comprises providing triglycerides from oils or fats and reacting the triglycerides with a reactive silane to form a silylated triglyceride oil. The silylated triglyceride oil and a silanol terminated polysiloxane are emulsified with water in a predetermined ratio. Thereafter, crosslinking agents are added and the water is removed from the emulsions providing siloxane crosslinks between the two intimately mixed immiscible phases.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: April 7, 2015
    Inventors: Ramani Narayan, Daniel Gravier, Sudhanwa Dewasthale, Elodie Halbot
  • Patent number: 8962877
    Abstract: The invention pertains to a process for the preparation of organohalosilanes. The process comprises contacting a first finely-divided silicon comprising from 0.08 to 0.25% (w/w) of aluminum with an organohalide in a reactor at a temperature of from 250 to 350° C. in the presence of a Direct Process catalyst comprising copper, and a promotor; and introducing a second finely-divided silicon into the reactor comprising from 0.001 to <0.10% (w/w) of aluminum into the reactor as needed in an amount sufficient to maintain an aluminum concentration of from 0.08 to 0.2% (w/w), based on a weight of unreacted silicon and aluminum.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: February 24, 2015
    Assignee: Dow Corning Corporation
    Inventors: Joseph Peter Kohane, Unnikrishnan R. Pillai, Jonathan David Wineland
  • Publication number: 20150034884
    Abstract: It is an object to provide a method for producing compound semiconductor particles in which monodisperse compound semiconductor particles can be prepared according to the intended object, clogging with products does not occur due to self-dischargeability, a large pressure is not necessary, and productivity is high. In producing compound semiconductor particles by separating and precipitating, in a fluid, semiconductor raw materials, the fluid is formed into a thin film fluid between two processing surfaces arranged so as to be able to approach to and separate from each other, at least one of which rotates relative to the other, and the semiconductor raw materials are separated and precipitated in the thin film fluid.
    Type: Application
    Filed: August 22, 2014
    Publication date: February 5, 2015
    Inventor: Masakazu ENOMURA
  • Publication number: 20150025261
    Abstract: Improved utilization of organosilicon compounds in hydrophobicizing finely divided particulate solids is accomplished by metering a partial amount of unreacted solids with organosilicon containing offgases derived from admixing and reacting a major portion of solids with organosilicon compounds and admixing the offgas-treated solids with the major portion of solids to be treated.
    Type: Application
    Filed: March 5, 2013
    Publication date: January 22, 2015
    Inventors: Torsten Gottschalk-Gaudig, Carl-Heinz Ehrke, Helmut Maginot
  • Patent number: 8937195
    Abstract: A silicon-bridged Cp-Ar transition metal complex is provided that serves as a catalytic component capable of efficiently and highly selectively producing 1-hexene through the trimerization reaction of ethylene. The transition metal complex is represented by formula (1): wherein M1 represents a transition metal atom of Group 4 of the Periodic Table of the Elements; Ar1 is an aryl group represented by formula (2), Ar2 is an aryl group represented by formula (3) and Ar3 is an aryl group represented by formula (4) (not all of the three aryl groups Ar1, Ar2 and Ar3 are the same at the same time), Wherein each of the X and R groups represents hydrogen or the like.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: January 20, 2015
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Taichi Senda, Masaya Tanimoto, Hidenori Hanaoka
  • Patent number: 8865927
    Abstract: A method of preparing a diorganodihalosilane, the method comprising the following separate and consecutive steps: (a) treating a metal catalyst comprising a metal selected from the groups consisting of i) gold, ii) gold and copper, iii) gold, copper and magnesium, iv) copper, rhodium and gold, v) copper, rhodium, and rhenium, vi) rhenium and palladium, vii) copper, and viii) copper and magnesium with a mixture comprising hydrogen gas and an organotrihalosilane at a temperature from 500 to 1400° C. to form a silicon-containing metal intermediate; and (b) reacting the silicon-containing metal intermediate with an organohalide according to the formula RX, wherein R is C1-C10 hydrocarbyl and X is halo, at a temperature from 100 to 600° C. to form a diorganodihalosilane and a depleted silicon-containing metal intermediate.
    Type: Grant
    Filed: October 10, 2012
    Date of Patent: October 21, 2014
    Assignee: Dow Corning Corporation
    Inventors: Dimitris Katsoulis, Robert Larsen, Matthew McLaughlin, Wendy Sparschu
  • Patent number: 8859797
    Abstract: A SiH[CH2—Si(OEt)3]3 carbosilane compound is synthesized by reacting a Grignard reagent having the formula Si(OEt)3(CH2MgCl) with a quenching agent having the formula SiHCl3.
    Type: Grant
    Filed: August 22, 2013
    Date of Patent: October 14, 2014
    Assignees: Air Liquide Electronics U.S. LP, L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude, American Air Liquide, Inc.
    Inventors: Zhiwen Wan, Ziyun Wang, Ashulosh Misra, Jean-Marc Girard, Claudia Fafard, Andrey V. Korolev
  • Patent number: 8822621
    Abstract: A method for producing (hydroxymethyl)polysiloxanes of the general formula I (SiO4/2)k(R1SiO3/2)m(R12SiO2/2)p(R13SiO1/2)q[O1/2—(SiR22—X—Y—)aSiR22—CH2—OH]s[O1/2H]t??formula I, includes reacting silanol-containing organosiloxanes of the general formula II (SiO4/2)k(R1SiO3/2)m(R12SiO2/2)p(R13SiO1/2)q[O1/2H]r??formula II with cyclic or acyclic compounds that include at least one unit of the general formula III Z—[O—CH2—SiR22]n—Y??formula III
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: September 2, 2014
    Assignee: Wacker Chemie AG
    Inventors: Jürgen Oliver Daiss, Jens Cremer, Elke Fritz-Langhals, Steffen Jungermann
  • Publication number: 20140243494
    Abstract: A method of preparing a diorganodihalosilane, the method comprising the following separate and consecutive steps: (a) treating a metal catalyst comprising a metal selected from the groups consisting of i) gold, ii) gold and copper, iii) gold, copper and magnesium, iv) copper, rhodium and gold, v) copper, rhodium, and rhenium, vi) rhenium and palladium, vii) copper, and viii) copper and magnesium with a mixture comprising hydrogen gas and an organotrihalosilane at a temperature from 500 to 1400° C. to form a silicon-containing metal intermediate; and (b) reacting the silicon-containing metal intermediate with an organohalide according to the formula RX, wherein R is C1-C10 hydrocarbyl and X is halo, at a temperature from 100 to 600° C. to form a diorganodihalosilane and a depleted silicon-containing metal intermediate.
    Type: Application
    Filed: October 10, 2012
    Publication date: August 28, 2014
    Inventors: Dimitris Katsoulis, Robert Larsen, Matthew Mclaughlin, Wendy Sparschu
  • Patent number: 8809568
    Abstract: The present disclosure provides a method of preparing silylethynyl compounds in which two of the hydrocarbyl groups bonded to the silicon exclusive of the ethynyl group, are the same and one is different, that may be used in preparing novel silylethynyl functionalized acene semiconductor chromophores.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: August 19, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Robert S. Clough, John E. Anthony, Marcia M. Payne
  • Patent number: 8779179
    Abstract: The present disclosure provides a method of preparing silylethynyl compounds in which two of the hydrocarbyl groups bonded to the silicon exclusive of the ethynyl group, are the same and one is different, that may be used in preparing novel silylethynyl functionalized acene semiconductor chromophores.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: July 15, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Robert S. Clough, John E. Anthony, Marcia M. Payne
  • Patent number: 8772525
    Abstract: A method of preparing a diorganodihalosilane comprising the separate and consecutive steps of (i) contacting a copper catalyst with a mixture comprising hydrogen gas and a silicon tetrahalide at a temperature of from 500 to 1400° C. to form a silicon-containing copper catalyst comprising at least 0.1% (w/w) of silicon, wherein the copper catalyst is selected from copper and a mixture comprising copper and at least one element selected from gold, magnesium, calcium, cesium, tin, and sulfur; and (ii) contacting the silicon-containing copper catalyst with an organohalide at a temperature of from 100 to 600° C. to form at least one diorganodihalosilane.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: July 8, 2014
    Assignee: Dow Corning Corporation
    Inventors: Dimitris Katsoulis, Robert Larsen
  • Patent number: 8722915
    Abstract: A process for preparing organohalosilanes comprising combining hydrogen, a halosilane having the formula HaSiX4-a (I) and an organohalide having the formula RX (II), wherein R is C1-C10 alkyl or C4-C10 cycloalkyl, each X is independently halo, and the subscript a is 0, 1, or 2, in the presence of a sufficient amount of a catalyst effective in enabling the replacement of one or more of the halo groups of the halosilane with the R group from the organohalide, at a temperature from 200 to 800° C., to form an organohalosilane and a hydrogen halide, wherein the volumetric ratio of hydrogen to halosilane is from 1:3 to 1:0.001 and the volumetric ratio of hydrogen to organohalide is from 1:1 to 1:0.001, and wherein the catalyst is optionally treated with the hydrogen or the halosilane prior to the combining.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: May 13, 2014
    Assignee: Dow Corning Corporation
    Inventors: Aswini K. Dash, Charles Alan Hall, Dimitris Katsoulis, Robert Thomas Larsen, Matthew J. McLaughlin, Jonathan David Wineland
  • Patent number: 8716511
    Abstract: Process for preparing organoalkoxyhydrosilanes with a boron content less than 100 ppb and of the formula R1xHySi(OR2)z where x+y+z=4 and x, y, z are greater than or equal to 1, wherein, in a first step, a boron-contaminated organohalohydrosilane of the formula R1xHySiHalz where x+y+z=4, x, y, z are greater than or equal to 1, and R1 are linear or branched alkyl, cycloalkyl, aryl, alkenyl or arylalkyl radicals having 1 to 12 carbon atoms and Hal is F, Cl, Br or I, is subjected to a treatment with silica or aluminosilicate and the silica or the aluminosilicate is subsequently removed from the organohalohydrosilane in a second step and then the purified organohalohydrosilane is reacted with alcohol R2—OH where R2 is a methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, neopentyl or tert-pentyl radical.
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: May 6, 2014
    Assignee: Wacker Chemie AG
    Inventors: Wolfgang Knies, Karin Bögershausen
  • Publication number: 20140018564
    Abstract: A silicon-bridged Cp-Ar transition metal complex is provided that serves as a catalytic component capable of efficiently and highly selectively producing 1-hexene through the trimerization reaction of ethylene. The transition metal complex is represented by formula (1): wherein M1 represents a transition metal atom of Group 4 of the Periodic Table of the Elements; Ar1 is an aryl group represented by formula (2), Ar2 is an aryl group represented by formula (3) and Ar3 is an aryl group represented by formula (4) (not all of the three aryl groups Ar1, Ar2 and Ar3 are the same at the same time), Wherein each of the X and R groups represents hydrogen or the like.
    Type: Application
    Filed: March 29, 2012
    Publication date: January 16, 2014
    Applicant: Sumitomo Chemical Company, Limited
    Inventors: Taichi Senda, Masaya Tanimoto, Hidenori Hanaoka
  • Patent number: 8623984
    Abstract: The present invention relates to compositions containing polyether-siloxane copolymers which are based on branched SiH-functional siloxanes, where at least one of the polyether-siloxane copolymers has a radical —OR8 where R8=hydrogen or an alkyl radical having from 1 to 10 carbon atoms which is bound to a silicon atom, a process for producing polyurethane foam in which these compositions are used as foam stabilizers, polyurethane foams containing these compositions and the use of these polyurethane foams.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: January 7, 2014
    Assignee: Evonik Goldschmidt GmbH
    Inventors: Frauke Henning, Carsten Schiller, Horst Dudzik, Eva Emmrich, Annegret Terheiden, Martin Glos, Wilfried Knott, Christian Eilbracht
  • Publication number: 20140005427
    Abstract: The present invention relates to new (triorganosilyl)alkynes and their derivatives having general formula 1 R1—C?C—Z (I) In its second aspect, this invention relates to a new selective method for the preparation of new and conventional (triorganosilyl)alkynes and their derivatives having the general formula 1, by the silylative coupling of terminal alkynes with halogenotriorganosilanes in the presence of an iridium catalyst and a tertiary amine.
    Type: Application
    Filed: December 29, 2011
    Publication date: January 2, 2014
    Applicant: ADAM MICKIEWICZ UNIVERSITY
    Inventors: Ireneusz Kownacki, Bogdan Marciniec, Beata Dudziec, Agnieszka Kownacka, Mariusz Majchrzak, Mateusz Szulc, Bartosz Orwat
  • Publication number: 20130310590
    Abstract: Compounds 1,3,4-(SiMe3)(C6F5)(alkyl)C5H3 are made using a simplified synthetic strategy which is readily scalable. On reaction with a suitable transition metal species, a 1,3,4-(SiMe3)(C6F5)(alkyl)C5H3 molecule provides an organotransition metal complex comprising a 1,2-(C6F5)(alkyl) substituted cyclopentadienyl ligand, which is active toward olefin polymerization.
    Type: Application
    Filed: April 25, 2013
    Publication date: November 21, 2013
    Applicant: NOVA CHEMICALS (INTERNATIONAL) S.A.
    Inventors: Xiaoliang Gao, Darryl J. Morrison, Charles Ashton Garret Carter
  • Publication number: 20130285007
    Abstract: Silicon nanocrystal inks and films, and methods of making and using silicon nanocrystal inks and films, are disclosed herein. In certain embodiments the nanocrystal inks and films include halide-terminated (e.g., chloride-terminated) and/or halide and hydrogen-terminated nanocrystals of silicon or alloys thereof. Silicon nanocrystal inks and films can be used, for example, to prepare semiconductor devices.
    Type: Application
    Filed: April 25, 2013
    Publication date: October 31, 2013
    Inventors: Lance Michael WHEELER, Uwe Richard KORTSHAGEN
  • Patent number: 8563459
    Abstract: The invention includes a fixed-bed catalyst complex that includes (i) a metal carbene catalyst, wherein the metal is platinum, and (ii) a catalyst support that includes one or more of silica, alumina and/or glass. The invention provides a fixed-bed catalyst complex that includes a catalyst complex including a carbene chosen from those represented by at least one of Formulae (I), (II), (III), and (IV): Where the vales of X and R1 to R7 are specifically defined. The complex also includes a catalyst support that comprises silica, related reaction products, and related reaction systems.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: October 22, 2013
    Assignee: Gelest Technology, Inc.
    Inventors: Gerald L. Larson, Barry C. Arkles, Rudolph A. Cameron
  • Patent number: 8524363
    Abstract: Organosilicone fine particles which are capable of responding to the highly advanced requirements of recent years imposed on them for purposes of actual use, including further improvement in optical characteristics such as total light transmittance and haze as well as heat-resistant colorability related to resin compositions, further improvement in usability (extensions and expansions at the time of use) and feeling (stickiness, roughness and durability) related to cosmetic materials and further improvement in matte effect and factual sense related to paint compositions, as well as methods of their production and cosmetic materials, resin compositions and paint compositions containing such particles are provided. Organosilicone fine particles have tetrahedral general shapes with surfaces each having a concave part with an approximately circular opening. The maximum external diameters L of the organosilicone fine particles have an average value in the range of 0.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: September 3, 2013
    Assignee: Takemoto Yushi Kabushiki Kaisha
    Inventors: Chiaki Saito, Motoki Maeda, Eriko Hatta
  • Patent number: 8507707
    Abstract: The present invention provides a novel and improved method of functionalizing a C—H bond of an arene compound comprising the step of reacting an organometallic compound having a group 14 element with the arene compound having at least one hydrogen bonded to a carbon in the presence of a catalyst.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: August 13, 2013
    Assignee: University of Windsor
    Inventors: Samuel A. Johnson, Meghan E. Doster, Jillian A. Hatnean
  • Publication number: 20130197178
    Abstract: The present invention provides novel and stable crystalline 1H-1,2,3 triazolium carbenes and metal complexes of 1H-1,2,3 triazolium carbenes. The present invention also provides methods of making 1H-1,2,3 triazolium carbenes and metal complexes of 1H-1,2,3 triazolium carbenes. The present invention also provides methods of using 1H-1,2,3 triazolium carbenes and metal complexes of 1H-1,2,3 triazolium carbenes in catalytic reactions.
    Type: Application
    Filed: April 26, 2011
    Publication date: August 1, 2013
    Applicant: The Regents of the University of California
    Inventors: Guy Bertrand, Gregorio Gulsado-Barrios, Jean Bouffard, Bruno Donnadieu
  • Patent number: 8497392
    Abstract: A process for producing functionalized carbon nanotubes, which can organically modify carbon nanotubes with high efficiency, and in particular, can introduce different organic groups into carbon nanotubes with high efficiency through a series of chemical reactions, is provided. Carbon nanotubes are allowed to react with at least one reagent selected from a silyl-substituted organometallic compound and an organometallic compound to obtain a functionalized carbon nanotube reductant, and this functionalized carbon nanotube reductant is then allowed to react with at least one reagent selected from a silyl halide compound and an organohalogen compound to obtain functionalized carbon nanotubes.
    Type: Grant
    Filed: March 11, 2010
    Date of Patent: July 30, 2013
    Assignee: Japan Science and Technology Agency
    Inventors: Yutaka Maeda, Takeshi Akasaka
  • Publication number: 20130184461
    Abstract: Mechanosynthesis trajectories are described which are approximately coaxial, and are shown to be useful in a wide range of mechanosynthesis reactions regardless of the nature of the tip or the feedstock being transferred.
    Type: Application
    Filed: February 28, 2013
    Publication date: July 18, 2013
    Inventors: Robert A. Freitas, JR., Ralph C. Merkle
  • Publication number: 20130178626
    Abstract: Processes are described for manufacturing atomically-precise tips using one or more tips in one or more mechanosynthetic reactions to create one or more atomically-precise tips. The processes may employ a variety of feedstock, binding any of a wide range of atoms to a workpiece to build the one or more atomically-precise tips. The processes result in atomically-precise mechanosynthesis tips with a wide variety of possible tip structures using a wide range of feedstock binding elements. Characteristics of such tips that may be used when designing new embodiments are also described.
    Type: Application
    Filed: February 28, 2013
    Publication date: July 11, 2013
    Inventors: Robert A. Freitas, JR., Ralph C. Merkle
  • Publication number: 20130178627
    Abstract: Methods and systems for building three-dimensional workpieces are described using a plurality of mechanosynthetic reactions. These methods may employ engineered reliability in reactions and process conditions and may use simulated or otherwise vetted reaction sequences, to allow workpieces requiring many reactions to be built with acceptable reliability. These many reactions may be the repetition of one or a small number of reactions, or many diverse reactions, or a combination thereof.
    Type: Application
    Filed: February 28, 2013
    Publication date: July 11, 2013
    Inventors: Robert A. Freitas, JR., Ralph C. Merkle
  • Patent number: 8461369
    Abstract: Organomonoalkoxy/monohydroxy silanes, particularly halogenated or aklenylated organomonoalkoxy (or monohydroxy) silanes, which are useful intermediates in organic syntheses, are prepared by reacting an alkoxysilane with an organometallic compound suited for substituting at least certain of the alkoxy functions of the alkoxysilane with a monovalent hydrocarbon radical other than alkoxy and co-preparing a metallic alkoxylate by-product capable of denaturing the substituted silanes thus obtained, including contacting the metallic alkoxylate with at least one agent (A) reactive with the alkoxy functions of the alkoxylate to generate one or more species inert relative to the alkoxysilane, such agent (A) being selected from among the electrophile and/or mineral acid groups.
    Type: Grant
    Filed: March 5, 2008
    Date of Patent: June 11, 2013
    Assignee: Rhodia Operations
    Inventor: Thierry Vidal
  • Patent number: 8426628
    Abstract: A process for preparing an alkylamino-alkylalkoxysilane of formula (I) R—(NR?)—Y—Si(R1)n(OR2)3-n (I) in which R is a linear, branched or cyclic alkyl group having 1 to 12 carbon atoms, R? is a hydrogen (H) or is a linear, branched or cyclic alkyl group having 1 to 12 carbon atoms, Y is a bivalent alkyl group from the group of —CH2—, —(CH2)2—, —(CH2)3—, —(CH2)(CH(CH3))(CH2)— and —(CH2)4—, R1 and R2 groups are the same or different and are each a linear or branched alkyl group having 1 to 4 carbon atoms, and n is 0 or 1 or 2, by reacting an alkylamine, used in excess, distilling off excess free alkylamine, treating the remaining product mixture with the alkylaminoalkylalkoxysilane and working up.
    Type: Grant
    Filed: April 17, 2009
    Date of Patent: April 23, 2013
    Assignee: Evonik Degussa GmbH
    Inventors: Eckhard Just, Philipp Albert, Peter Jenkner
  • Patent number: 8420844
    Abstract: Organosilicon compounds are prepared by the addition reaction of a gaseous unsaturated hydrocarbon with a silane or siloxane containing at least one silicon-bonded hydrogen atom in the presence of a hydrosilylation catalyst in a liquid reaction medium. In this process the unsaturated hydrocarbon and optionally the silane or siloxane is dispersed into the liquid reaction medium by a jet eductor (also known as a venturi pump) device and the resultant gas-in-liquid dispersion is introduced into a bubble reactor.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: April 16, 2013
    Assignee: Momentive Performance Materials Inc.
    Inventors: Larry A. Divins, Frank D. Mendicino, John P. Smith, Marco Veri
  • Publication number: 20130066096
    Abstract: A method of preparing a diorganodihalosilane comprising the separate and consecutive steps of (i) contacting a copper catalyst with a mixture comprising hydrogen gas and a silicon tetrahalide at a temperature of from 500 to 1400° C. to form a silicon-containing copper catalyst comprising at least 0.1% (w/w) of silicon, wherein the copper catalyst is selected from copper and a mixture comprising copper and at least one element selected from gold, magnesium, calcium, cesium, tin, and sulfur; and (ii) contacting the silicon-containing copper catalyst with an organohalide at a temperature of from 100 to 600° C. to form at least one diorganodihalosilane.
    Type: Application
    Filed: March 31, 2011
    Publication date: March 14, 2013
    Applicant: Dow Corning Corporation
    Inventors: Dimitris Katsoulis, Robert Larsen
  • Publication number: 20130060060
    Abstract: A process for preparing organohalosilanes comprising combining hydrogen, a halosilane having the formula HaSiX4-a (I) and an organohalide having the formula RX (II), wherein R is C1-C10 alkyl or C4-C10 cycloalkyl, each X is independently halo, and the subscript a is 0, 1, or 2, in the presence of a sufficient amount of a catalyst effective in enabling the replacement of one or more of the halo groups of the halosilane with the R group from the organohalide, at a temperature from 200 to 800° C., to form an organohalosilane and a hydrogen halide, wherein the volumetric ratio of hydrogen to halosilane is from 1:3 to 1:0.001 and the volumetric ratio of hydrogen to organohalide is from 1:1 to 1:0.001, and wherein the catalyst is optionally treated with the hydrogen or the halosilane prior to the combining.
    Type: Application
    Filed: April 6, 2011
    Publication date: March 7, 2013
    Inventors: Aswini K. Dash, Charles Alan Hall, Dimitris Katsoulis, Robert Thomas Larsen, Matthew J. McLaughlin, Jonathan David Wineland
  • Patent number: 8388914
    Abstract: Methods and systems for producing silane that use electrolysis to regenerate reactive components therein are disclosed. The methods and systems may be substantially closed-loop with respect to halogen, an alkali or alkaline earth metal and/or hydrogen.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: March 5, 2013
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: Puneet Gupta, Henry Erk, Alexis Grabbe
  • Patent number: 8273911
    Abstract: At least one (poly)thio alkoxy and/or halosilane is/are prepared by reaction of at least one sulfur-containing reagent with at least one alkoxy and/or halosilane, wherein an ionic addition of a sulfur-containing reagent to an alkoxy and/or halosilane is preferably conducted with thermal and/or actinic activation; the novel polythio alkoxy and/or halosilanes of formula (III.2) thus prepared are particularly useful as coupling agents in elastomeric compositions containing a white filler of the silica type and having the formula (III.2) wherein, for example, R1.1 and R1.3=methyl and R1.2=ethoxy.
    Type: Grant
    Filed: November 9, 2007
    Date of Patent: September 25, 2012
    Assignee: Rhodia Operations
    Inventors: Gérard Mignani, Samir Mansouri, Samuel Arthaud, Thierry Vidal
  • Patent number: 8263222
    Abstract: Organosilicone fine particles of size in the range of 0.1-20 ?m, each having 20 or more faces with indefinite shapes and a network of convex parts that surround these faces with indefinite shapes on its surface, and being spherical as a whole respond to highly advanced requirements of recent years including improvements in optical characteristics of resin compounds, usability and feeling of cosmetics and maintainability of fluidity of development toners. The invention further provides methods of producing such organosilicone fine particles.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: September 11, 2012
    Assignee: Takemoto Yushi Kabushiki Kaisha
    Inventors: Fumiyoshi Ishikawa, Mamoru Yasui, Chiaki Saito
  • Publication number: 20120184431
    Abstract: Disclosed is transition metal complex that serves as a catalytic component with which 1-hexene can be produced efficiently with excellent selectivity, even under high temperature conditions, by means of an ethylene trimerization reaction. Also disclosed is a method for economically preparing a butyl-branched ethylene polymer, even under high temperature conditions, by using said transition metal complex as an ethylene trimerization catalyst, and polymerizing ethylene in the presence of an olefin polymerization catalyst that is obtained by bringing an olefin copolymerization catalyst and an activating co-catalytic component into contact with one another. Said transition metal complex is represented by the following general formula (1), wherein M1 represents a Group 4 transition metal atom, and R1 through R11 and X1 through X3 each independently represent a hydrogen atom, a halogen atom, or a specific organic group.
    Type: Application
    Filed: September 30, 2010
    Publication date: July 19, 2012
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Yasutoyo Kawashima, Takahiro Hino, Taichi Senda, Masaya Tanimoto
  • Publication number: 20120172597
    Abstract: The present invention relates to compounds of the formulae (I) to (XII), to the use of the compounds in electronic devices, and to electronic devices comprising the compounds according to the invention.
    Type: Application
    Filed: June 17, 2010
    Publication date: July 5, 2012
    Inventors: Rocco Fortte, Amir Hossain Parham, Teresa Mujica-Fernaud
  • Publication number: 20120083620
    Abstract: Minimization of byproducts in hydrosilylation reactions is achieved by use of a catalyst system which contains a platinum (O) complex catalyst and an oranic amine oxide and/or hydrate thereof.
    Type: Application
    Filed: June 21, 2010
    Publication date: April 5, 2012
    Applicant: WACKER CHEMIE AG
    Inventor: Wolfgang Ziche
  • Publication number: 20120053358
    Abstract: A process for producing functionalized carbon nanotubes, which can organically modify carbon nanotubes with high efficiency, and in particular, can introduce different organic groups into carbon nanotubes with high efficiency through a series of chemical reactions, is provided. Carbon nanotubes are allowed to react with at least one reagent selected from a silyl-substituted organometallic compound and an organometallic compound to obtain a functionalized carbon nanotube reductant, and this functionalized carbon nanotube reductant is then allowed to react with at least one reagent selected from a silyl halide compound and an organohalogen compound to obtain functionalized carbon nanotubes.
    Type: Application
    Filed: March 11, 2010
    Publication date: March 1, 2012
    Applicant: JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Yutaka Maeda, Takeshi Akasaka
  • Publication number: 20120046488
    Abstract: Disclosed herein is a process for producing an aromatic group-containing organosilane, The process includes reacting a reaction mixture comprising an aromatic organic compound of the formula R1X and a halosilane or alkoxysilane represented by the formula R2aSiZ4-a in the presence of magnesium metal in order to produce the organosilane with the proviso that said reaction mixture is essentially free of any organic solvent, wherein R1 is an aryl group, each R2 is independently a phenyl group, a vinyl group or a C1-C4 alkyl group, X is chlorine or bromine, Z is chlorine, bromine or alkoxy, and a has a value of 0, 1, 2, or 3.
    Type: Application
    Filed: August 17, 2011
    Publication date: February 23, 2012
    Applicant: Momentive Performance Materials Inc.
    Inventors: Paul R. Willey, John S. Razzano
  • Patent number: 8097745
    Abstract: A simple method of producing an organosilicon compound of a formula R2n(OR4)mSi—R1—Si(OR4)mR2n is disclosed. The method comprises the following two steps, Y—R1—Y+SiXm+1R2n->R2nXmSi—R1—SiXmR2n R2nXmSi—R1—SiXmR2n+M(OR4)r,->R2n(OR4)mSi—R1—Si(OR4)mR2n In the formulas, R1 is methylene, alkylene, or arylene, R2 is alkyl, alkenyl, alkynyl, or aryl, m and n is 0 to 3, provided m+n=3, at least one m being 1 or more, Y is halogen, X is hydrogen or halogen, R4 is alkyl, alkenyl, alkynyl, or aryl, M is metal, and r is the valence of the metal). The organosilicon compound is used to form a film having excellent heat resistance, chemical resistance, conductivity, and modulus of elasticity.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: January 17, 2012
    Assignee: JSR Corporation
    Inventors: Yohei Nobe, Kang-go Chung, Ryuichi Saito
  • Publication number: 20110319647
    Abstract: The invention provides a method of producing silica particles, the method including preparing an alkali catalyst solution containing an alkali catalyst in a solvent including an alcohol, at a concentration of from about 0.6 mol/L to about 0.85 mol/L; and supplying tetraalkoxysilane into the alkali catalyst solution, and concurrently supplying an alkali catalyst into the alkali catalyst solution at a rate of from about 0.1 mol to about 0.4 mol per mole of the total amount of supply of the tetraalkoxysilane supplied in one minute.
    Type: Application
    Filed: October 18, 2010
    Publication date: December 29, 2011
    Applicant: FUJI XEROX CO., LTD.
    Inventors: Hideaki YOSHIKAWA, Yuka ZENITANI, Hiroyoshi OKUNO, Shunsuke NOZAKI, Shinichiro KAWASHIMA, Sakae TAKEUCHI