Antimony Or Tin Containing Catalyst Utilized Patents (Class 568/477)
  • Patent number: 9822051
    Abstract: The present invention relates to a process for preparing acrolein from propylene by catalytic gas phase oxidation with molecular oxygen (for example air). The invention further relates to the use of particular propylene-containing starting materials, for example refinery grade propylene, for preparation of acrolein.
    Type: Grant
    Filed: May 23, 2014
    Date of Patent: November 21, 2017
    Assignee: Evonik Degussa GmbH
    Inventors: Martin Steffan, Helmut Mueller, Philipp Roth, Christoph Weckbecker, Harald Jakob
  • Publication number: 20150133687
    Abstract: An ?,?-unsaturated aldehyde and/or an ?,?-unsaturated carboxylic acid are prepared by gas phase oxidation of alkene with molecular oxygen over a fixed catalyst bed comprising a bed of hollow cylindrical shaped catalyst bodies having a multimetal oxide active composition. The fixed catalyst bed comprises at least three successive reaction zones; the highest local temperature in the fixed catalyst bed does not occur in the reaction zone closest to the reactor outlet; the highest local temperature in the fixed catalyst bed does not occur in the reaction zone closest to the reactor inlet; and the value WT=(ED?ID)/2 in the reaction zone in which the highest local temperature in the fixed catalyst bed occurs is lower than in the other reaction zones, in which ED is the external diameter and ID is the internal diameter of the shaped catalyst body. The yield of the products of value is enhanced in this way.
    Type: Application
    Filed: November 10, 2014
    Publication date: May 14, 2015
    Applicant: BASF SE
    Inventors: Josef MACHT, Christian WALSDORFF, Cornelia Katharina DOBNER, Cathrin Alexandra WELKER-NIEUWOUDT, Ulrich HAMMON
  • Publication number: 20140357890
    Abstract: A method for efficiently producing t-butanol as a raw material of a methacrylic resin from isobutanol is described, including a step (1) of dehydrating isobutanol to obtain butenes, and a step (2) of hydrating the butenes to obtain t-butanol. A method for producing methacrolein and methacrylic acid is also described, which further includes a step (3) of dehydrating and oxidizing the obtained t-butanol to obtain methacrolein and methacrylic acid. An apparatus for performing the steps (1) to (3) is also described.
    Type: Application
    Filed: November 6, 2012
    Publication date: December 4, 2014
    Applicant: MITSUBISHI RAYON CO., LTD.
    Inventors: Ken Ooyachi, Toshiya Yasukawa, Shuji Akihara
  • Patent number: 8722940
    Abstract: A catalyst for the oxidation of an olefin to an unsaturated aldehyde comprising a mixed metal oxide having the formula (I): MoaWbMcM?dM?eZfOg??(I) where M represents trivalent metals, M? represents divalent metals, M? represents monovalent metals, Z represents elements in the form of an oxide, a, b, c, d, e, f and g are numbers, and where the catalyst has an anion to cation molar (ACM) ratio greater than 1.00 and less than 2.00 and an M? to M molar ratio between 1.95 and 2.15.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: May 13, 2014
    Assignee: Saudi Basic Industries Corporation
    Inventors: James W. Kauffman, David L. Sullivan, Joe D. Dostal
  • Publication number: 20130231507
    Abstract: A catalyst for the oxidation of an olefin to an unsaturated aldehyde comprising a mixed metal oxide having the formula (I): MoaWbMcM?dM?eZfOg??(I) where M represents trivalent metals, M? represents divalent metals, M? represents monovalent metals, Z represents elements in the form of an oxide, a, b, c, d, e, f and g are numbers, and where the catalyst has an anion to cation molar (ACM) ratio greater than 1.00 and less than 2.00 and an M? to M molar ratio between 1.95 and 2.15.
    Type: Application
    Filed: March 1, 2012
    Publication date: September 5, 2013
    Inventors: James W. Kauffman, David L. Sullivan, Joe D. Dostal
  • Publication number: 20130204030
    Abstract: Disclosed is a method for producing a catalyst, in which physical properties of a dried material or a calcined material in a production process of the catalyst are stable and a change in at least one of a catalyst activity and a selectivity to a target product is small and hence reproducibility of the catalyst is excellent. The present invention is a method for producing a catalyst containing molybdenum, bismuth, and iron, which contains the steps of washing a surface of at least one device equipped in an apparatus for the production of catalyst, to which a solid matter adheres, with a basic solution, and producing the catalyst with the apparatus for the production of catalyst thus washed.
    Type: Application
    Filed: March 15, 2013
    Publication date: August 8, 2013
    Applicant: Mitsubishi Rayon Co., LTD.
    Inventor: Mitsubishi Rayon Co., LTD.
  • Publication number: 20110295041
    Abstract: A method of preparing a catalyst for producing acrolein by oxidation of propylene at high space velocity, said catalyst is a Mo—Bi—Fe—Co based composite metal oxide. Producing unsaturated aldehyde via partial oxidation of lower unsaturated olefin at high space velocity using said catalyst is suitable for process with or without off-gas recirculating. Said catalyst is prepared by co-precipitation, the reaction conditions for using said catalyst to produce unsaturated aldehyde are, the space velocity of unsaturated lower olefin relative to catalyst being 120˜200 h-1(STP), reaction temperature being 300˜420° C. and absolute pressure being 0.1˜0.5 MPa; a single-stage unsaturated lower olefin conversion ratio of greater than 98.0% and carbon oxide yield of less than 3.3% with an overall yield of unsaturated lower aldehyde and acid of greater than 94.0% are obtained. The process to prepare the said catalyst is simple, easy to be repeated, and capable of industrial scale-up.
    Type: Application
    Filed: May 26, 2011
    Publication date: December 1, 2011
    Applicant: Shanghai HuaYi Acrylic Acid Co. Ltd.
    Inventors: Jian Wang, Xuemei Li, Yan Zhuang, Kaimin Shi, Kun Jiao, Jianxue Ma, Xiaodong Chu, Jingming Shao
  • Patent number: 7494952
    Abstract: The present invention is for a process for making a catalyst for production of unsaturated aldehydes, such as methacrolein, by gas phase catalytic oxidation of olefins, such as isobutylene, said catalyst containing oxides of molybdenum, bismuth, iron, cesium, tungsten, cobalt, nickel, antimony, magnesium and zinc. The process is a synthesis of the catalyst with aging or digestion of the reaction slurry with little or no agitation. A catalyst precursor is formed from the water insoluble and water soluble components and is dried. The metal oxide catalyst is formed by calcination of the catalyst precursor.
    Type: Grant
    Filed: January 17, 2006
    Date of Patent: February 24, 2009
    Assignee: Saudi Basic Industries Corporation
    Inventors: James W. Kauffman, Angela McGuffey
  • Patent number: 7217836
    Abstract: A method for producing (meth)acrolein and/or (meth)acrylic acid by subjecting isobutylene and the like or propylene to a vapor-phase catalytic oxidation with molecular oxygen in the presence of a solid oxidation catalyst in a tubular type of fixed bed reactor, wherein a temperature of a hot-spot zone is sufficiently controlled and (meth)acrolein and (meth)acrylic acid are produced with a high yield. A method for producing (meth)acrolein and/or (meth)acrylic acid by passing a raw material gas comprising isobutylene and the like or propylene and oxygen through a catalyst layer in a tubular type of fixed bed reactor which is filled with a solid oxidation catalyst, which includes passing a gas containing isobutylene and the like or propylene in a concentration lower than that of the raw material gas, and oxygen through the catalyst layer for a period of one hour or more prior to passing the raw material gas through the catalyst layer.
    Type: Grant
    Filed: May 21, 2002
    Date of Patent: May 15, 2007
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Seigo Watanabe, Motomu Oh-Kita, Toshihiro Sato
  • Patent number: 7154009
    Abstract: A process for the long-term operation of a heterogeneously catalyzed gas phase partial oxidation of propene to acrolein, in which the temperature of the fixed catalyst bed is increased over the time and the gas phase partial oxidation is interrupted at least once per calendar year and the gas mixture G consisting of molecular oxygen, inert gas and optionally steam is conducted through the fixed catalyst bed at a temperature of the fixed catalyst bed of from 250 to 550° C.
    Type: Grant
    Filed: October 12, 2004
    Date of Patent: December 26, 2006
    Assignee: BASF Aktiengesellschaft
    Inventors: Martin Dieterle, Jochen Petzoldt, Klaus Joachim Mueller-Engel
  • Patent number: 7122707
    Abstract: Coated catalysts which are suitable for the gas-phase catalytic oxidation of propene to acrolein are prepared by a process in which rings are used as supports and water is used as a binder.
    Type: Grant
    Filed: October 9, 2001
    Date of Patent: October 17, 2006
    Assignee: BASF Aktiengesellschaft
    Inventors: Jochen Petzoldt, Signe Unverricht, Heiko Arnold
  • Patent number: 6812366
    Abstract: A catalyst useful for oxidation reactions is disclosed. The catalyst is useful for the gas phase oxidation of alkanes, propylene, acrolein, or isopropanol to unsaturated aldehydes or carboxylic acids.
    Type: Grant
    Filed: September 2, 2003
    Date of Patent: November 2, 2004
    Assignee: Rohm and Haas Company
    Inventor: Manhua Lin
  • Patent number: 6545178
    Abstract: In the production of acrolein and acrylic acid by the catalytic gas phase oxidation of propylene with a molecular oxygen-containing gas, a method is provided which enables acrolein and acrylic acid to be stably produced with a high yield for a long time from propylene by effectively repressing such secondary reactions as are responsible for the formation of organic acids, high boiling compounds, and tarry compounds, the deposition of carbonized materials, and the deterioration of the quality of products. The content of unsaturated hydrocarbons (excluding propylene) of 2-5 carbon atoms in the raw material for propylene is kept below 500 ppm (by weight). Particularly, it is proper to use a raw material for propylene which has a content of unsaturated hydrocarbons (excluding propylene) of 2-5 carbon atoms of not more than 200 ppm (by weight) and a total content of diene and acetylenic compounds of 2-5 carbon atoms of not more than 200 ppm (by weight).
    Type: Grant
    Filed: May 18, 1999
    Date of Patent: April 8, 2003
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Michio Tanimoto, Daisuke Nakamura, Tatsuya Kawajiri
  • Patent number: 6410785
    Abstract: In a process for the preparation of acrolein by gas-phase partial oxidation under heterogeneous catalysis, a reaction gas starting mixture which contains propene and molecular oxygen in a molar C3H6:O2 ratio of >1 is reacted in reaction zones connected in series, at elevated temperatures, over solid-state catalysts, further molecular oxygen being added to the reaction gas mixture in the course of the partial oxidation.
    Type: Grant
    Filed: July 18, 2001
    Date of Patent: June 25, 2002
    Assignee: BASF Aktiengesellschaft
    Inventors: Peter Zehner, Otto Machhammer, Heiko Arnold, Klaus Joachim Müller-Engel
  • Patent number: 6346646
    Abstract: A process for producing methacrolein and methacrylic acid by catalytically oxidizing isobutylene or tertiary butanol in the presence of a catalyst comprising a compound oxide containing molybdenum, bismuth and iron as the essential components, wherein a catalytic oxidation reaction is started at a temperature of (T−3)° C. or lower wherein T° C. is defined as the boundary temperature of activation energy of a reaction for obtaining methacrolein and methacrylic acid from isobutylene using said catalyst, the reaction is continued while the reaction temperature is increased as the activity of the catalyst decreases, and an activation treatment is conducted for the catalyst at least once before the reaction temperature exceeds the boundary temperature of activation energy.
    Type: Grant
    Filed: January 27, 2000
    Date of Patent: February 12, 2002
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Seigo Watanabe, Motomu Oh-Kita
  • Patent number: 6080893
    Abstract: A mixed oxide solid composition of formula (I):Mo.sub.12 W.sub.a Bi.sub.b Fe.sub.c Co.sub.d Ni.sub.e Si.sub.f K.sub.g Sn.sub.h O.sub.x (I)where O.ltoreq.a.ltoreq.5, 0.5.ltoreq.b.ltoreq.5, 0.1.ltoreq.c.ltoreq.10, 0.5.ltoreq.d.ltoreq.10, 0.ltoreq.e.ltoreq.10, 0.ltoreq.f.ltoreq.15, 0.ltoreq.g.ltoreq.1, 0.ltoreq.h.ltoreq.2 and x is the quantity of oxygen bonded to the other elements and depends on their oxidation states, is used in the manufacture of acrolein by oxidizing propylene, the solid composition reacting with propylene according to the redox reaction (1):solid.sub.oxidized +propylene.fwdarw.solid.sub.reduced +acrolein(I)To manufacture acrolein, gaseous propylene is passed over a solid composition of formula (I), to conduct the redox reaction (1) by operating at a temperature of 200 to 600.degree. C., at a pressure of 1.01.times.10.sup.4 to 1.01 to 10.sup.6 Pa (0.1 to 10 atmospheres) and with a residence time of 0.01 second to 90 seconds, in the absence of molecular oxygen.
    Type: Grant
    Filed: February 27, 1998
    Date of Patent: June 27, 2000
    Assignee: Elf Atochem, S.A.
    Inventors: Gerard Hecquet, Jean-Pierre Schirmann, Michel Simon, Gilles Descat, Eric Etienne
  • Patent number: 5977416
    Abstract: A dehydration catalyst useful for producing a monoalkylether of dihydric phenolic compound by a dehydration reaction of a dihydric phenolic compound with a lower alkyl alcohol with a high conversion at a high selectivity, comprises at least one inorganic substance of the empirical formula (I):Al.sub.a P.sub.b Ti.sub.c Si.sub.d X.sub.e O.sub.f (I)wherein X represents a member selected from the group consisting of (1) an antimony and/or a bismuth atom, and (2) a sulfur atom, a, b, c, d, e and f respectively represent the numbers of Al, P, Ti, Si, X and 0 atoms, the atomic ratio a:b is 1:1.0 to 1.9, the atomic ratio a:c is 1:0.05 to 0.5, the atomic ratio a:d is 1:0.05 to 0.2, the atomic ratio a:e is 1:0.01 to 0.3 when X represents antimony and/or bismuth atom and 1:0.004 to 0.015 when X represents a sulfur atom, and the atomic ratio a:f is 1:4.1 to 8.4.
    Type: Grant
    Filed: April 9, 1998
    Date of Patent: November 2, 1999
    Assignee: Ube Industries, Ltd.
    Inventors: Tokuo Matsuzaki, Tsunemi Sugimoto, Yasuo Nakamura, Takumi Manabe
  • Patent number: 5929275
    Abstract: A catalyst for the production of unsaturated aldehyde and unsaturated acid, obtained by loading a catalytically active component on a carrier and calcining the loaded catalyst, characterized by an average particle diameter of the catalyst of 4 to 16 mm, an average particle diameter of the carrier of 3 to 12 mm, a calcining temperature of 520 to 600.degree. C. and an amount of the catalytically active component loaded on the carrier of 5 to 80% by weight ?weight of the catalytically active component)/(weight of the catalytically active component+weight of the carrier+weight of a strength improver)!, and a process for producing unsaturated aldehyde and unsaturated acid with the catalyst.
    Type: Grant
    Filed: May 9, 1997
    Date of Patent: July 27, 1999
    Assignee: Nippon Kayaku Co., Ltd.
    Inventors: Koichi Wada, Akira Iwamoto, Yoshimasa Seo, Atsusi Sudo, Fumio Sakai, Kazuo Shiraishi, Hideaki Miki
  • Patent number: 5700752
    Abstract: A catalyst for the production of unsaturated aldehyde and unsaturated carboxylic acid by the vapor-phase catalytic oxidation of at least one compound selected from the group consisting of propylene, isobutylene, t-butanol and methyl-t-butyl ether and a method for the production of unsaturated aldehyde and unsaturated carboxylic acid by the use of this catalyst are provided. The catalyst of this invention comprises (A) a catalyst having Mo, Bi and Fe as essential components and used for the production of unsaturated aldehyde and unsaturated carboxylic acid by vapor-phase catalytic oxidation of propylene, isobutylene, t-butanol and/or methyl-t-butyl ether and (B) a solid acid having acid strength (Ho) of not more than -11.93. Since this catalyst excels in catalytic activity and service life, it allows unsaturated aldehyde and unsaturated carboxylic acid to be produced stably at a high yield for a long time.
    Type: Grant
    Filed: May 31, 1995
    Date of Patent: December 23, 1997
    Assignee: Nippon Shokubai Co. Ltd.
    Inventors: Ikuo Kurimoto, Tatsuya Kawajiri, Hideo Onodera, Michio Tanimoto, Yukio Aoki
  • Patent number: 5583086
    Abstract: Cesium based multimetal oxide compositions which are suitable as catalysts for the gas-phase-catalytic oxidative preparation of methacrolein from isobutene or tert-butanol or its methyl ether. The catalysts are characterized by increased selectivity for the formation of methacrolein. The catalysts have locally delimited regions of an oxide composition, preferably (Bi.sub.2 W.sub.2 O.sub.9), surrounded by the remaining constituents of the multimetal oxide.
    Type: Grant
    Filed: February 25, 1994
    Date of Patent: December 10, 1996
    Assignee: BASF Aktiengesellschaft
    Inventors: Andreas Tenten, Hans-Peter Neumann, Herbert Exner
  • Patent number: 5491258
    Abstract: For providing a molded catalyst or a supported catalyst which has an excellent mechanical strength and is intended for producing methacrolein and methacrylic acid from isobutylene or tertiary butanol, the surface of a molded catalyst or a supported catalyst which contains molybdenum, bismuth and iron is coated with one or more highly depolymerizable organic high-molecular weight compounds.When used, the catalyst is packed into a reactor and then heated to remove the organic high-molecular weight compound(s) by depolymerization.
    Type: Grant
    Filed: September 12, 1994
    Date of Patent: February 13, 1996
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Seigo Watanabe, Motomu Ohkita
  • Patent number: 5449821
    Abstract: A process for the gas phase catalytic oxidation of a C.sub.3-6 alkane, alkanol, alkene or alkenal using as a catalyst multimetal oxide compositions of the formula I, [X.sup.1.sub.a X.sup.2.sub.b O.sub.x ].sub.p [X.sup.3.sub.c X.sup.4.sub.d X.sup.5.sub.e X.sup.6.sub.f X.sup.7.sub.g X.sup.2.sub.h O.sub.y ].sub.q, where X.sup.1 is bismuth, tellurium, antimony, tin and/or copper, X.sup.2 is molybdenum and/or tungsten, X.sup.3 is an alkali metal, thallium and/or samarium, X.sup.4 is an alkaline earth metal, nickel, cobalt, copper, manganose, zinc, tin, cadmium and/or mercury, X.sup.6 is iron, chromium, cerium and/or vanadium, X.sup.6 is phosphorus, arsenic, boron and/or antimony, X.sup.7 is a rare-earth metal, titanium, zirconium, niobium, tantalum, rhenium, ruthenium, rhodium, silver, gold, aluminum, gallium, indium, silicon, geranium, lead, thorium and/or uranium, a is from 0.01 to 8, b is from 0.
    Type: Grant
    Filed: June 30, 1994
    Date of Patent: September 12, 1995
    Assignee: BASF Aktiengesellschaft
    Inventors: Hans-Peter Neumann, Hans Martan, Hermann Petersen, Walter Doerflinger
  • Patent number: 5225602
    Abstract: Phenylacetaldehydes of the structure (I) ##STR1## where the substituents X are 2,4-dichloro, difluoro, trifluoro, tetrafluoro, p-trifluoromethyl, 2-methyl-4-fluoro, haloalkoxy or haloalkylthio radicals or are adjacent Cl, F, CF.sub.3, alkyl, alkoxy, haloalkoxy and/or haloalkylthio radicals.
    Type: Grant
    Filed: October 17, 1989
    Date of Patent: July 6, 1993
    Assignee: BASF Aktiengesellschaft
    Inventors: Wolfgang Hoelderich, Norbert Goetz, Leopold Hupfer, Rudolf Kropp, Hans Theobald, Bernd Wolf
  • Patent number: 5144090
    Abstract: A method for preparing acrolein or methacrolein comprises subjecting propylene, secondary propanol, isobutylene or tertiary butanol to gas phase catalytic oxidation with molecular oxygen in the presence of a catalyst represented by the following general formula (I):Mo.sub.a Bi.sub.b Fe.sub.c X.sub.d Y.sub.O Z.sub.f O.sub.g (I)wherein X represents at least one element selected from the group consisting of Ni and Co; Y represents at least one element selected from the group consisting of K, Rb, Cs and Tl; and Z represents at least one element selected from the group consisting of Be, Mg, Ca, Sr, Ba, Ce, Ti, Zr, Nb, Cr, W, Mn, Cu, Ag, Zn, Cd, B, Al, Si, Ge, Sn, Pb, P, As, Sb, S, Se and Te; a, b, c, d, e, f and g each represents an atomic ratio of the corresponding element and when a is assumed to be 12, b=0.1.about.10, c=0.1.about.20, d=2.about.20, e=0.01.about.2, f=0.about.
    Type: Grant
    Filed: June 6, 1991
    Date of Patent: September 1, 1992
    Assignee: Mitsui Toatsu Chemicals, Incorporated
    Inventors: Tadatoshi Honda, Tokio Nagayama, Nobuhiko Horiuchi, Jun Kitagawa, Kazunori Kawahara, Masami Murakami
  • Patent number: 4816603
    Abstract: The present invention provides a process for the production of methacrolein and methacrylic acid by the gas phase catalytic oxidation of isobutylene or t-butanol at high temperature using molecular oxygen in the presence of catalyst consisting of molybdenum, tungsten, bismuth, iron, nickel, antimony, and an alkali metal, to which zinc or lead is added, and further phosphorus sulfur, silicon, selenium, germanium or boron, and magnesium, cobalt, manganese or tin are added.
    Type: Grant
    Filed: November 26, 1985
    Date of Patent: March 28, 1989
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Motomu Oh-Kita, Yoshiyuki Taniguchi, Masaaki Kato, Masao Kobayashi
  • Patent number: 4778930
    Abstract: The present invention is a process for the oxidation of olefins to unsaturated aldehydes and acids using a catalyst containing antimony, iron, bismuth, molybdenum plus at least one of nickel, cobalt, magnesium, zinc, cadmium or calcium within certain compositional limits. These catalysts may also contain certain elements that further enhance the desirability of the oxidation process.
    Type: Grant
    Filed: April 24, 1985
    Date of Patent: October 18, 1988
    Assignee: The Standard Oil Company
    Inventors: Robert K. Grasselli, Dev D. Surech, Harley F. Hardman
  • Patent number: 4746753
    Abstract: Bismuth cerium molybdate catalysts promoted with alkali metal and other optional ingredients provide high yields of acrylonitrile in the ammoxidation of propylene.
    Type: Grant
    Filed: July 1, 1986
    Date of Patent: May 24, 1988
    Assignee: The Standard Oil Company
    Inventors: James F. Brazdil, Jr., Dev D. Suresh, Robert K. Grasselli
  • Patent number: 4709070
    Abstract: A process for improving the activity of tellurium containing metal oxide catalysts useful as catalysts for oxidation, ammoxidation or oxidative dehydrogenation of organic compounds by heating the catalysts together with an activity-improving agent to a temperature up to about 900.degree. C. in a gaseous atmosphere. The process can be effectively applied to deteriorated or spent catalysts, the activity of which has been deteriorated due to use for a long period of time.
    Type: Grant
    Filed: November 9, 1984
    Date of Patent: November 24, 1987
    Assignee: Nitto Chemical Industry Co., Ltd.
    Inventors: Yutaka Sasaki, Yutaka Kiyomiya, Toshio Nakamura
  • Patent number: 4657956
    Abstract: Additives for rubber compositions, giving vulcanizates having improved retention of optimum physical properties, are compounds having the formula R--S--B--S--R where B is an organic bridging group and R is an electron-withdrawing group, for example CN, CCl.sub.3, a radical containing an activated methylene group linked to the sulphur atom or the enolic tautomer of a keto-activated methylene group. Also useful as stabilizing agents are oligomeric analogues of such compounds.
    Type: Grant
    Filed: September 13, 1985
    Date of Patent: April 14, 1987
    Assignee: Monsanto Europe, S. A.
    Inventors: Albert F. L. G. Devaux, Philippe G. Moniotte
  • Patent number: 4604370
    Abstract: A process for regenerating a Mo.Bi-based multi-oxide catalyst the catalytic performance of which has deteriorated as a result of its use in vapor-phase catalytic oxidation of propylene or isobutene to prepare acrolein or methacrolein, respectively, which process comprises: heating the deteriorated Mo.Bi-based multi-oxide catalyst in an atmosphere consisting essentially of air at a temperature of 380.degree. C. to 540.degree. C., so as to attain at least partial restoration of the catalytic performance thereof.
    Type: Grant
    Filed: July 9, 1985
    Date of Patent: August 5, 1986
    Assignee: Mitsubishi Petrochemical Company, Limited
    Inventors: Kohei Sarumaru, Takeshi Shibano, Yoichi Ishii, Etsuji Yamamoto
  • Patent number: 4564703
    Abstract: In a process for preparing methacrylic acid by the vapor-phase catalytic oxidation of methacrolein or a methacrolein-containing mixture with molecular oxygen in the presence of an oxidation catalyst; the improvement wherein said process comprisesa first-stage oxidation step of oxidizing methacrolein or a methacrolein-containing mixture as a starting material,a first-stage separating step of separating the resulting methacrylic acid from the reaction product obtained in the first-stage oxidation step,a second-stage oxidation step of oxidizing the mixture containing the unreacted methacrolein and obtained in the first-stage separating step, anda second-stage separating step of separating the resulting methacrylic acid from the reaction product obtained in the second-stage oxidation step, andwith or without at least one additional oxidation step and separating step subsequent to the second-stage separating step,and wherein the conversion of methacrolein in the first-stage oxidation step is adjusted to 30-85 mole
    Type: Grant
    Filed: April 16, 1979
    Date of Patent: January 14, 1986
    Assignee: Nippon Zeon Co., Ltd.
    Inventors: Haruhisa Yamamoto, Shinichi Akiyama
  • Patent number: 4556731
    Abstract: Iron-bismuth-molybdate catalysts further containing specific promoter elements have been found to exhibit excellent redox stability even under high stress conditions in the catalytic oxidation of olefins to unsaturated aldehydes and acids.
    Type: Grant
    Filed: April 19, 1982
    Date of Patent: December 3, 1985
    Assignee: The Standard Oil Company
    Inventors: Andrew T. Guttmann, Robert K. Grasselli
  • Patent number: 4532083
    Abstract: Certain multiply promoted Sn/Sb oxides are superior catalysts for the ammoxidation of olefins to the corresponding unsaturated nitriles, the selective oxidation of olefins to unsaturated aldehydes and acids, and the oxydehydrogenation of olefins to diolefins.
    Type: Grant
    Filed: October 29, 1982
    Date of Patent: July 30, 1985
    Assignee: The Standard Oil Company
    Inventors: Dev D. Suresh, Robert K. Grasselli, James F. Brazdil, Frances I. Ratka
  • Patent number: 4479013
    Abstract: A catalyst composition useful for the oxidation of olefins, particularly the vapor phase oxidation of isobutylene and/or tertiary butyl alcohol to produce methacrolein, consists essentially of the combination of oxides of molybdenum, cobalt, iron, bismuth, thallium, antimony, silicon, and nickel, along with one or more members of the groups consisting of the alkali metals, the alkaline earth metals, the rare earth metals including lanthanum, tungsten, and mixtures thereof. The catalyst has a BET surface area within the range of about 0.5-10 m.sup.2 /gm and preferably within the range of about 2-6 m.sup.2 /gm. Preferably, the catalyst has no more than about 3% of the surface area associated with pores smaller than about 100 .ANG.. The catalyst is heated during its preparation to a temperature above 525.degree. C., preferably above 550.degree. C., most preferably to about 600.degree. C.
    Type: Grant
    Filed: July 9, 1982
    Date of Patent: October 23, 1984
    Assignee: The Halcon SD Group, Inc.
    Inventor: Sargis Khoobiar
  • Patent number: 4473506
    Abstract: Oxide complex catalysts of iron, selenium and tellurium provide good yields of acrylonitrile in the ammoxidation of propylene with high selectivities at low temperature.
    Type: Grant
    Filed: October 18, 1982
    Date of Patent: September 25, 1984
    Assignee: The Standard Oil Company
    Inventors: James D. Burrington, James F. Brazdil, Robert K. Grasselli
  • Patent number: 4453006
    Abstract: A method for preparing attrition resistant, high percentage active component catalysts comprises using two types of silica, one of which is fumed silica, in a two stage catalyst preparation.
    Type: Grant
    Filed: February 12, 1981
    Date of Patent: June 5, 1984
    Assignee: The Standard Oil Company
    Inventors: Wilfrid G. Shaw, Christos Paparizos, James L. Callahan
  • Patent number: 4404397
    Abstract: A stabilized heteropoly molybdate catalyst precursor in calcined form and containing anionic molybdenum in defect state is surface impregnated with certain metal cations. The stabilized precursor is one obtained by incorporating into the reaction product of a molybdate and a soluble phosphate, silicate or arsenate, an aqueous chloride ion and a compound of phosphotungstate, silicotungstate, vanadium arsenate, silico-arsenate, phosphovanadate, or silicovanadate, followed by drying and calcining. During the chloride ion stabilization step other metals may be optionally incorporated in forming the stabilized precursor.The obtained precursor is catalytically active in the conversion of the unsaturated aldehydes to the corresponding unsaturated carboxylic acids with or without incorporation of the metal cation during the chloride ion stabilization step.
    Type: Grant
    Filed: December 29, 1980
    Date of Patent: September 13, 1983
    Assignee: Air Products and Chemicals, Inc.
    Inventor: Chelliah Daniel
  • Patent number: 4380664
    Abstract: At least one olefinic hydrocarbon of 3 to 4 carbon atoms is oxidized catalytically in the gas phase in the presence of molecular oxygen at 200.degree.-450.degree. C. to produce the corresponding aldehyde and acid over a calcined catalyst of the formula Mo.sub.a Sb.sub.b Bi.sub.c Fe.sub.d Ni.sub.e Sn.sub.f X.sub.g Y.sub.h O.sub.i wherein X is at least one alkali metal selected from the group consisting of potassium, rubidium and cesium; Y is at least one metal selected from the group consisting of cobalt, uranium, germanium, tungsten and titanium; a to h are atomic ratios wherein a=12, b=0.2 to 20, c=0.2 to 12, d=0.2 to 12, e=0.2 to 12, f=0 to 20, g=0.01 to 4 and h=0 to 6; and i is determined according to the oxidation states of the metal atoms in the catalyst.
    Type: Grant
    Filed: March 29, 1978
    Date of Patent: April 19, 1983
    Assignee: Mitsubishi Rayon Company, Ltd.
    Inventors: Hiromichi Ishii, Hideo Matsuzawa, Masao Kobayashi, Kantaro Yamada
  • Patent number: 4351963
    Abstract: A method for preparing aldehyde from aliphatic olefin in the presence of oxygen and a catalyst containing Sn, P, Li, and O.
    Type: Grant
    Filed: January 23, 1981
    Date of Patent: September 28, 1982
    Assignee: Phillips Petroleum Company
    Inventors: Gardner C. Ray, Paul W. Solomon
  • Patent number: 4339394
    Abstract: Certain multiply promoted Sn-Sb oxides are superior catalysts for the ammoxidation of olefins to the corresponding unsaturated nitriles, the selective oxidation of olefins to unsaturated aldehydes and acids, and the oxydehydrogenation of olefins to diolefins.
    Type: Grant
    Filed: October 1, 1980
    Date of Patent: July 13, 1982
    Assignee: The Standard Oil Co.
    Inventors: Robert K. Grasselli, Dev D. Suresh, James F. Brazdil, Frances I. Ratka
  • Patent number: 4332971
    Abstract: Olefin oxidation catalysts having improved attrition resistance are produced by incorporating a substantially uniform-appearing coating of a partially calcined catalytic material onto an inert porous support containing sorbed aqueous silica sol and then completing the calcination of the catalyst. Such catalysts are useful in a variety of exothermic chemical processes, including vapor phase oxidation of olefinically unsaturated hydrocarbons to the corresponding unsaturated aldehydes, especially propylene to acrolein.
    Type: Grant
    Filed: December 15, 1980
    Date of Patent: June 1, 1982
    Assignee: Celanese Corporation
    Inventors: Charles A. Dalton, William E. Slinkard
  • Patent number: 4323520
    Abstract: The present invention relates to a process for the conversion of tertiary-butyl-containing compounds to methacrylic derivatives, and more particularly to a process for the conversion of tertiary-butyl-containing compounds selected from the group consisting of alkyl tertiary-butyl ethers, tertiary-butyl alcohol, isobutylene dimer (2,2,4-trimethylpentene) and isobutylene trimer, to methacrolein, methacrylic acid or methacrylonitrile.
    Type: Grant
    Filed: May 9, 1977
    Date of Patent: April 6, 1982
    Assignee: The Standard Oil Co.
    Inventors: Harley F. Hardman, James L. Callahan, Robert K. Grasselli
  • Patent number: 4322368
    Abstract: Oxide complexes comprising copper-promoted antimony phosphates have been found to exhibit significant catalytic activity in various oxidation-type reactions such as the ammoxidation of propylene to produce acrylonitrile.
    Type: Grant
    Filed: December 28, 1979
    Date of Patent: March 30, 1982
    Assignee: The Standard Oil Co.
    Inventors: Andrew T. Guttmann, Robert K. Grasselli
  • Patent number: 4317747
    Abstract: Certain multiply promoted U-Sb-oxides are superior catalysts for the ammoxidation of olefins to the corresponding unsaturated nitriles, the selective oxidation of olefins to unsaturated aldehydes and acids, and the oxyde-hydrogenation of olefins to diolefins.
    Type: Grant
    Filed: November 16, 1979
    Date of Patent: March 2, 1982
    Assignee: The Standard Oil Co.
    Inventors: Dev D. Suresh, Robert K. Grasselli
  • Patent number: 4316856
    Abstract: Molybdenum-promoted antimony phosphates also containing at least one of tellurium and bismuth have been found to exhibit significant catalytic activity in various oxidation-type reactions.
    Type: Grant
    Filed: December 28, 1979
    Date of Patent: February 23, 1982
    Assignee: The Standard Oil Co.
    Inventors: Andrew T. Guttmann, Robert K. Grasselli
  • Patent number: 4316855
    Abstract: Certain multiply promoted Sn-Sb oxides are superior catalysts for the ammoxidation of olefins to the corresponding unsaturated nitriles, the selective oxidation of olefins to unsaturated aldehydes and acids, and the oxydehydrogenation of olefins to diolefins.
    Type: Grant
    Filed: December 28, 1979
    Date of Patent: February 23, 1982
    Assignee: The Standard Oil Co.
    Inventors: Robert K. Grasselli, Dev D. Suresh, James F. Brazdil, Frances I. Ratka
  • Patent number: 4311611
    Abstract: A process for regenerating a deteriorated antimony containing oxide catalyst comprising as essential components of (i) antimony and (ii) at least one metal element selected from the group consisting of iron, cobalt, nickel, manganese, uranium, cerium, tin and copper wherein the deteriorated antimony containing oxide catalyst is impregnated or sprayed with an aqueous hydrogen peroxide solution and the impregnated catalyst is dried and then calcined at a temperature of about 200.degree. to 1,000.degree. C.
    Type: Grant
    Filed: December 4, 1979
    Date of Patent: January 19, 1982
    Assignee: Nitto Chemical Industry, Co., Ltd.
    Inventors: Yutaka Sasaki, Kiyoshi Moriya, Yoshimi Nakamura
  • Patent number: 4309361
    Abstract: Oxide complex catalysts comprising Fe-Sb-Bi-O.sub.x promoted with a wide variety of different elements have been found to be especially useful in the ammoxidation of olefins to nitriles such as acrylonitrile and methacrylonitrile. Not only are the desired nitriles obtained with high yields when these catalysts are used, but also the production of unwanted liquid byproducts such as acrolein, acrylic acid and acetonitrile is significantly reduced.
    Type: Grant
    Filed: December 28, 1979
    Date of Patent: January 5, 1982
    Assignee: Standard Oil Company
    Inventors: Dev D. Suresh, Robert K. Grasselli, David A. Orndoff
  • Patent number: 4306090
    Abstract: Methacrolein is produced by the catalytic vapor phase oxidation of isobutylene (including compounds converted to isobutylene). The catalyst has the following formula: Mo.sub.a P.sub.b Fe.sub.c Co.sub.d Ni.sub.e Bi.sub.f Te.sub.g Sb.sub.h Cs.sub.i Zr.sub.j X.sub.k O.sub.x wherein a-k represent the number of atoms of the particular element depicted, X is another element and x is the number of oxygens present.
    Type: Grant
    Filed: August 29, 1980
    Date of Patent: December 15, 1981
    Assignee: Rohm and Haas Company
    Inventors: Lawrence S. Kirch, William J. Kennelly
  • Patent number: RE32484
    Abstract: A vapor phase catalytic oxydehydrogenation process for the conversion of a steam of mixed isomeric isoamylenes, methyl butanols or mixtures thereof to isoprene with relatively short contact times at a reactor temperature in the range of 500.degree. F. to 1100.degree. F. at from 0.5 to about 10 atmospheres pressure. The catalysts comprise an alkali metal as an essential catalytic ingredient.
    Type: Grant
    Filed: September 2, 1983
    Date of Patent: August 25, 1987
    Assignee: The Standard Oil Company
    Inventors: Robert K. Grasselli, Harley F. Hardman