Oxy Or Peroxy Containing Reactant Patents (Class 568/485)
  • Patent number: 10597346
    Abstract: The production of solvents for applications such as heat transfer, cleaning, and degreasing, for example. In particular, the production of solvents derived from 1-chloro-3,3,3-trifluoro-propene, such as chloro and/or fluoro substituted alkanes and chloro and/or fluoro substituted trifluoropropenyl ethers.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: March 24, 2020
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Ya Qun Liu, Hong Min Huang, Jun Liu, Rajiv R. Singh
  • Patent number: 9765003
    Abstract: The present invention relates to a process for producing 2,6-dimethyl-5-hepten-1-al, which comprises reacting 3,7-dimethyl-1,6-octadiene (dihydromyrcene, beta-citronellene) with N2O in a solvent or solvent mixture containing at least one solvent having a proton-donating functional group.
    Type: Grant
    Filed: May 4, 2015
    Date of Patent: September 19, 2017
    Assignee: BASF SE
    Inventors: Nicolas Vautravers, Joaquim H. Teles, Ralf Pelzer, Daniel Schneider
  • Patent number: 9688597
    Abstract: Provided is a method for producing aldehydes that brings an excellent alcohol conversion and aldehyde selectivity while suppressing generation of aldol condensates, etc. The method for producing aldehydes includes a step of dehydrogenating primary alcohol in the presence of a catalyst composition. The catalyst composition is a first catalyst composition obtained by adding a potassium salt of a weak acid to a dehydrogenation catalyst containing copper as an active species.
    Type: Grant
    Filed: December 26, 2014
    Date of Patent: June 27, 2017
    Assignee: Kao Corporation
    Inventors: Tsubasa Arai, Jun Kono, Yoshiharu Ataka
  • Patent number: 9416081
    Abstract: Provided is a method for producing an aldehyde that provides a target aldehyde at a high conversion rate over an extended period of time. It is a method for producing an aldehyde comprising bringing a raw material gas containing a primary alcohol having 4 to 18 carbon atoms and water into contact with a dehydrogenation catalyst containing copper and iron so as to dehydrogenate the alcohol contained in the raw material gas, thereby obtaining an aldehyde, wherein the raw material gas has a water partial pressure of 0.2 kPa to 99 kPa.
    Type: Grant
    Filed: December 2, 2013
    Date of Patent: August 16, 2016
    Assignee: KAO CORPORATION
    Inventors: Ryo Nishimura, Jun Kono, Tsubasa Arai
  • Patent number: 9321040
    Abstract: The present invention relates to a catalyst for glycerin dehydration, a preparation method thereof, and a preparation method of acrolein, and more particularly, to a catalyst for glycerin dehydration which minimizes by-product formation to improve acrolein selectivity and maintains high catalytic activity during reaction.
    Type: Grant
    Filed: June 20, 2014
    Date of Patent: April 26, 2016
    Assignee: LG Chem, Ltd.
    Inventors: Wang Rae Joe, Jun Seon Choi, Ji Yeon Kim, Joo Young Cheon
  • Publication number: 20150126740
    Abstract: The present invention provides a method for producing farnesal that is useful as a production intermediate of pharmaceuticals, agricultural chemicals and perfumes. More specifically, the present invention provides a method for producing farnesal (3), comprising reacting (E)-nerolidol (1) with an oxidizing agent in the presence of a vanadium complex of the general formula (2): wherein R1 to R7 are the same as defined in the description and claims.
    Type: Application
    Filed: December 21, 2012
    Publication date: May 7, 2015
    Inventors: Munenori Inoue, Hiroshi Araki, Takeshi Tanaka
  • Patent number: 9000227
    Abstract: The present invention to a process for preparing 2-alkenals of the formula I in which R1 is selected from hydrogen and C1-C4-alkyl; and R2 is selected from hydrogen, C1-C12-alkyl, C2-C12-alkenyl, C4-C8-cycloalkyl and C6-C10-aryl, wherein C1-C12-alkyl and C1-C12-alkenyl may be substituted with C5-C7-cycloalkyl or C5-C7-cylcoalkenyl; comprising dehydrogenating an alkenol of the formula II, an alkenol of the formula III or a mixture thereof, wherein R1 and R2 are each as defined above, wherein the alkenol II, the alkenol III or a mixture thereof is brought into contact with a catalytic system comprising at least one ligand and a metal compound selected from ruthenium(II) compounds and iridium(I) compounds, and wherein the hydrogen formed during the dehydrogenation is removed from the reaction mixture by: v) reaction with a reoxidant selected from C3-C12-alkanones, C4-C9-cycoalkanones, benzaldehyde and mixtures thereof; and/or vi) purely physical means.
    Type: Grant
    Filed: November 23, 2012
    Date of Patent: April 7, 2015
    Assignee: BASF SE
    Inventors: Thomas Schaub, Bernhard Brunner, Klaus Ebel, Rocco Paciello
  • Patent number: 8987531
    Abstract: The present invention is directed to methods of synthesizing insect pheromones, particularly lepidopteran insect pheromones, their precursors and derivatives from inexpensive, readily available starting materials using olefin metathesis catalysis.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: March 24, 2015
    Assignee: California Institute of Technology
    Inventors: Robert H. Grubbs, Myles B. Herbert, Zachary K. Wickens, Vanessa M. Marx, Benjamin K. Keitz, Koji Endo
  • Publication number: 20140343326
    Abstract: An improved process for oxidation of at least one alcohol group of at least one chemical compound to the corresponding carbonyl group. Said process is carried out in the presence of a buffered oxidative hypohalous solution and of a nitroxide oxidation catalyst. It is characteristically carried out within a micro-reactor; the buffered oxidative hypohalous solution being extemporaneously prepared at a buffered pH comprised between 7 and less than 8.5 (7?pH<8.5).
    Type: Application
    Filed: January 17, 2013
    Publication date: November 20, 2014
    Inventors: Olivier Gaurat, Clemens Rudolf Horn, Patrick Jean
  • Publication number: 20140323770
    Abstract: The present invention to a process for preparing 2-alkenals of the formula I in which R1 is selected from hydrogen and C1-C4-alkyl; and R2 is selected from hydrogen, C1-C12-alkyl, C2-C12-alkenyl, C4-C8-cycloalkyl and C6-C10-aryl, wherein C1-C12-alkyl and C1-C12-alkenyl may be substituted with C5-C7-cycloalkyl or C5-C7-cylcoalkenyl; comprising dehydrogenating an alkenol of the formula II, an alkenol of the formula III or a mixture thereof, wherein R1 and R2 are each as defined above, wherein the alkenol II, the alkenol III or a mixture thereof is brought into contact with a catalytic system comprising at least one ligand and a metal compound selected from ruthenium(II) compounds and iridium(I) compounds, and wherein the hydrogen formed during the dehydrogenation is removed from the reaction mixture by: v) reaction with a reoxidant selected from C3-C12-alkanones, C4-C9-cycoalkanones, benzaldehyde and mixtures thereof; and/or vi) purely physical means.
    Type: Application
    Filed: November 23, 2012
    Publication date: October 30, 2014
    Inventors: Thomas Schaub, Bernhard Brunner, Klaus Ebel, Rocco Paciello
  • Publication number: 20140275631
    Abstract: This invention relates to processes for synthesizing GGA or GGA derivatives and intermediates involved therein.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Inventors: Obsidiana Abril-Horpel, William Haag, Ann Pierson
  • Patent number: 8829255
    Abstract: Provided are (Z,Z,E)-1-chloro-6,10,12-pentadecatriene that can be synthesized without an oxidation reaction and a method for preparing (Z,Z,E)-7,11,13-hexadecatrienal by using (Z,Z,E)-1-chloro-6,10,12-pentadecatriene while not using an oxidation reaction. More specifically, provided is a method for preparing (Z,Z,E)-7,11,13-hexadecatrienal including a step of reacting a Grignard reagent into which (Z,Z,E)-1-chloro-6,10,12-pentadecatriene is converted with ethyl orthoformate to obtain (Z,Z,E)-1,1-diethoxy-7,11,13-hexadecatriene, and a step of treating the (Z,Z,E)-1,1-diethoxy-7,11,13-hexadecatriene with an acid to obtain (Z,Z,E)-7,11,13-hexadecatrienal.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: September 9, 2014
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Yuki Miyake, Miyoshi Yamashita, Takehiko Fukumoto, Naoki Ishibashi
  • Patent number: 8697919
    Abstract: The invention discloses an intermediate 1-methoxyl-2,6,10-trimethyl-1,3,5, 9-undec-tetraene, and a preparation method and uses thereof. In the synthesis method for the current lycopene intermediate 2-pos double bond C-14 aldehyde (2,6,10-trimethyl-2,5,9-undecatriene-1-aldehyde), expensive methyl iodide, polluting dimethyl sulphide and dangerous strong base are needed, so that the method is hardly applied to industrial production. The invention provides a new compound 1-methoxyl-2,6,10-trimethyl-1,3,5,9-undec-tetraene, and pure 2-pos double bond C-14 aldehyde can be prepared by hydrolyzing and refining the compound. The synthetic route is simplified and the great suitability for industrial production is achieved.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: April 15, 2014
    Assignees: Zhejiang Medicine Co., Ltd., Xinchang Pharmaceutical Factory, University of Shaoxing
    Inventors: Xuejun Lao, Runpu Shen, Weidong Ye, Xiaohua Song, Luo Liu, Chunlei Wu, Xiongsheng Sun, Siping Hu
  • Publication number: 20140094617
    Abstract: A chemical reactor including: a plurality of heat exchange plates which between them define reaction compartments, in which reactor each heat exchange plate includes two walls between them defining at least one heat exchange space, the respective walls being fixed together by joining regions, and the reactor also comprises at least one injection device for injecting substance into the reaction compartments, said substance-injection device passing through the heat-exchange plates in respective joining regions thereof. Also, a chemical reaction process that can be carried out in this reactor.
    Type: Application
    Filed: June 1, 2012
    Publication date: April 3, 2014
    Applicant: ARKEMA FRANCE
    Inventor: Jean-Luc Dubois
  • Publication number: 20140088326
    Abstract: Disclosed is a process for the production of higher aldehydes from lower alcohols using a two-stage vapor phase heterogeneous catalyst system. Ethanol feeds afford aldehydes such as butyraldehyde and crotonaldehyde while butanol feeds yield 2-ethylhexanal and 2-ethylhexenal. Higher product selectivities are obtained when the alcohol is first dehydrogenated in the upper catalyst stage followed by aldol condensation of the resulting lower aldehyde to a higher aldehyde.
    Type: Application
    Filed: September 21, 2012
    Publication date: March 27, 2014
    Applicant: EASTMAN CHEMICAL COMPANY
    Inventors: David William Norman, Damon Ray Billodeaux, Melissa Dawn Page
  • Patent number: 8680200
    Abstract: Novel polyglycerol aldehyde polymers are described. The polymers comprise glycerol monomers connected by ether linkages and have 3 to about 170 aldehyde groups per molecule. The polyglycerol aldehydes may be reacted with various amine-containing polymers to form hydrogel tissue adhesives and sealants that may be useful for medical applications such as wound closure, supplementing or replacing sutures or staples in internal surgical procedures such as intestinal anastomosis and vascular anastomosis, tissue repair, preventing leakage of fluids such as blood, bile, gastrointestinal fluid and cerebrospinal fluid, ophthalmic procedures, drug delivery, and preventing post-surgical adhesions.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: March 25, 2014
    Assignee: Actamax Surgical Materials LLC
    Inventor: Henry Keith Chenault
  • Publication number: 20130231499
    Abstract: The present invention is directed to methods of synthesizing insect pheromones, particularly lepidopteran insect pheromones, their precursors and derivatives from inexpensive, readily available starting materials using olefin metathesis catalysis.
    Type: Application
    Filed: March 5, 2013
    Publication date: September 5, 2013
    Inventors: ROBERT H. GRUBBS, MYLES B. HERBERT, ZACHARY K. WICKENS, VANESSA M. MARX
  • Publication number: 20130046114
    Abstract: The invention discloses an intermediate 1-methoxyl-2,6,10-trimethyl-1,3,5,9-undec-tetraene, and a preparation method and uses thereof. In the synthesis method for the current lycopene intermediate 2-pos double bond C-14 aldehyde (2,6,10-trimethyl-2,5,9-undecatriene-1-aldehyde), expensive methyl iodide, polluting dimethyl sulphide and dangerous strong base are needed, so that the method is hardly applied to industrial production. The invention provides a new compound 1-methoxyl-2,6,10-trimethyl-1,3,5,9-undec-tetraene, and pure 2-pos double bond C-14 aldehyde can be prepared by hydrolyzing and refining the compound. The synthetic route is simplified and the great suitability for industrial production is achieved.
    Type: Application
    Filed: April 6, 2011
    Publication date: February 21, 2013
    Applicants: University of Shaoxing, Zhejiang Medicine Co., Ltd., Xinchang Pharmaceutic al Factory
    Inventors: Xuejun Lao, Runpu Shen, Weidong Ye, Xiaohua Song, Luo Liu, Chunlei Wu, Xiongsheng Sun, Siping Hu
  • Patent number: 8324432
    Abstract: The invention relates to a method for the synthesis of acrolein by means of dehydration of the glycerol in the presence of a solid acid catalyst having a Hammett acidity of less than +2, such as sulfated zirconium oxides, phosphated zirconium oxides, tungstated zirconium oxides, silicated zirconium oxides, sulfated tin or titanium oxides, phosphated aluminas or silicas, doped iron phosphates, and phosphotungstic or silicotungstic acid salts placed in a reactive medium comprising a gaseous phase containing between 1 and 3000 ppm of an acid compound according to the Pearson classification, selected, for example, from SO3, SO2, and NO2, the dehydration reaction being carried out either in a gaseous phase or in a liquid phase.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: December 4, 2012
    Assignee: Arkema France
    Inventor: Jean-Luc Dubois
  • Publication number: 20120277476
    Abstract: A method of production of a catalyst that has 0.05-0.25 wt. % of precious metal, preferably for the oxidative dehydrogenation of olefinically unsaturated alcohols, comprising the following steps a) producing a D.C. plasma, b) introducing the metal and support material into the plasma, c) evaporating the metal and support material or “shattering” the solid bodies of metal and support material in the plasma, and reaction of the particles, d) cooling, so that very small particles of composite material are obtained, e) applying the composite material on the catalyst support proper, the correspondingly produced catalyst and use thereof.
    Type: Application
    Filed: April 27, 2012
    Publication date: November 1, 2012
    Applicant: BASF SE
    Inventors: Georg Seeber, Dirk Grossschmidt, Torsten Mäurer, Christian Baltes
  • Patent number: 8252960
    Abstract: The subject of the present invention is a process for preparing acrolein by dehydration of glycerin, characterized in that the dehydration is carried out in the presence of a catalyst comprising mainly a compound in which protons in a heteropolyacid are exchanged at least partially with at least one cation selected from elements belonging to Group 1 to Group 16 of the Periodic Table of Elements. The process according to the invention permits to obtain acrolein at higher yield.
    Type: Grant
    Filed: April 14, 2009
    Date of Patent: August 28, 2012
    Assignee: Arkema France
    Inventors: Jean-Luc Dubois, Yasuhiro Magatani, Kimito Okumura
  • Publication number: 20120108831
    Abstract: Supported noble metal-comprising catalysts which can be obtained by a) application of colloidal noble metal in the form of a colloidal solution, optionally in admixture with additives acting as promoters, to a support material, b1) drying of the resulting product at from 150 to 350° C., or b2) drying of the resulting product at from 150 to 350° C. and subsequent calcination at from 350 to 550° C. for epoxidation or oxidative dehydrogenation, a process for producing it, its use and also the use of colloidal noble metal for producing supported catalysts.
    Type: Application
    Filed: June 7, 2010
    Publication date: May 3, 2012
    Applicant: BASF SE
    Inventors: Georg Seeber, Peter Löchner, Stefan Bauer, Tobias Rosendahl, Torsten Mäurer, Günter Wegner, Martin Kamasz
  • Publication number: 20110295041
    Abstract: A method of preparing a catalyst for producing acrolein by oxidation of propylene at high space velocity, said catalyst is a Mo—Bi—Fe—Co based composite metal oxide. Producing unsaturated aldehyde via partial oxidation of lower unsaturated olefin at high space velocity using said catalyst is suitable for process with or without off-gas recirculating. Said catalyst is prepared by co-precipitation, the reaction conditions for using said catalyst to produce unsaturated aldehyde are, the space velocity of unsaturated lower olefin relative to catalyst being 120˜200 h-1(STP), reaction temperature being 300˜420° C. and absolute pressure being 0.1˜0.5 MPa; a single-stage unsaturated lower olefin conversion ratio of greater than 98.0% and carbon oxide yield of less than 3.3% with an overall yield of unsaturated lower aldehyde and acid of greater than 94.0% are obtained. The process to prepare the said catalyst is simple, easy to be repeated, and capable of industrial scale-up.
    Type: Application
    Filed: May 26, 2011
    Publication date: December 1, 2011
    Applicant: Shanghai HuaYi Acrylic Acid Co. Ltd.
    Inventors: Jian Wang, Xuemei Li, Yan Zhuang, Kaimin Shi, Kun Jiao, Jianxue Ma, Xiaodong Chu, Jingming Shao
  • Patent number: 7872158
    Abstract: Chemical production processes are provided that can include exposing a reactant composition to a catalyst composition to form a product composition. The reactant composition can include a multihydric alcohol compound and the product composition can include a carbonyl compound. The catalyst composition can include a metal effective to facilitate catalyst activation. Processes disclosed also include supplementing a dehydration catalyst with a promoter, and activating the supplemented catalyst in the presence of oxygen. Processes also include providing a supplemented dehydration catalyst to within a reactor, and exposing a multihydric alcohol compound to the dehydration catalyst, with the exposing forming coke within the reactor. Oxygen can be provided to the reactor to remove at least a portion of the coke.
    Type: Grant
    Filed: August 24, 2007
    Date of Patent: January 18, 2011
    Assignee: Battelle Memorial Institute
    Inventors: Thomas H. Peterson, Alan H. Zacher, Michel J. Gray, James F. White, Todd A. Werpy
  • Patent number: 7847129
    Abstract: A method for dehydrogenating primary or secondary alcohols having 1 to 12 carbon atoms to give the corresponding aldehydes or ketones in which the alcohol is brought into contact with a catalytically active composition comprising an active component of the formula PdaBibYcZd, where Y is selected from the group consisting of Co, Rh, Pt, Ag, Au, and Z is selected from the group consisting of Na, Cs, Mg, Ca, Ba, V, Cr, W, Fe, Ni, Cu, Sb where the indices a, b, c and d give the mass ratios of the respective elements to one another, where a=0.1-3, b=0.1-3, c=0-3, d=0-1.
    Type: Grant
    Filed: July 9, 2007
    Date of Patent: December 7, 2010
    Assignee: BASF Aktiengesellschaft
    Inventors: Heiko Urtel, Soo Yin Chin, Thorsten Johann
  • Patent number: 7795475
    Abstract: A reaction device according to the present invention is used in production of aldehyde from alcohol. The reaction device includes a reactor having a reaction field where a catalyst is provided inside and a reaction fluid flows. The catalyst has a surface extending in the direction of flow of the reaction fluid and contains Cu.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: September 14, 2010
    Assignee: Kao Corporation
    Inventors: Takeshi Shirasawa, Yasukazu Kumita, Eiji Saito
  • Publication number: 20100120949
    Abstract: The invention relates to a process for production of at least one C4 oxidation product, comprising the steps: a) providing a feed composition comprising at least two feed compounds selected from tert-butyl alcohol, methyl tert-butyl ether and isobutylene; b) subjecting the feed composition to a catalytic reaction zone comprising at least one oxidation stage and obtaining a reaction phase comprising the C4 oxidation product, to a C4 oxidation product obtainable therefrom, to an apparatus for production of at least one C4 oxidation product, a process carried out in the apparatus, to a methacrylic acid, to a polymer comprising methacrylic acid and process for production thereof, to methyl methacrylate and a process for production thereof, to a methacrylate ester and a process for production thereof, to a polymer comprising at least one of methacrylic acid, methyl methacrylate and a methacrylate ester and a process for production thereof, to a composition comprising at least one of methacrylic acid, methyl methac
    Type: Application
    Filed: February 25, 2008
    Publication date: May 13, 2010
    Applicant: Evonik Roehm GmbH
    Inventor: Torsten Balduf
  • Patent number: 7709686
    Abstract: Provided is a process for the preparation of glutaraldehyde. The process comprises reacting an alkoxydihydropyran with water in the presence of an acidic catalyst. The alcohol by-product distilled from the reaction mixture is subjected to a heterogeneous catalyst that is located external to the distillation column used for distilling the alcohol, thereby increasing glutaraldehyde yield and decreasing the level of alkoxydihydropyran contamination in the alcohol.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: May 4, 2010
    Assignee: Dow Global Technologies Inc.
    Inventors: Charles D. Gartner, Timothy D. Ligon
  • Patent number: 7683220
    Abstract: There is provided a process for producing acrolein from glycerin, exhibiting a suppressed decrease in the yield of acrolein with time. In the process for producing acrolein by dehydrating glycerin in the presence of a catalyst containing a metal phosphate, one, or two or more, metal phosphates are used, which are selected from aluminum salts, zirconium salts, manganese salts, alkali metal salts (provided that the alkali metal is sodium, potassium, or cesium, and the ratio between the mole number (M) of the alkali metal and the mole number (P) of phosphoric acid (i.e., M/P ratio) in the metal phosphate is 2.0 or lower), alkali earth metal salts (provided that the ratio between the mole number (M) of the alkali earth metal and the mole number (P) of phosphoric acid (i.e., M/P ratio) in the metal phosphate is 1.0 or lower), and the like.
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: March 23, 2010
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Etsushige Matsunami, Tsukasa Takahashi, Hiroto Kasuga, Yoshitaka Arita
  • Publication number: 20100029990
    Abstract: Multi-step process for the preparation of compounds via hazardous intermediates comprising the steps of a) preparing in a microreactor a hazardous intermediate and b) optionally performing one or more reaction steps on the hazardous intermediate in one or more additional microreactors and c) further converting the hazardous intermediate with a suitable reaction agent in a subsequent microreactor until a stable end product is formed.
    Type: Application
    Filed: May 23, 2007
    Publication date: February 4, 2010
    Inventors: Rafael Wilhelmus Elisabeth Ghislain Reintjens, Quirinus Bernardus Broxterman, Martina Kotthaus, Peter Poechlauer
  • Patent number: 7655818
    Abstract: The present invention relates to a process for manufacturing acrolein by gas-phase dehydration of glycerol in the presence of strongly acidic solid catalysts with a Hammett acidity H0 of between ?9 and ?18 and preferably between ?10 and ?16.
    Type: Grant
    Filed: January 6, 2006
    Date of Patent: February 2, 2010
    Assignee: Arkema France
    Inventors: Jean-Luc Dubois, Christophe Duquenne, Wolfgang Holderich, Jacques Kervennal
  • Publication number: 20090163742
    Abstract: A process for making betahydroxyaldehydes such as 3-hydroxypropanal which comprises intimately contacting (a) an oxirane, (b) carbon monoxide, (c) a reducing agent such as hydrogen, (d) from about 0.01 to about 1 weight percent, basis cobalt metal, of a cobalt hydroformylation catalyst which is optionally complexed with a tertiary phosphine ligand, and (e) a heterogeneous, preferably solid, metal promoter used at a molar ratio of 0.05, preferably 0.15, to 100 moles of heterogeneous metal relative to the moles of soluble cobalt hydroformylation catalyst.
    Type: Application
    Filed: December 17, 2008
    Publication date: June 25, 2009
    Inventors: Stephen Blake Mullin, Joseph Broun Powell, Paul Richard Weider
  • Patent number: 7544844
    Abstract: There is provided a process for producing 3,3,3-trifluoropropionaldehyde, including the step of hydrolyzing a benzyl vinyl ether of the formula [1] in the presence of a catalyst selected from the group consisting of Arrhenius acids and Lewis acids, [Chem. 17] where R represents phenyl or phenyl having a substituent R1 selected from the group consisting of alkyl groups, alkoxy groups, halogen atoms, nitro groups and amino groups.
    Type: Grant
    Filed: September 12, 2006
    Date of Patent: June 9, 2009
    Assignee: Central Glass Company, Limited
    Inventors: Takeo Komata, Kenji Hosoi, Shinya Akiba
  • Patent number: 7531699
    Abstract: The invention relates to a method for preparing acrolein from propylene, consisting of a first glycerol dehydration step preformed in the presence of a gas containing propylene and, more specifically, in the presence of the reaction gas originating from the propylene to acrolein oxidation step. The inventive method enables the use, in part, of renewable raw material, while increasing acrolein production.
    Type: Grant
    Filed: February 6, 2007
    Date of Patent: May 12, 2009
    Assignee: Arkema France
    Inventor: Jean-Luc Dubois
  • Publication number: 20090082530
    Abstract: A method for producing a mixture of ethylene and carbon monoxide by contacting ethane and an oxygen source with a catalyst comprising iron oxide supported on an inorganic material to produce ethylene and carbon monoxide. A method for producing an alkyl propionate by steps of: (a) contacting ethane and an oxygen source at a temperature of at least 600° C. to produce ethylene; (b) contacting an alcohol, ethylene and carbon monoxide with an ethylene carbonylation catalyst to produce the alkyl propionate; and (c) separating the alkyl propionate from byproducts and starting materials. The method further comprises condensing the alkyl propionate with formaldehyde to produce an alkyl methacrylate.
    Type: Application
    Filed: September 17, 2008
    Publication date: March 26, 2009
    Inventors: Rajiv Manohar Banavali, Abraham Benderly, Scott Han, Daniel Joseph Martenak, Jose Antonio Trejo
  • Publication number: 20090054693
    Abstract: Chemical production processes are provided that can include exposing a reactant composition to a catalyst composition to form a product composition.
    Type: Application
    Filed: August 24, 2007
    Publication date: February 26, 2009
    Inventors: Thomas H. Peterson, Alan H. Zacher, Michel J. Gray, James F. White, Todd A. Werpy
  • Publication number: 20090054694
    Abstract: Chemical production processes are provided that include exposing a reactant composition to a catalyst composition to form a product composition, with the reactant composition including a multihydric alcohol compound and the catalyst composition being effective to dehydrate at least a portion of the multihydric alcohol compound. Embodiments of the process provide that the reactant composition is exposed to the catalyst composition for less than about 0.25 seconds and/or that the catalyst is maintained at a temperature of from about 280° C. to about 320° C. Processes utilizing a reactant composition including a multihydric alcohol compound and an inert compound are also provided.
    Type: Application
    Filed: August 24, 2007
    Publication date: February 26, 2009
    Inventors: Thomas H. Peterson, Johnathan E. Holladay, Alan H. Zacher, Michel J. Gray, Todd A. Werpy, James F. White
  • Publication number: 20090054695
    Abstract: Chemical production processes are provided that can include exposing a reactant composition to a catalyst composition to form a product composition. The reactant composition can include a multihydric alcohol compound and the product composition can include a carbonyl compound. The catalyst composition can include a metal effective to facilitate catalyst activation. Processes disclosed also include supplementing a dehydration catalyst with a promoter, and activating the supplemented catalyst in the presence of oxygen. Processes also include providing a supplemented dehydration catalyst to within a reactor, and exposing a multihydric alcohol compound to the dehydration catalyst, with the exposing forming coke within the reactor. Oxygen can be provided to the reactor to remove at least a portion of the coke.
    Type: Application
    Filed: August 24, 2007
    Publication date: February 26, 2009
    Inventors: Thomas H. Peterson, Alan H. Zacher, Michel J. Gray, James F. White, Todd A. Werpy
  • Publication number: 20080287714
    Abstract: The present invention is an industrial process for the preparation of acetals using a simulated moving bed (SMB) reactor system to accomplish the conversion of reactants (aldehyde and alcohol) and simultaneously, the separation of the reaction products (acetal and water) by selective adsorption. The SMB reactor consists of a set of interconnected columns packed with an acid solid (or mixture of acid solids: catalysts and adsorbents) effective for catalyzing the reaction between aldehydes and alcohols and for separating the reaction products by selective adsorption of at least one product.
    Type: Application
    Filed: May 17, 2005
    Publication date: November 20, 2008
    Inventors: Alirio Egidio Rodrigues, Viviana Manuela Tenedorio Matos Da Silva
  • Publication number: 20080183019
    Abstract: A process for preparing acrolein from glycerol using an acidic solid-state catalyst which comprises tungsten compounds and further promoters.
    Type: Application
    Filed: January 22, 2008
    Publication date: July 31, 2008
    Inventors: Hubert Redlingshofer, Christoph Weckbecker, Klaus Huthmacher, Andreas Dorflein
  • Patent number: 7396962
    Abstract: The present invention relates to a process for manufacturing acrolein by dehydration of glycerol in the presence of molecular oxygen. The reaction is performed in the liquid phase or in the gas phase in the presence of a solid catalyst. The addition of oxygen makes it possible to obtain good glycerol conversion by inhibiting the deactivation of the catalyst and the formation of by-products.
    Type: Grant
    Filed: January 6, 2006
    Date of Patent: July 8, 2008
    Assignee: Arkema France
    Inventors: Jean-Luc Dubois, Christophe Duquenne, Wolfgang Holderich
  • Patent number: 7332632
    Abstract: The method for producing an aldehyde or ketone compound from a corresponding primary or secondary alcohol at relatively high temperature within a short time with a high yield including a step (1) of reacting a sulfoxide compound with an activating agent to produce an activation reaction product; a step (2) of reacting the activation reaction product with a primary or secondary alcohol to produce an alkoxysulfonium salt; and a step (3) of reacting the reaction product with a base to produce an aldehyde or ketone; wherein at least one of the steps, preferably the step (1) and step (2), are carried out by using a microreactor.
    Type: Grant
    Filed: November 22, 2004
    Date of Patent: February 19, 2008
    Assignee: Ubē Industries, Ltd.
    Inventors: Kikuo Ataka, Hiroyuki Miyata, Tatsuya Kawaguchi, Junichi Yoshida, Kazuhiro Mae
  • Patent number: 7183421
    Abstract: The present invention provides a process for producing an oxide from an alcohol compound, the process comprising the steps of causing silica gel to carry the alcohol compound thereon and an oxidative catalyst thereon, and oxidizing the alcohol compound in the presence of an oxidizing agent, giving an oxide higher in oxidizing degree than the alcohol compound, and also provides a process for producing an oxide from an alcohol compound, the process comprising the steps of causing silica gel to carry the alcohol compound, and subjecting the alcohol compound to an electrolytic oxidation, giving an oxide higher in oxidizing degree than the alcohol compound.
    Type: Grant
    Filed: August 11, 2004
    Date of Patent: February 27, 2007
    Assignee: Otsuka Kagaku Kabushiki Kaisha
    Inventors: Hideo Tanaka, Yutaka Kameyama
  • Patent number: 7109379
    Abstract: An oily solution of water-insoluble aliphatic alcohol is allowed to react with an aqueous hydrogen peroxide solution in the presence of a catalyst containing a metal compound belonging to Group 8 to 10 of the Periodic Table in a heterogeneous solution system. As a result, a carbonyl compound can be produced from an aqueous hydrogen peroxide solution under mild conditions in high yield. Also, the reaction operation is simple and easy, a step for removing solvent after completion of the reaction is not necessary and influence and toxicity upon the environment and human body are markedly small. Thus, a carbonyl compound can be produced safely, simply and efficiently.
    Type: Grant
    Filed: July 24, 2003
    Date of Patent: September 19, 2006
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Kazuhiko Sato, Youko Usui
  • Patent number: 7087794
    Abstract: The present invention provides a process for treating a stream, say, an olefins stream, e.g., propylene, containing at least one ether, e.g., dimethyl ether, and/or at least one of an alkyne and an alkadiene, e.g., methyl acetylene and propadiene, typically present as impurities. The process comprises: contacting the stream with a metal-containing catalyst, e.g., palladium supported on alumina, under conditions sufficient to convert the ether and the at least one of an alkyne and an alkadiene to provide a product stream having a reduced impurities content.
    Type: Grant
    Filed: November 15, 2002
    Date of Patent: August 8, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michael A. Risch, John Di-Yi Ou
  • Patent number: 6984759
    Abstract: Process for the perfluoropolyether preparation having reactive end groups —CH2NH2, —CHO, —CH2OH, by reduction of the corresponding perfluoropolyethers having —CN, —COCl, —CHO end groups by using gaseous hydrogen in the presence of a catalyst constituted by Pd, Rh, or Ru, supported on solid metal fluorides, at a temperature from 20° C. to 150° C. and under a pressure between 1 and 50 atm.
    Type: Grant
    Filed: July 31, 2003
    Date of Patent: January 10, 2006
    Assignee: Solvay Solexis S.p.A.
    Inventors: Antonella Di Meo, Rosaldo Picozzi, Claudio Tonelli
  • Patent number: 6909019
    Abstract: A process is disclosed for preparing aldehydes by isomerization of the corresponding unsaturated primary alcohols using a transition metal catalyst system, in an alcoholic solvent and in the presence of an acid. An aldehyde forms by isomerizing an unsaturated primary alcohol under conditions that protect the newly formed aldehyde as a dialkylacetal in situ during the reaction. Protecting the aldehyde as an acetal allows for facile separation of the product from the catalyst as well as effectively driving the reaction toward completion.
    Type: Grant
    Filed: May 25, 2004
    Date of Patent: June 21, 2005
    Assignee: Eastman Chemical Company
    Inventor: Sheryl Davis Debenham
  • Patent number: 6897342
    Abstract: A process for making aldehydes involving: (a) providing a fatty alcohol; (b) providing an oxidic copper/zinc catalyst; and (c) continuously dehydrogenating the fatty alcohol, in the presence of the oxidic copper/zinc catalyst, at a temperature of from about 200 to 280° C. and a pressure of from about 10 mbar to 1 bar.
    Type: Grant
    Filed: June 19, 2001
    Date of Patent: May 24, 2005
    Assignee: Cognis Deutschland GmbH & Co. KG
    Inventors: Albrecht Schwerin, Gerrit Pelzer, Lothar Friesenhagen, Bernhard Gutsche
  • Patent number: 6867333
    Abstract: The present invention is directed to novel acyloins, their derivatives, methods for their production and their use for the production of novel epothilones and their derivatives. In addition, the invention is directed to the building blocks for epothilone synthesis, methods for their production and the use of synthetic building blocks for the production of epothilones and their derivatives.
    Type: Grant
    Filed: April 15, 2003
    Date of Patent: March 15, 2005
    Assignee: Morphochem AG
    Inventors: Ludger A. Wessjohann, Gunther Scheid, Uwe Bornscheuer, Erik Henke, Wouter Kuit, Romano Orru
  • Publication number: 20040204597
    Abstract: A ruthenium-carrying alumina, which is prepared by suspending alumina in a solution containing trivalent ruthenium and adding a base to the suspension, is provided. This ruthenium-carrying alumina is useful as a catalyst for oxidizing alcohols by contacting the alcohols with molecular oxygen, and can be used for oxidizing the alcohols at a high conversion to produce ketones, aldehydes, carboxylic acids, etc. with good productivity.
    Type: Application
    Filed: December 23, 2003
    Publication date: October 14, 2004
    Inventors: Noritaka Mizuno, Kazuya Yamaguchi, Hajime Ishida