Preparing By Dehydration Of An Organic Hydroxy Containing Compound (h Of -oh May Be Replaced By A Group Ia Or Iia Light Metal) Patents (Class 568/698)
  • Patent number: 11673851
    Abstract: A process the dehydration of methanol to dimethyl ether in the presence of a solid Brønsted acid catalyst selected from aluminosilicate zeolites which have a maximum free sphere diameter of greater than 3.67 Angstroms and heteropolyacids and a promoter selected from methyl formate, dimethyl oxalate and dimethyl malonate and the molar ratio of promoter to methanol is maintained at less than 1.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: June 13, 2023
    Assignees: BP p.l.c., BP (China) Holdings Ltd
    Inventors: Benjamin James Dennis-Smither, Neil Sainty, John Glenn Sunley
  • Patent number: 11578026
    Abstract: A process for dehydrating C2+ alcohols to ether products in the presence of a catalyst and promoter, wherein the catalyst is at least one aluminosilicate zeolite catalyst which is a medium pore zeolite having a 3-dimensional framework structure, and the promoter is one or more organic carbonyl compounds or derivatives thereof, and wherein and the molar ratio of promoter to C2+ alcohols is maintained at less than 1.
    Type: Grant
    Filed: February 14, 2020
    Date of Patent: February 14, 2023
    Assignee: BP P.L.C.
    Inventors: Benjamin James Dennis-Smither, John Glenn Sunley, Fiona Jackson
  • Patent number: 11192843
    Abstract: A method for producing methanol is disclosed. The method includes supplying a high oxygen content oxidant to combust hydrocarbons, in particular methane, and then using the resulting hot gases to heat natural gas so as to convert the natural gas to synthesis gas. The synthesis gas is used to produce methanol in a methanol synthesis reactor. At least some of the carbon dioxide from the hot gases is fed to the methanol synthesis reactor to make methanol.
    Type: Grant
    Filed: August 5, 2019
    Date of Patent: December 7, 2021
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Srikant Vasant Badgandi, Balasubramaniyan Sethuraman, Vinod Sankaran Nair
  • Patent number: 11000830
    Abstract: A method of modifying a chemical interaction between a functional group of an immobilized amine in a solid sorbent composition and a compound that chemically interacts with the functional group to reduce the heat required to desorb the compound from the solid sorbent. A method of inhibiting degradation of an immobilized amine in an immobilized amine solid sorbent. Compositions and methods of use of a low-cost regenerable immobilized amine solid sorbent resistant to degradation.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: May 11, 2021
    Assignee: The University of Akron
    Inventor: Steven S. C. Chuang
  • Patent number: 10774023
    Abstract: A method of producing one or more glycerol ethers, the method comprising contacting glycerol and tertiary butanol (TBA) in the presence of an acidic catalyst to produce one or more glycerol ethers selected from mono-tert butyl glycerol ethers, di-tert butyl glycerol ethers, tri-tert butyl glycerol ethers, or a combination thereof; separating water and a stream comprising isobutylene, unreacted TBA, or a combination thereof from the one or more glycerol ethers; and recycling at least a portion of the stream comprising isobutylene, unreacted TBA, or a combination thereof to the contacting. Also disclosed is a process of co-producing isooctene, wherein the process involves contacting glycerol and tertiary butanol in the presence of a dehydrating catalyst and dimerizing/oligomerizing the dehydrated products in the presence of an oligomerizing catalyst to form isooctene, a precursor of isooctane and isomers thereof.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: September 15, 2020
    Assignee: Lyondell Chemical Technology, L.P.
    Inventors: Sarthak Gaur, Robert John Rebman, Daniel F. White, Joseph P. Longtin
  • Patent number: 10501394
    Abstract: A process is proposed for production of dimethyl ether (DME) from synthesis gas (SG), in which at least one feed stream formed from synthesis gas (SG) is subjected to at least one synthesis step, in which components present in the feed stream are at least in part converted to dimethyl ether (DME), wherein at least one crude product stream is obtained which contains at least dimethyl ether (DME) and the unreacted components of the feed stream. The feed stream contains at least hydrogen, carbon monoxide and carbon dioxide, and has a stoichiometric number of 2.0 to 5.0. The feed stream further contains 4 to 20 mol percent carbon dioxide, and the ratio of carbon dioxide to carbon monoxide in the feed stream is in a range from 0.5 to 4. The at least one synthesis step is carried out under isothermal conditions. A system for production of dimethyl ether (DME) from synthesis gas (SG) is likewise subject matter of the present invention.
    Type: Grant
    Filed: January 5, 2015
    Date of Patent: December 10, 2019
    Assignee: LINDE AKTIENGESELLSCHAFT
    Inventors: Helmut Fritz, Thomas Bartesch, Clara Delhomme, Andreas Peschel, Johannes Fendt, Harald Klein
  • Patent number: 10011548
    Abstract: The invention provides a process for the production of purified dimethylether (DME). Methanol is dehydrated to provide a first DME-containing product. The first DME-containing product is purified in a two-stage process. The invention also provides an apparatus arranged to carry out said process.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: July 3, 2018
    Assignee: Haldor Topsoe A/S
    Inventors: Per Juul Dahl, Janni Østergaard
  • Patent number: 9261053
    Abstract: The invention relates to a self-igniting internal combustion engine (10) with ether fumigation of the combustion air for vehicles, wherein to provide for ether fumigation, a feed means (1, 2, 3) is provided for an alkanol fuel in the flow direction, an exhaust gas heat exchanger (4) is provided for cooling a portion of the exhaust gas arising from the firing of the internal combustion engine (10) and for vaporizing the alkanol fuel fed while at the same time absorbing the thermal energy to be dissipated during cooling of the exhaust gas, and a catalyst (5) is provided for dehydrating the evaporated alkanol fuel to form ether, and wherein the feed means (1, 2, 3), the exhaust gas heat exchanger (4) and the catalyst (5) are connected to the combustion chamber of the internal combustion engine (10) and adapted in such a way that a portion of the fuel required to fire the internal combustion engine (10) can be fed to the combustion chamber of the internal combustion engine (10) by way of the ether fumigation of t
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: February 16, 2016
    Assignee: MAN Truck & Bus AG
    Inventor: Eberhard Jacob
  • Patent number: 9255052
    Abstract: In the production of purified methanol and/or dimethyl ether from crude methanol, the crude methanol is processed in at least one prepurification stage, a first partial stream of the prepurified methanol is supplied to a final methanol purification and a second partial stream of the prepurified methanol is supplied to a reactor and at least partly converted to dimethyl ether. The dimethyl ether recovered is purified in at least one purification stage, wherein non-reacted methanol is withdrawn from the dimethyl ether purification stage and at least partly supplied to the final methanol purification. In this way, both purified methanol and dimethyl ether can be produced in parallel, wherein the quantities of both products obtained are flexibly adjustable.
    Type: Grant
    Filed: June 12, 2010
    Date of Patent: February 9, 2016
    Assignee: Lurgi GmbH
    Inventors: Bernd Ahlers, Waldemar Liebner
  • Patent number: 9193660
    Abstract: A carboxylic acid e.g. acetic acid, is recovered from an aqueous feed stream containing the corresponding ester, an alcohol and a small amount of water by catalytically dehydrating the alcohol to the corresponding ether and water, and reacting the water with the ester to generate a liquid carboxylic acid rich product stream. The acid is recovered by distillation. In a second embodiment, additional alcohol and/or water are co-fed with the feed or fed directly to a catalytic distillation column, resulting in a liquid bottom product stream of substantially pure acetic acid and a top distillate stream of substantially pure ether.
    Type: Grant
    Filed: June 20, 2013
    Date of Patent: November 24, 2015
    Assignee: AMT International Inc.
    Inventors: Kuang-Yeu Wu, Pai-Yu Polly Chiang, Ji-Young Jang, Karl Tze-Tang Chuang
  • Patent number: 9181143
    Abstract: The present invention relates to the process of production of olefins by means of the dehydration of light alcohols using ionic liquids as an acidic medium. Furthermore, the present invention relates to the use of such olefins, for example, for the production of polymers and ethylene glycol.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: November 10, 2015
    Assignees: Braskem S.A., Universidade Federal do Rio Grande
    Inventors: Roberto Werneck do Carmo, Paulo Luiz de Andrade Coutinho, Luis Fernando Dagnone Cassinelli, Roberto Fernando de Souza, Michèle Oberson De Souza, Marcelo Mignoni, Luiza Roza, Edson Comin, Andrieli Dias Martins
  • Patent number: 9169183
    Abstract: This invention describes a method for co-producing isobutene and ethyl tert-butyl ether from tert-butanol mixture in a catalytic distillation column, wherein catalyzing the tert-butanol mixture with the ethanol undergoes dehydration and etherification. The tert-butanol mixture contains absolute ethanol or aqueous ethanol as the antifreeze agent. The isobutene and the ethyl tert-butyl ether withdrawn from the column top are further separated, thus high purity isobutene and ethyl tert-butyl ether for fuel-additive are obtained.
    Type: Grant
    Filed: October 27, 2014
    Date of Patent: October 27, 2015
    Assignee: CPC CORPORATION, TAIWAN
    Inventors: Wei-Bin Su, Karl Tze-Tang Chuang, Chung-Chen Lai, Yung-Sheng Ho
  • Patent number: 9139492
    Abstract: The invention relates to a method for processing coke oven gas, said coke oven gas containing hydrogen, wherein the coke oven gas is at least partially integrated into a method for producing dimethyl ether in conjunction with a gas containing carbon monoxide and/or carbon dioxide, whereby a DME-containing product gas is formed. At the outset of the method for the formation of dimethyl ether, a ratio of hydrogen to carbon monoxide, weighted with the carbon dioxide concentration (formula (I)), of 0.9 to 1.1 is set, wherein the DME-containing product gas is integrated into a method for converting dimethyl ether to olefins, whereby an olefin-containing product gas is formed, and wherein olefins, in particular ethylene and/or propylene, is/are separated from the olefin-containing product gas by means of separating methods.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: September 22, 2015
    Assignee: LINDE AKTIENGESELLSCHAFT
    Inventors: Nicole Schodel, Ernst Haidegger, Holger Schmigalle, Volker Goke, Harald Schmaderer
  • Patent number: 8980961
    Abstract: The invention provides for \ a method of forming methanol by combining a mixture of methane, water and carbon dioxide under reaction conditions sufficient to form a mixture of hydrogen and carbon monoxide. Hydrogen and carbon monoxide are reacted under conditions sufficient to form methanol. The molar ratio of hydrogen to carbon monoxide is at least two moles of hydrogen to one mole of carbon monoxide and the overall molar ratio between methane, water and carbon dioxide is about 3:2:1. Methane, carbon dioxide and water are bi-reformed over a catalyst. The catalyst includes a single metal, a metal oxide, a mixed catalyst of a metal and a metal oxide or a mixed catalyst of at least two metal oxides.
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: March 17, 2015
    Assignee: University of Southern California
    Inventors: George A. Olah, G. K. Surya Prakash
  • Publication number: 20150072400
    Abstract: Methods of cultivating autotrophic microorganisms, particularly microalgae or diatoms, in a bioreactor by entraining a culture of the microorganisms in a tenuous, gelated, thixotrophic carrier medium having nutrients therefor and moving the medium along a passage at a sufficiently slow speed to enable laminar flow which in cross section is closed and which has transparent walls through which the culture is irradiated to enable photosynthesis. The method includes effecting convective turnover of the culture and medium as they flow along the passage by differentially heating the medium laterally relative to the flow direction so as to produce a generally helical flow of the culture and medium. Also described are processing methods, both physical and chemical, performed underground e.g.
    Type: Application
    Filed: May 5, 2014
    Publication date: March 12, 2015
    Inventor: William Severn Clarke
  • Patent number: 8957259
    Abstract: Disclosed are methods for producing dimethyl ether (DME) from methanol and for producing DME directly from syngas, such as syngas from biomass. Also disclosed are apparatus for DME production. The disclosed processes generally function at higher temperatures with lower contact times and at lower pressures than conventional processes so as to produce higher DME yields than do conventional processes. Certain embodiments of the processes are carried out in reactors providing greater surface to volume ratios than the presently used DME reactors. Certain embodiments of the processes are carried out in systems comprising multiple microchannel reactors.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: February 17, 2015
    Assignee: Battelle Memorial Institute
    Inventors: Robert A. Dagle, Yong Wang, Eddie G. Baker, Jianli Hu
  • Publication number: 20150038745
    Abstract: A cooled reactor for the production of dimethyl ether by catalytic dehydration of methanol in the gas phase, the reactor having an adiabatic catalyst bed as starting zone, a moderator zone cooled by direct or indirect heat exchange, and optionally an adiabatic catalyst bed as conditioning zone. The conversion of methanol to dimethyl ether is increased and the formation of undesired by-products is decreased.
    Type: Application
    Filed: September 18, 2012
    Publication date: February 5, 2015
    Applicants: LURGI GMBH, L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE
    Inventors: Bernd Ahlers, Manuela Gil De Tober, Eckhard Seidel
  • Patent number: 8916731
    Abstract: A dialkyl or diaryl ether is produced by reacting carbon dioxide with a metal alcoholate having the formula, M(RO)x, where “M” is a Group 1, Group 2, or Group 3 metal; “x” is the valence of the metal M; “R” is a C1 to C6 lower alkyl or aryl, wherein the reaction produces a dialkyl or diaryl ether having a formula, R—O—R, and a metal carbonate having a formula M2CO3 where M is a Group 1 metal, MCO3 where M is a Group 2 metal, and M2(CO3)3 where M is a Group 3 metal. The metal carbonate may be removed by conventional means, such as filtration. The dialkyl or diaryl ether may be recovered and used as a fuel, fuel additive, propellant, or building block for other fuels or petrochemicals. In some cases the metal alcoholate is in an alcohol solution and the alcohol and metal carbonate are recycled to regenerate the metal alcoholate. A specific example of dimethyl ether production is disclosed.
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: December 23, 2014
    Assignee: Ceramatec, Inc.
    Inventors: Justin Pendleton, Sai Bhavaraju
  • Publication number: 20140364654
    Abstract: Disclosed herein is a process for monetization of natural gas by producing fuel grade dimethyl ether (DME). The process includes three reactive stages with the first reactive stage being the conversion of natural gas into syngas, the second reactive stage being the conversion of syngas into crude methanol and the third reactive stage being the production of fuel grade dimethyl ether. The management and optimization of the water and steam circuits is important to maintain net overall system efficiency and mitigation of any liquid effluents.
    Type: Application
    Filed: June 10, 2013
    Publication date: December 11, 2014
    Applicant: Unitel Technologies, Inc.
    Inventors: SARABJIT S. RANDHAVA, Richard L. Kao, Todd L. Harvey, Bradley S. Novak, Jorge Romero Zabaleta
  • Publication number: 20140336420
    Abstract: A system or method for producing gasoline or dimethyl ether from natural gas via methanol includes: steam-reforming natural gas to generate reformed gas; synthesizing methanol from the reformed gas; synthesizing gasoline or dimethyl ether from the methanol; and at least one is selected from the group consisting of: pre-reforming natural gas prior to the steam-reforming; recovering carbon dioxide from flue gas generated in the steam-reforming; and preheating combustion air to be supplied to the steam-reforming by using synthesis heat generated in the synthesis of gasoline or dimethyl ether. In addition, an overall energy balance of the system is constructed by using heat recovery from flue gas generated in the steam-reforming, heat recovery from the reformed gas, synthesis heat generated in the synthesis of methanol, synthesis heat generated in the synthesis of gasoline or DME, and heat recovered in the pre-reforming, carbon dioxide recovering, or air preheating, respectively if selected.
    Type: Application
    Filed: November 26, 2012
    Publication date: November 13, 2014
    Inventor: Masaki Iijima
  • Patent number: 8884074
    Abstract: A process produces dimethyl ether (DME) from methanol (MeOH). The process includes charging a feed mixture consisting of raw MeOH and a process-internally obtained return flow substantially consisting of unconverted MeOH and reaction water to an MeOH column. The feed mixture is evaporated in the MeOH column to form a first distillate substantially consisting of vaporous MeOH. The first distillate is supplied to a reactor and the MeOH is converted to DME by splitting off water in the reactor so as to form a reaction mixture. The reaction mixture is withdrawn from the reactor, charged to a mixture column and separated into a bottom product substantially consisting of water and a second distillate substantially consisting of DME and MeOH. The second distillate is separated in a DME column into a third distillate substantially consisting of DME, a bottom product consisting essentially of water-poor MeOH, and uncondensable gases discharged overhead.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: November 11, 2014
    Assignee: Air Liquide Global E&C Solutions Germany GmbH
    Inventors: Bernd Ahlers, Gerhard Birke, Harald Koempel, Hermann Bach, Martin Rothaemel, Waldemar Liebner, Walter Boll, Veronika Gronemann
  • Publication number: 20140275636
    Abstract: A process is disclosed for producing of diethyl ether by dehydrating ethanol in the presence of an inventive catalyst. A preferred catalyst achieves high conversions of ethanol and high selectivites to diethyl ether. The diethyl ether may be used as a solvent, fuel additive, or fuel.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: Celanese International Corporation
    Inventors: Cheng Zhang, Victor J. Johnston
  • Patent number: 8822737
    Abstract: A method of producing a solid glycerol derived material includes the steps of combining glycerol with a metal oxide, the glycerol having a water content of between about 5 and 50%, and the rate of combination of the glycerol and the metal oxide and the amount of the metal oxide being selected so that at least part of the water present in the glycerol reacts with the metal oxide in an exothermic reaction and at least part is driven off by heat produced in the exothermic reaction to produce the solid glycerol derived material.
    Type: Grant
    Filed: July 6, 2009
    Date of Patent: September 2, 2014
    Assignee: Bio-Energy Ingredients Limited
    Inventors: Richard Alwyn Houseman, Abraham Christo Venter
  • Patent number: 8816134
    Abstract: Disclosed is a method for making dimethyl ether by reactive distillation. The method provides a reactive distillation tower with a top, a bottom, and rectification, reaction and stripping zones defined therein. The top of the reactive distillation tower is retained at 25° C. to 40° C. while the bottom of the reactive distillation tower is retained at 84.6° C. to 170° C. Each of the rectification, reaction and stripping zones includes several sieving trays. The reaction zone of the reactive distillation tower is filled with catalyst. The pressure in the reactive distillation tower is lower than 8.0 bars. Methanol is introduced into the reactive distillation tower so that the methanol travels from the reaction zone toward the bottom for contact with the catalyst to provide a top stream and a bottom stream. The top stream includes dimethyl ether. The bottom stream includes water and a remaining portion of the methanol. Finally, the dimethyl ether is collected in the top of the reactive distillation tower.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: August 26, 2014
    Assignee: Institute of Nuclear Energy Research, Atomic Energy Council
    Inventors: Cheng-Ting Hsieh, How-Ming Lee, Kuo-Chao Liang, Chin-Ching Tzeng
  • Publication number: 20140171691
    Abstract: The present invention discloses a system for converting methanol or synthesis gas to liquid hydrocarbons with comparable energy content to gasoline within a mixed bed single reactor or double reactor systems. Varying catalyst composition and temperature profiles allow for significant tailoring of reaction conditions to the specific feedstocks or the desired products.
    Type: Application
    Filed: December 11, 2013
    Publication date: June 19, 2014
    Applicant: PIONEER ENERGY INC.
    Inventors: Adam M. Kortan, Michael T. Kelly, Heather A. Rose, Robert M. Zubrin
  • Patent number: 8710277
    Abstract: A process for producing of diethyl ether by hydrogenating acetic acid in the presence of a catalyst comprising a first metal on an acidic support, preferably a zeolite support. A preferred catalyst comprises platinum and tin on an acidic support. Selectivities to diethyl ether of at least 60% may be achieved.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: April 29, 2014
    Assignee: Celanese International Corporation
    Inventors: Heiko Weiner, Radmila Jevtic, Victor J. Johnston
  • Publication number: 20140100391
    Abstract: A method for producing methanol from a methane source such as methane from natural (shale) gas by first reacting one equivalent of methane with oxygen from the air to result in complete combustion to produce carbon dioxide and water in a molar ratio of 1:2; then conducting a bi-reforming process with a mixture of methane: carbon dioxide:water having a ratio of 3:1:2 to produce metgas, a mixture of hydrogen and carbon monoxide having a molar ratio of 2:1 to 2.1:1; and finally converting metgas exclusively to methanol. The thus produced methanol can be dehydrated to form dimethyl ether, with water produced being recycled back to the bi-reforming process, if necessary.
    Type: Application
    Filed: March 8, 2013
    Publication date: April 10, 2014
    Applicant: UNIVERSITY OF SOUTHERN CALIFORNIA
    Inventors: George A. Olah, G.K. Surya Prakash
  • Publication number: 20140058137
    Abstract: A dual-bed catalytic distillation tower has a catalytic column having an upper catalytic bed filled with low temperature dehydration catalysts and a lower catalytic bed filled with high temperature dehydration catalysts. When using the dual-bed catalytic distillation tower, the feeding may be fed to the tower at the top of the upper catalytic bed, between the upper and lower catalytic beds, or at the bottom of the lower catalytic bed for dehydration to obtain DME. The dual-bed catalytic distillation tower has the advantage of flexible set-up depending on various feedings such as anhydrous or crude methanol and on different grades of DME to be obtained.
    Type: Application
    Filed: September 30, 2013
    Publication date: February 27, 2014
    Applicant: CPC Corporation, Taiwan
    Inventors: Wei-Bin SU, Karl Tze-Tang Chuang, Tzong-Bin Lin, Cheng-Tsung Hong, Hung-Chung Shen, Yung-Sheng Ho
  • Patent number: 8575399
    Abstract: A dual-bed catalytic distillation tower has a catalytic column having an upper catalytic bed filled with low temperature dehydration catalysts and a lower catalytic bed filled with high temperature dehydration catalysts. When using the dual-bed catalytic distillation tower, the feed may be fed to the tower at the top of the upper catalytic bed, between the upper and lower catalytic beds, or at the bottom of the lower catalytic bed for dehydration to obtain DME. The dual-bed catalytic distillation tower has the advantage of flexible set up depending on various feeds, such as anhydrous or crude methanol and on different grades of DME to be obtained.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: November 5, 2013
    Assignee: CPC Corporation, Taiwan
    Inventors: Wei-Bin Su, Hsun-Yi Huang, Jyh-Haur Hwang, Tzong-Bin Lin, Cheng-Tsung Hong, Hung-Chung Shen, Karl T. Chuang
  • Patent number: 8541630
    Abstract: Disclosed is a process for producing dimethyl ether from methanol, which is characterized in that the absorbing liquid used in said absorbing column is the bottom liquid of DME-fractionating column and/or bottom waste water of the methanol-recovering column. Said process can significantly reduce energy consumption of the apparatus.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: September 24, 2013
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, SINOPEC
    Inventors: Xiangbo Guo, Zheng Li, Qiang Li, Chaogang Xie, Keyong Yang, Anguo Mao, Xueliang Chang, Genquan Zhu
  • Patent number: 8541631
    Abstract: A solid material is subjected to surface treatment by chemically bonding onto a surface of the solid material a stabilized monofunctional silanol represented by R1R2R3SiOH. R1, R2 and R3 may be the same or different, and each represent a substituent group independently selected from a substituted or unsubstituted, monovalent hydrocarbon group having from 1 to 40 carbon atoms or a substituted or unsubstituted, monovalent heterocyclic group having from 1 to 100 carbon atoms. The monofunctional silanol has a dehydrative self-condensation rate lower than triethylsilanol.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: September 24, 2013
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Ayumu Kiyomori, Yusuke Itoh, Tohru Kubota
  • Publication number: 20130211147
    Abstract: A catalyst and process for synthesis of dimethyl ether from synthesis gas are disclosed. The catalyst and process allow dimethyl ether synthesis at low pressures (below 20 bars) at a conversion rate close to the expected equilibrium rate. The catalyst is a combination of a methanol synthesis catalyst and a methanol dehydration catalyst, wherein the dehydration catalyst is a mixture of dehydration agents which allow optimum production of dimethyl ether.
    Type: Application
    Filed: August 6, 2012
    Publication date: August 15, 2013
    Inventors: MICHAEL CHEIKY, Rajashekharam Malyala
  • Publication number: 20130211148
    Abstract: Catalysts and methods for their manufacture and use for the synthesis of dimethyl ether from syngas are disclosed. The catalysts comprise ZnO, CuO, ZrO2, alumina and one or more of boron oxide, tantalum oxide, phosphorus oxide and niobium oxide. The catalysts may also comprise ceria. The catalysts described herein are able to synthesize dimethyl ether directly from synthesis gas, including synthesis gas that is rich in carbon monoxide.
    Type: Application
    Filed: February 14, 2013
    Publication date: August 15, 2013
    Applicant: BASF Corporation
    Inventor: BASF Corporation
  • Publication number: 20130204037
    Abstract: A catalytic process is taught for non-oxidative alkylation of organic compounds, comprising alcohols, alkanes, glycols, ethers, aldehydes, ketones, carboxylic acids, esters, amines, thiols or phosphines, by alkyl groups produced from alcohols or glycols, forming products comprising ethers and other higher molecular weight alkylated compounds. The process is conducted at a reflux temperature below 200° C. in the presence of an acid, alkali or neutral salt dehydrating agent comprising sulfuric acid, phosphoric acid or their salts, lime or anhydrous calcium sulfate in the absence of zero valent metals and air. Specifically, this catalytic process converts ethanol to ethyl butyl ethers, ethyl hexyl ethers and dibutyl ethers or oxygenated gasoline as well as amines comprising n-butyl amine plus butanol to dibutyl amine and butyl hexyl amines at ambient pressure.
    Type: Application
    Filed: February 7, 2012
    Publication date: August 8, 2013
    Applicant: Carter Technologies
    Inventor: Melvin Keith Carter
  • Publication number: 20130184498
    Abstract: A process for the production of dimethyl ether from a methanol reactor effluent is disclosed. The process may include: contacting an aqueous extractant comprising water and an effluent from a methanol synthesis reactor comprising methanol and one or more of methane, water, carbon monoxide, carbon dioxide, hydrogen, and nitrogen. At least a portion of the methanol partitions into the aqueous extractant; recovering an extract fraction comprising the aqueous extractant and methanol. The extract fraction is fed to a catalytic distillation reactor system for concurrently: contacting the methanol with catalyst in a reaction zone thereby catalytically reacting at least a portion of the methanol to form dimethyl ether and water; and fractionating the resulting dimethyl ether and the water to recover a first overheads fraction comprising dimethyl ether and a first bottoms fraction comprising water.
    Type: Application
    Filed: January 30, 2013
    Publication date: July 18, 2013
    Applicant: CATALYTIC DISTILLATION TECHNOLOGIES
    Inventor: Catalytic Distillation Technologies
  • Publication number: 20130072725
    Abstract: A method and an apparatus for producing gasoline and hydrogen from methanol are disclosed. First, methanol is supplied to a first catalyst layer located in a reaction tube arranged in a reactor via a first methanol supply path to synthesize gasoline from the methanol. At the same time, methanol is supplied to a second catalyst layer located on the outer periphery of the reaction tube provided within the reactor from a second supply path, which serves as a methanol supply path, to generate hydrogen from the methanol. Heat generated in the first catalyst layer is conducted to the second catalyst layer through the reaction tube to heat the second catalyst layer to a predetermined temperature.
    Type: Application
    Filed: September 17, 2012
    Publication date: March 21, 2013
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventor: MITSUBISHI HEAVY INDUSTRIES, LTD.
  • Patent number: 8398728
    Abstract: The present invention further contemplates a process for making a dialkyl ether composition comprising two or more ethers of the formula R1—O—R2. The present invention further contemplates a process for making a dialkyl ether composition starting from a first reaction product comprising 1-butanol. The invention further contemplates a dialkyl ether composition comprising two or more ethers of the formula R1—O—R2, where each R1 and R2 can independently be any carbon chain length, saturated or unsaturated; branched or straight-chain, of between C2 and C10; specifically between C4 and C10; more specifically between C4 and C6; more specifically C6; more specifically 04.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: March 19, 2013
    Assignee: E I du Pont de Nemours and Company
    Inventors: Ronnie Ozer, Michael B. D'Amore
  • Patent number: 8378150
    Abstract: A process for the production of dimethyl ether from a methanol reactor effluent is disclosed. The process may include: contacting an aqueous extractant comprising water and an effluent from a methanol synthesis reactor comprising methanol and one or more of methane, water, carbon monoxide, carbon dioxide, hydrogen, and nitrogen. At least a portion of the methanol partitions into the aqueous extractant; recovering an extract fraction comprising the aqueous extractant and methanol. The extract fraction is fed to a catalytic distillation reactor system for concurrently: contacting the methanol with catalyst in a reaction zone thereby catalytically reacting at least a portion of the methanol to form dimethyl ether and water; and fractionating the resulting dimethyl ether and the water to recover a first overheads fraction comprising dimethyl ether and a first bottoms fraction comprising water.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: February 19, 2013
    Assignee: Catalytic Distillation Technologies
    Inventor: Mitchell E. Loescher
  • Patent number: 8350095
    Abstract: Provided is a process for the production of dimethyl ether. The process improves the effectiveness of the production of dimethyl ether. Especially, the process can be combined with processes for the production of methanol.
    Type: Grant
    Filed: August 6, 2008
    Date of Patent: January 8, 2013
    Assignee: RIPI
    Inventors: Hossein Manafi Varkiani, Kambiz Zadeh Sadaghiani, Hamid Reza Bakhtyari, Hamid Reza Godini, Laleh Shirazi, Akbar Zamaniyan, Mahmoud Khakpour
  • Publication number: 20120316367
    Abstract: Process for the preparation of dimethyl ether comprising the steps of: a) providing a methanol containing feed stock; b) introducing the feed stock into a reaction zone within a gas cooled dimethyl ether reactor and passing the feed stock through the reaction zone; c) introducing a cooling gas stream into a cooling space within the gas cooled dimethyl ether reactor; d) reacting the feed stock in the reaction zone in presence of a catalyst being active in the dehydration of methanol to dimethyl ether to obtain a reactor effluent comprising dimethyl ether.
    Type: Application
    Filed: January 11, 2011
    Publication date: December 13, 2012
    Inventors: Per Juul Dahl, Henrik Otto Stahl
  • Patent number: 8304582
    Abstract: The present invention provides a fluidized catalytic process for production of dimethyl ether from methanol, wherein said process is carried out in a reactor in which the catalyst is in a fluidized state. Said process comprises the following steps of (1) feeding the methanol feedstock via two or more locations selected from the bottom, lower part, middle part and upper part of the reactor, contacting with the catalyst for preparation of dimethyl ether by methanol dehydration, carrying out the reaction of preparing dimethyl ether by methanol dehydration to obtain the reaction stream, separating said reaction stream to obtain a coked catalyst and a crude product primarily containing the target product, i.e. dimethyl ether; (2) totally or partially feeding the coked catalyst obtained in step (1) into a regenerator in a continuous or batch manner for regeneration via coke-burning, the regenerated catalyst being directly recycled to step (1) after being totally or partially cooled.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: November 6, 2012
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Zheng Li, Qiang Fu, Chaogang Xie, Minggang Li, Anguo Mao, Lisheng Li, Genquan Zhu, Fengmei Zhang, Yi bin Luo
  • Publication number: 20120232311
    Abstract: Disclosed is a method for making dimethyl ether by reactive distillation. The method provides a reactive distillation tower with a top, a bottom, and rectification, reaction and stripping zones defined therein. The top of the reactive distillation tower is retained at 25° C. to 40° C. while the bottom of the reactive distillation tower is retained at 84.6° C. to 170° C. Each of the rectification, reaction and stripping zones includes several sieving trays. The reaction zone of the reactive distillation tower is filled with catalyst. The pressure in the reactive distillation tower is lower than 8.0 bars. Methanol is introduced into the reactive distillation tower so that the methanol travels from the reaction zone toward the bottom for contact with the catalyst to provide a top stream and a bottom stream. The top stream includes dimethyl ether. The bottom stream includes water and a remaining portion of the methanol. Finally, the dimethyl ether is collected in the top of the reactive distillation tower.
    Type: Application
    Filed: March 9, 2011
    Publication date: September 13, 2012
    Applicant: ATOMIC ENERGY COUNCIL-INSTITUTE OF NUCLEAR ENERGY RESEARCH
    Inventors: Cheng-Ting Hsieh, How-Ming Lee, Kuo-Chao Liang, Chin-Ching Tzeng
  • Publication number: 20120220804
    Abstract: A method of producing dimethyl ether by catalytic dehydration of crude methanol as feedstock in the gas phase includes providing the crude methanol from methanol synthesis, where the crude methanol having a total content of carbonyl compounds of not more than 100 wt-ppm, calculated, as mass equivalents of acetone. The crude methanol is evaporated, and the reaction temperature and reaction pressure are adjusted. A reactor filled with dehydration catalyst is charged with the evaporated crude methanol with a defined space velocity. A gaseous product mixture comprising dimethyl ether, non-reacted methanol and water is discharged. Cooling, partial condensation and separation of the gaseous product mixture are carried out so as to provide gaseous dimethyl ether, liquid water and methanol as products, and the methanol is recirculated.
    Type: Application
    Filed: October 25, 2010
    Publication date: August 30, 2012
    Applicant: LURGI GMBH
    Inventors: Peter Mitschke, Eckhard Seidel, Thomas Renner, Martin Rothaemel
  • Publication number: 20120186144
    Abstract: The present disclosure relates to methods for converting biomass-derived hydrocarbon streams into products suitable for use as fuel additives. These methods involve the acidic condensation of hydrocarbon monofunctional alcohols comprising five or six carbon atoms to form ether condensation products containing at least ten carbon atoms. The oxygenated condensation products can be separated from un-reacted alcohols and gasoline range hydrocarbons to provide an oxygenated fuel additive that may be mixed with a diesel or kerosene-type liquid hydrocarbon fuel to provide an improved fuel that may have an increased cetane number, decreased emissions of environmental pollutants during combustion, or both.
    Type: Application
    Filed: January 17, 2012
    Publication date: July 26, 2012
    Applicant: CONOCOPHILLIPS COMPANY
    Inventor: Matthew J. Truitt
  • Publication number: 20120149944
    Abstract: A method of reacting compounds can include directing a liquid into a helical constrained flow (37) having an inner circumferential flow surface and an outer circumferential flow surface. The helical constrained flow (37) can be formed around an axial interior volume (38). At least a portion of the helical constrained flow can be exposed to a sparging portion (35) to allow a fluid to be sparged into the liquid along the helical constrained flow (37). The fluid reactant can be sparged through the helical constrained flow so as to form a fluid product.
    Type: Application
    Filed: March 15, 2010
    Publication date: June 14, 2012
    Applicants: University of Utah, Ambre Energy Limited
    Inventors: Wlodzimierz W. Zmierczak, Jan Dean Miller, Raj Rajamani, Steven Messiter, Nicholas Drinnan, Edward Choros
  • Publication number: 20120142973
    Abstract: A dual-bed catalytic distillation tower has a catalytic column from the top down having an upper catalytic bed filled with low temperature dehydration catalysts and a lower catalytic bed filled with high temperature dehydration catalysts. When using the dual-bed catalytic distillation tower, the feeding may be fed to the tower from the top of the upper catalytic bed, between the upper and lower catalytic beds or the bottom of the lower catalytic bed for dehydration to obtain DME. The dual-bed catalytic distillation tower has the advantage of flexible set up depending on various feedings such as anhydrous or crude methanol and on different grade of DME to be obtained.
    Type: Application
    Filed: December 1, 2010
    Publication date: June 7, 2012
    Applicant: CPC Corporation
    Inventors: Wei-Bin Su, Hsun-Yi Huang, Jyh-Haur Hwang, Tzong-Bin Lin, Cheng-Tsung Hong, Hung-Chung Shen, Karl T. Chuang
  • Publication number: 20110295043
    Abstract: A process produces dimethyl ether (DME) from methanol (MeOH). The process includes charging a feed mixture consisting of raw MeOH and a process-internally obtained return flow substantially consisting of unconverted MeOH and reaction water to an MeOH column. The feed mixture is evaporated in the MeOH column to form a first distillate substantially consisting of vaporous MeOH. The first distillate is supplied to a reactor and the MeOH is converted to DME by splitting off water in the reactor so as to form a reaction mixture. The reaction mixture is withdrawn from the reactor, charged to a mixture column and separated into a bottom product substantially consisting of water and a second distillate substantially consisting of DME and MeOH. The second distillate is separated in a DME column into a third distillate substantially consisting of DME, a bottom product consisting essentially of water-poor MeOH, and uncondensable gases discharged overhead.
    Type: Application
    Filed: November 19, 2009
    Publication date: December 1, 2011
    Applicant: LURGI GMBH
    Inventors: Bernd Ahlers, Gerhard Birke, Harald Koempel, Hermann Bach, Martin Rothaemel, Waldemar Liebner, Walter Boll, Veronika Gronemann
  • Patent number: 8017813
    Abstract: The present inventions are (A) a solvent comprising at least one cycloalkyl alkyl ether (1) represented by the general formula: R1—O—R2 (wherein R1 is cyclopentyl or the like; and R2 is C1-10 alkyl or the like); (B) a method of preparations the ethers (1) characterized by reacting an alicyclic olefin with an alcohol in the presence of an acid ion-exchange resin having a water content of 5 wt % or less. The solvent is useful as cleaning solvent for electronic components, precision machinery components or the like, reaction solvent using various chemical reactions, extraction solvent for extracting objective organic substances, solvent or remover for electronic and electrical materials, and so on. The process enables industrially advantageous production of the objective cycloalkyl alkyl ethers (1).
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: September 13, 2011
    Assignee: Zeon Corporation
    Inventors: Idan Kin, Genichi Ohta, Kazuo Teraishi, Kiyoshi Watanabe
  • Publication number: 20110123409
    Abstract: The invention relates to a chemical reactor with a nanometric superstructure, comprising at least one member wherein at least one reaction chamber is arranged, and said reaction chamber being filled at least partially with a high specific surface area material having a specific surface area greater than 5 m2/g, and characterised in that said high specific surface area material is selected from nanotubes or nanofibres. These nanotubes or nanofibres are preferably selected in the group consisting of carbon nanofibres or nanotubes, ?-SiC nanofibres or nanotubes, TiO2 nanofibres or nanotubes. They may be deposited on an intermediate structure selected in the group consisting of glass fibres, carbon fibres, SiC foams, carbon foams, alveolar ?-SiC foams, said intermediate structure filling the reaction chamber of said reactor at least partially.
    Type: Application
    Filed: November 26, 2008
    Publication date: May 26, 2011
    Inventors: Cuong Phamhuu, Nicolas Keller, Marc Jacques Ledoux, Izabella Janowska, David Edouard, Valérie Keller-Spitzer, Thierry Romero, Liu Yu
  • Publication number: 20110098513
    Abstract: A process for producing of diethyl ether by hydrogenating acetic acid in the presence of a catalyst comprising a first metal on an acidic support, preferably a zeolite support. A preferred catalyst comprises platinum and tin on an acidic support. Selectivities to diethyl ether of at least 80% may be achieved.
    Type: Application
    Filed: August 4, 2010
    Publication date: April 28, 2011
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Heiko Weiner, Radmila Jevtic, Victor J. Johnston