Transition Metal Halide Containing Catalyst Patents (Class 570/168)
  • Patent number: 11207668
    Abstract: A dehydrochlorination process is disclosed. The process involves contacting RfCHClCH2Cl with a chromium oxyfluoride catalyst in a reaction zone to produce a product mixture comprising RfCCl?CH2, wherein Rf is a perfluorinated alkyl group.
    Type: Grant
    Filed: November 19, 2019
    Date of Patent: December 28, 2021
    Assignee: THE CHEMOURS COMPANY FC, LLC
    Inventor: Mario Joseph Nappa
  • Patent number: 11148994
    Abstract: The invention relates to a new process for the manufacture of fluoroaryl compounds and derivatives thereof, in particular of fluorobenzenes and derivatives thereof, and especially wherein said manufacture relates to an environmentally friendly production of the said compounds. Thus, the present invention overcomes the disadvantages of the prior art processes, and in a surprisingly simple and beneficial manner, and as compared to the prior art processes, in particular, the invention provides a more efficient and energy saving processes, and also provides a more environmentally friendly process, for the manufacture of nuclear fluorinated aromatics, and preferably of nuclear fluorinated fluorobenzenes. Accordingly, in one aspect of the invention, an industrially beneficial process for preparing fluorobenzenes from halobenzene precursors using HF to form hydrogen halide is provided by the present invention.
    Type: Grant
    Filed: June 20, 2020
    Date of Patent: October 19, 2021
    Inventors: Hongjun Du, Wenting Wu
  • Patent number: 9024093
    Abstract: Methods for fluorinating organic compounds are described herein.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: May 5, 2015
    Assignee: President and Fellows of Harvard College
    Inventors: Tobias Ritter, Takeru Furuya, Pingping Tang
  • Patent number: 9000242
    Abstract: The invention is directed to a catalyst for the gas phase fluorination of 1,1,2-trichloroethane and/or 1,2-dichloroethene with HF to give 1-chloro-2,2-difluoroethane which catalyst is prepared by co-depositing FeCl3 and MgCl2 on chromia-alumina, or co-depositing Cr(NO3)3 and Ni(NO3)2 on active carbon, or by doping alumina with ZnCl2, and to a process for the preparation of 1-chloro-2,2-difluoroethane comprising a catalytic gas phase fluorination of 1,1,2-trichloroethane and/or 1,2-dichloroethene wherein one of the catalysts according to claim 2 or 3 is used.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: April 7, 2015
    Assignee: Bayer Intellectual Property
    Inventors: Norbert Lui, Shanthan Rao Pamulaparthy, Srinivas Pvss, Thomas Vijaya, Sridhar Madabhushi, Rambabu Yadla, Narsaiah Banda, Sergii Pazenok
  • Patent number: 8975455
    Abstract: The present invention aims in a method wherein tetrachloroethylene (PCE) is reacted with HF in a gas phase in the presence of a catalyst to obtain pentafluoroethane (HFC-125), to reduce production of undesirable by-products and maintain a catalytic activity at a high level over a long period of time while achieving a high conversion ratio of PCE and suppressing deterioration of the catalyst. In a method for producing pentafluoroethane wherein tetrachloroethylene is reacted with HF in a gas phase in the presence of a catalyst to obtain pentafluoroethane, characterized in that chromium oxyfluoride is disposed in a reactor as the catalyst, and oxygen is fed into the reactor together with tetrachloroethylene and HF, at a amount of 0.4-1.8% by mole with respect to tetrachloroethylene.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: March 10, 2015
    Assignee: Daikin Industries, Ltd.
    Inventors: Masatoshi Nose, Kazuhiro Takahashi, Takashi Shibanuma
  • Patent number: 8916733
    Abstract: A process for making 2-chloro-1,1,1,2-tetrafluoropropane. The process has the step of contacting 2-chloro-3,3,3-trifluoropropene with hydrogen fluoride in the presence of a catalyst having about 25 to about 99.9 mole percent antimony pentachloride and about 0.1 to about 75 mole percent of a metal of a Lewis acid under conditions sufficient to form the 2-chloro-1,1,1,2-tetrafluoropropane. There is a second process for making 2-chloro-1,1,1,2-tetrafluoropropane. The process has the step of hydrofluorinating about 75 to about 99.9 mole percent 2-chloro-3,3,3-trifluoropropene and about 0.1 to about 25 mole percent of one or more other hydrocarbons having at least one chlorine atom in the presence of a catalyst of fluorinated antimony pentachloride under conditions sufficient to form the 2-chloro-1,1,1,2-tetrafluoropropane. There is yet another process for hydrofluorinating 2-chloro-3,3,3-trifluoropropene to 2-chloro-1,1,1,2-tetrafluoropropane.
    Type: Grant
    Filed: June 15, 2009
    Date of Patent: December 23, 2014
    Assignee: Honeywell International Inc.
    Inventors: Daniel C. Merkel, Robert C. Johnson, Hsueh Sung Tung
  • Patent number: 8889925
    Abstract: The present invention provides a process of fluorination in liquid phase in a solvent medium of a compound of formula (II) CX1X2?CZCX3X4X5, in which Z represents H, Cl or F, and each X1 represents independently hydrogen or chlorine, given that at least one of the X1 represents a chlorine.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: November 18, 2014
    Assignee: Arkema France
    Inventor: Anne Pigamo
  • Patent number: 8889924
    Abstract: The present invention provides a simple three step process for the production of 1,3,3,3-tetrafluoropropene (HFO-1234ze). In the first step, carbon tetrachloride is added to vinyl fluoride to afford the compound CCl3CH2CHClF (HCFC-241fb). HCFC-241fb is then fluorinated with anhydrous HF to afford CF3CH2CHClF (HCFC-244fa) in the second step. Dehydrochlorination of HCFC-244fa, in the third step, affords the desired product, CF3CH?CHF (HFO-1234ze). Following similar chemistry, vinyl chloride may be used in place of vinyl fluoride.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: November 18, 2014
    Assignee: Honeywell International Inc.
    Inventors: Haridasan K. Nair, Rajiv Ratna Singh, Andrew Joseph Poss, David Nalewajek
  • Publication number: 20140309462
    Abstract: The present disclosure provides a fluorination process which involves reacting a hydrohaloalkene of the formula RfC—Cl?CH2 with HF in a reaction zone in the presence of a fluorination catalyst selected from the group consisting of TaF5 and TiF4 to produce a product mixture containing a hydrohaloalkane of the formula RfCFClCH3, wherein Rf is a perfluorinated alkyl group.
    Type: Application
    Filed: November 9, 2012
    Publication date: October 16, 2014
    Inventors: Mario Joseph NAPPA, Andrew JACKSON, Daniel C. MERKEL
  • Publication number: 20140275648
    Abstract: The invention relates to a process to produce 244bb from 1233xf in multiple reaction zones whereby the 1233xf starting material is at least 95% converted to 244bb and by-product such as 245cb forms in amounts less than about 2%.
    Type: Application
    Filed: March 12, 2014
    Publication date: September 18, 2014
    Applicant: HONEYWELL INTERNATIONAL, INC.
    Inventors: Yuon Chiu, Haluk Kopkalli, Robert A. Smith, Daniel C. Merkel
  • Publication number: 20140275646
    Abstract: The present process relates to a method for minimizing the formation of 1,1,1,2,2-pentafluoropropane in a liquid phase reaction of 2-chloro-3,3,3-trifluoropropene and HF in the presence of a hydrofluorination catalyst comprising: (a) reacting HF with sufficient amount of 2-chloro-3,3,3-trifluoropropene in the presence of a hydrofluorination catalyst under conditions effective to form 2-chloro-1,1,1,2-tetrafluoropropane, the hydrofluorination catalyst being present in sufficient amounts to catalyze said reaction and the 2-chloro-1,1,1,2-tetrafluoropropane being formed with both a conversion of greater than 80% and a 1,1,1,2,2-pentafluoropropane selectivity lower than 20%; and (b) maintaining the 2-chloro-1,1,1,2-tetrafluoropropane being formed with both a conversion of about 80% or more and a 1,1,1,2,2-pentafluoropropane selectivity of about 20% or less by adding said hydrofluorination catalyst to the reactor in small increments.
    Type: Application
    Filed: March 11, 2014
    Publication date: September 18, 2014
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Haiyou WANG, Daniel C. MERKEL, Hsueh Sung TUNG, Haluk KOPKALLI
  • Publication number: 20140100393
    Abstract: The invention provides an improved process to manufacture 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb) by reacting 2-chloro-3,3,3,-trifluoropropene (HCFO-1233xf) with hydrogen fluoride, in the presence of a fluorination catalyst, where by using 2-chloro-3,3,3,-trifluoropropene (HCFO-1233xf) of high purity, the need to add an oxidizing agent (typically chlorine) to keep the catalyst active can be avoided. The HCFC-244bb is then used as an intermediate in the production of 2,3,3,3-tetrafluoropropene-1 (HFO-1234yf).
    Type: Application
    Filed: June 28, 2010
    Publication date: April 10, 2014
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Robert C. Johnson, Daniel C. Merkel
  • Patent number: 8648221
    Abstract: Disclosed is an integrated process to co-produce trans-1-chloro-3,3,3-trifluoro-propene (1233zd(E)), trans-1,3,3,3-tetrafluoropropene (1234ze(E)), and 1,1,1,3,3-pentafluoropropane (245fa). Overall the co-production is a three-step process. The chemistry involves the steps of: (1) the reaction of 240fa with anhydrous HF in excess in a liquid-phase catalyzed reactor in such a way as to co-produce primarily 1233zd(E) and 244fa (plus byproduct HCl); (2) the 244fa stream can then be used to directly produce any of the three desired products; (3a) the 244fa stream can be dehydrochlorinated to produce the desired second product 1234ze(E); and/or (3b) the 244fa stream can be dehydrofluorinated to produce 1233zd(E) if more of that product is desired; and/or (3c) the 244fa stream can be further fluorinated to form 245fa.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: February 11, 2014
    Assignee: Honeywell International Inc.
    Inventors: Daniel C. Merkel, Haiyou Wang, Konstantin A. Pokrovski, Hsueh Sung Tung, Ian Shankland
  • Patent number: 8575407
    Abstract: A support of metal oxyfluoride or metal halide for a metal-based hydrogenation catalyst useful in hydrogenating fluoroolefins is provided.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: November 5, 2013
    Assignee: Honeywell International Inc.
    Inventors: Haiyou Wang, Hsueh Sung Tung
  • Patent number: 8309774
    Abstract: The invention is directed to a process for preparing 2,2,2,3-tetrafluoropropene (1234yf), comprising: (i) contacting 1,1,2,3-tetrachloropropene (1230xa) with hydrogen fluoride HF in gas phase in the presence of a fluorination catalyst under conditions sufficient to produce a reaction mixture; (ii) separating the reaction mixture into a first stream comprising HCl, 2,2,2,3-tetrafluoropropene (1234yf) and a second stream comprising HF, 2-chloro-3,3,3-trifluoro-1-propene (1233xf) and 1,1,1,2,2-pentafluoropropane (245cb); (iii) recycling at least a part of the second stream at least in part back to step (i).
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: November 13, 2012
    Assignee: Arkema France
    Inventors: Anne Pigamo, Dominique Deur-Bert, Laurent Wendlinger
  • Patent number: 8247624
    Abstract: Dehydrohalogenation processes for the preparation of fluoropropenes from corresponding halopropanes, in which the fluoropropenes have the formula CF3CY?CXNHP, wherein X and Y are independently hydrogen or a halogen selected from fluorine, chlorine, bromine and iodine; and N and P are independently integers equal to 0, 1 or 2, provided that (N+P)=2.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: August 21, 2012
    Assignee: Honeywell International Inc.
    Inventors: Daniel C. Merkel, Rajiv R. Singh, Hsueh S. Tung
  • Publication number: 20120203036
    Abstract: A multi-step process for preparing 2,3,3,3-tetrafluoro-1-propene comprising the steps of (a) contacting a starting material comprising 2-chloro-3,3,3-trifluoro-1-propene with hydrogen fluoride in the presence of activated first catalyst selected from the group consisting of antimony-halides, iron-halides, titanium halides, and tin-halides, to produce an intermediate composition; and (b) contacting said intermediate composition with a second catalyst of activated carbon to produce a final product comprising 2,3,3,3-tetrafluoro-1-propene.
    Type: Application
    Filed: November 5, 2008
    Publication date: August 9, 2012
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Sudip Mukhopadhyay, Barbara A. Light, Kim M. Fleming, Steven D. Phillips, Rajesh K. Dubey
  • Patent number: 8236997
    Abstract: A process for the production of pentafluoroethane is described. The process comprises reacting perchloroethylene with hydrogen fluoride in the vapor phase in a first reactor or a first plurality of reactors in the presence of a fluorination catalyst to produce a composition comprising dichlorotrifluoroethane, hydrogen chloride, unreacted hydrogen fluoride and perchloroethylene. This composition is subjected to a separation step to yield a purified composition comprising at least 95 weight % of dichlorotrifluorethane and less than 0.5 weight % of compounds having the formula C2C16-XFX, where x is an integer of from 0 to 6, base the total weight of organic compounds in the composition. The composition from the separation step is then reacted with hydrogen fluoride in the vapor phase in a second reactor or a second plurality of reactors in the presence of a fluorination catalyst to produce a composition comprising pentafluoroethane and less than 0.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: August 7, 2012
    Assignee: Mexichem Amanco Holding S.A. de C.V.
    Inventors: Clive Robert Giddis, Paul Hendry Stewert
  • Patent number: 8207384
    Abstract: The invention provides a process for preparing 1234yf, comprising: (i) contacting 243db with hydrogen fluoride HF in gas phase in the presence of a fluorination catalyst under conditions sufficient to produce a reaction mixture; (ii) separating the reaction mixture into a first stream comprising HCl, 1234yf and a second stream comprising HF, 1233xf and 245cb; (iii) recycling at least a part of the second stream at least in part back to step (i).
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: June 26, 2012
    Assignee: Arkema France
    Inventors: Laurent Wendlinger, Anne Pigamo, Dominique Deur-Bert
  • Publication number: 20120116131
    Abstract: A new chromium-containing fluorination catalyst is described. The catalyst comprises an amount of zinc that promotes activity. The zinc is contained in aggregates which have a size across their largest dimension of up to 1 micron. The aggregates are distributed throughout at least the surface region of the catalyst and greater than 40 weight % of the aggregates contain a concentration of zinc that is within ±1 weight % of the modal concentration of zinc in those aggregates.
    Type: Application
    Filed: September 4, 2009
    Publication date: May 10, 2012
    Applicant: Mexichem Amanco Holdings S.A. DE C.V.
    Inventor: Andrew P. Sharratt
  • Patent number: 8158836
    Abstract: The invention is directed to a process for preparing 2,3,3,3-tetrafluoropropene (1234yf), comprising: (i) contacting 1,1,2,3-tetrachloropropene (1230xa) with hydrogen fluoride HF in gas phase in the presence of a fluorination catalyst under conditions sufficient to produce a reaction mixture; (ii) separating the reaction mixture into a first stream comprising HCl, 2,3,3,3-tetrafluoropropene (1234yf) and a second stream comprising HF, 2-chloro-3,3,3-trifluoro-1-propene (1233xf) and 1,1,1,2,2-pentafluoropropane (245cb); (iii) recycling at least a part of the second stream at least in part back to step (i).
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: April 17, 2012
    Assignee: Arkema France
    Inventors: Anne Pigamo, Dominique Deur-Bert, Laurent Wendlinger
  • Patent number: 8058487
    Abstract: The present invention relates to a continuous process for the fluorination of perchloroethylene (PER) in the gas phase in a single stage with hydrofluoric acid (HF) in the presence of a catalyst to give, as major product, pentafluoroethane. The process is characterized in that it is carried out at a temperature of between 280 and 430° C. and with an HF/PER molar ratio of greater than or equal to 20.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: November 15, 2011
    Assignee: Arkema France
    Inventors: Beatrice Boussand, Michel Devic
  • Patent number: 8034984
    Abstract: Dehydrohalogenation processes for the preparation of fluoropropenes from corresponding halopropanes, in which the fluoropropenes have the formula CF3CY?CXNHP, wherein X and Y are independently hydrogen or a halogen selected from fluorine, chlorine, bromine and iodine; and N and P are independently integers equal to 0, 1 or 2, provided that (N+P)=2.
    Type: Grant
    Filed: September 22, 2010
    Date of Patent: October 11, 2011
    Assignee: Honeywell International Inc.
    Inventors: Daniel C. Merkel, Rajiv R. Singh, Hsueh S. Tung
  • Publication number: 20110201853
    Abstract: The present invention relates to methods, process, and integrated systems for economically producing (E)-1-chloro-3,3,3-trifluoropropene via vapor phase and/or liquid processes.
    Type: Application
    Filed: February 2, 2011
    Publication date: August 18, 2011
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Hsueh S. Tung, Robert Johnson, Konstantin A. Pokrovski, Daniel C. Merkel
  • Publication number: 20110060171
    Abstract: The present invention relates to a process for the manufacture of pentafluoroethane. It more particularly relates to a process for the manufacture of pentafluoroethane by gas-phase fluorination of perchloroethylene (PER) in the presence of a catalyst, characterized in that (i) the reaction of the PER with HF is carried out with an HF/PER molar ratio of greater than or equal to 20 and a pressure of greater than 5 bar absolute, and that (ii) the stream leaving this reaction step is recycled directly to the reaction step after separation of pentafluoroethane and of HCl.
    Type: Application
    Filed: October 10, 2007
    Publication date: March 10, 2011
    Applicant: Arkema France
    Inventors: Béatrice Boussand, Emmanuel Guiraud
  • Publication number: 20100331583
    Abstract: The invention provides an improved process to manufacture 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb) by reacting 2-chloro-3,3,3,-trifluoropropene (HCFO-1233xf) with hydrogen fluoride, in the presence of a fluorination catalyst, where by using 2-chloro-3,3,3,-trifluoropropene (HCFO-1233xf) of high purity, the need to add an oxidizing agent (typically chlorine) to keep the catalyst active can be avoided. The HCFC-244bb is then used as an intermediate in the production of 2,3,3,3-tetrafluoropropene-1 (HFO-1234yf).
    Type: Application
    Filed: June 28, 2010
    Publication date: December 30, 2010
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Robert C. Johnson, Daniel C. Merkel
  • Publication number: 20100268002
    Abstract: The present invention aims in a method wherein tetrachloroethylene (PCE) is reacted with HF in a gas phase in the presence of a catalyst to obtain pentafluoroethane (HFC-125), to reduce production of undesirable by-products and maintain a catalytic activity at a high level over a long period of time while achieving a high conversion ratio of PCE and suppressing deterioration of the catalyst. In a method for producing pentafluoroethane wherein tetrachloroethylene is reacted with HF in a gas phase in the presence of a catalyst to obtain pentafluoroethane, characterized in that chromium oxyfluoride is disposed in a reactor as the catalyst, and oxygen is fed into the reactor together with tetrachloroethylene and HF, at a amount of 0.4-1.8% by mole with respect to tetrachloroethylene.
    Type: Application
    Filed: November 12, 2008
    Publication date: October 21, 2010
    Inventors: Masatoshi Nose, Kazuhiro Takahashi, Takashi Shibanuma
  • Patent number: 7803973
    Abstract: Dehydrohalogenation processes for the preparation of fluoropropenes from corresponding halopropanes, in which the fluoropropenes have the formula CF3CY?CXNHP, wherein X and Y are independently hydrogen or a halogen selected from fluorine, chlorine, bromine and iodine; and N and P are independently integers equal to 0, 1 or 2, provided that (N+P)=2.
    Type: Grant
    Filed: April 16, 2008
    Date of Patent: September 28, 2010
    Assignee: Honeywell International Inc.
    Inventors: Daniel C. Merkel, Rajiv R. Singh, Hsueh Sung Tung
  • Patent number: 7786335
    Abstract: A process for the production of C2-C4 hydrofluorocarbon, such as 1,1,1,3,3-pentafluoropropane, by contacting a non-fluorinated hydrochlorocarbon with a fluorinating agent, such as hydrogen fluoride, in a liquid catalyst system preferably comprising fluorinated superacid catalyst prepared from SbF5, NbF5, TaF5 or TaF5/SnF4 and HF.
    Type: Grant
    Filed: November 3, 2008
    Date of Patent: August 31, 2010
    Assignee: Honeywell International Inc.
    Inventors: David E. Bradley, David Nalewajek, Robert L. Bell
  • Publication number: 20100191025
    Abstract: The present invention relates to a process for preparing (hydro)(chloro)fluoroolefins comprising at least one step of fluorination in the liquid phase of a (hydro)haloalkane or of a (hydro)haloalkene in the presence of at least one ionic liquid as a catalyst. The ionic liquids are derivatives of Lewis acids based on aluminum, titanium, niobium, tantalum, tin, antimony, nickel, zinc or iron.
    Type: Application
    Filed: May 13, 2008
    Publication date: July 29, 2010
    Applicant: Arkema France
    Inventor: Sylvain Perdrieux
  • Patent number: 7714177
    Abstract: Disclosed is a process for the synthesis of 1,3,3,3-tetrafluoropropene comprising: a) reacting a compound of the formula (I) CHFX2 with a compound of formula (II) CH2?CF2 to produce a reaction product comprising a compound of formula (III) CHXFCH2CXF2, wherein each X is independently selected from the group consisting of chlorine, bromine and iodine; and (b) exposing said compound of formula (III) to reaction conditions effective to convert said compound to 1,3,3,3-tetrafluoropropene.
    Type: Grant
    Filed: January 7, 2008
    Date of Patent: May 11, 2010
    Assignee: Honeywell International Inc.
    Inventors: Sudip Mukhopadhyay, Haridasan K. Nair, Hsueh S. Tung, Michael Van Der Puy
  • Publication number: 20090182179
    Abstract: A process for making 2-chloro-1,1,1,2-tetrafluoropropane comprising hydrofluorinating 2-chloro-3,3,3-trifluoropropene in the presence of a catalyst selected from the group consisting of: SbCl3, SbCl5, SbF5, TiCl4, SnCl4, Cr2O3, and fluorinated Cr2O3.
    Type: Application
    Filed: December 18, 2008
    Publication date: July 16, 2009
    Inventors: Daniel C. Merkel, Robert C. Johnson, Hsuehsung Tung
  • Publication number: 20090124837
    Abstract: A multi-step process for preparing 2,3,3,3-tetrafluoro-1-propene comprising the steps of (a) contacting a starting material comprising 2-chloro-3,3,3-trifluoro-1-propene with hydrogen fluoride in the presence of activated first catalyst selected from the group consisting of antimony-halides, iron-halides, titanium halides, and tin-halides, to produce an intermediate composition; and (b) contacting said intermediate composition with a second catalyst of activated carbon to produce a final product comprising 2,3,3,3-tetrafluoro-1-propene.
    Type: Application
    Filed: November 5, 2008
    Publication date: May 14, 2009
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Sudip Mukhopadhyay, Barbara A. Light, Kim M. Fleming, Steven D. Phillips, Rajesh K. Dubey
  • Patent number: 7420094
    Abstract: The present invention relates to a process of catalyzed isomerization of HFC-1234ze to make HFC-1234yf. The process comprises contacting HFC-1234ze with a suitable catalyst in a reactor to obtain a product mixture comprising HFC-1234yf.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: September 2, 2008
    Assignee: E.I. du Pont de Nemours and Company
    Inventors: Viacheslav A. Petrov, Mario Joseph Nappa
  • Publication number: 20080091053
    Abstract: A process for the manufacture of haloalkanes, or more particularly to a process for the manufacture of 1,1,1,3,3-pentachloropropane (HCC-240fa) and/or and/or 1,1,1,3-tetrachloropropane (HCC-250fb). The process includes (a) mixing a catalyst, co-catalyst and a haloalkane starting material under conditions suitable to produce a homogeneous mixture; (b) reacting the homogeneous mixture with a haloalkene and/or alkene starting material under conditions suitable to produce a haloalkane product stream; and (c) recovering a haloalkane product from said product stream.
    Type: Application
    Filed: October 9, 2007
    Publication date: April 17, 2008
    Inventors: Hsueh Sung Tung, Ian Shankland
  • Patent number: 7348461
    Abstract: Methods and materials are provided for the production of essentially isomerically pure perhalogenated and partially halogenated compounds. One embodiment of the present invention provides a process for the production of essentially isomerically pure CFC-216aa. Other embodiments include processes for the production of CFC-217ba and HFC-227ea. Particular embodiments of the present invention provide separation techniques for the separation of chlorofluorocarbons from HF, from other chlorofluorocarbons, and the separation of isomers of halogenated compounds. Still other embodiments of the present invention provide catalytic synthetic techniques that demonstrate extended catalyst lifetime. In other embodiments, the present invention provides catalytic techniques for the purification of isomeric mixtures.
    Type: Grant
    Filed: October 31, 2003
    Date of Patent: March 25, 2008
    Assignee: Great Lakes Chemical Corporation
    Inventors: Yuichi Iikubo, Stephen Owens, Mitchel Cohn, Stephan M. Brandstadter, Vicki E. Hedrick, Janet K. Boggs, John Qian, Julie Sacarias
  • Patent number: 7345209
    Abstract: Disclosed is a process for the synthesis of 1,3,3,3-tetrafluoropropene that comprises, in one preferred embodiment, providing a compound of the formula CF3CH2CHFX, wherein X is a selected from the group consisting of chlorine, bromine and iodine, and exposing said compound to reaction conditions effective to convert said compound to 1,3,3,3-tetrafluoropropene. Other processes for forming 1,3,3,3-tetrafluoropropene are also disclosed.
    Type: Grant
    Filed: April 29, 2005
    Date of Patent: March 18, 2008
    Assignee: Honeywell International Inc.
    Inventors: Sudip Mukhopadhyay, Haridasan K. Nair, Hsueh S. Tung, Michael Van Der Puy
  • Publication number: 20080058562
    Abstract: The present invention relates to a process of catalyzed isomerization of HFC-1234ze to make HFC-1234yf. The process comprises contacting HFC-1234ze with a suitable catalyst in a reactor to obtain a product mixture comprising HFC-1234yf.
    Type: Application
    Filed: August 31, 2007
    Publication date: March 6, 2008
    Applicant: E. I. DUPONT DE NEMOURS AND COMPANY
    Inventors: Viacheslav A. Petrov, Mario Joseph Nappa
  • Patent number: 7329786
    Abstract: Methods and materials are provided for the production of essentially isomerically pure perhalogenated and partially halogenated compounds. One embodiment of the present invention provides a process for the production of essentially isomerically pure CFC-216aa. Other embodiments include processes for the production of CFC-217ba and HFC-227ea. Particular embodiments of the present invention provide separation techniques for the separation of chlorofluorocarbons from HF, from other chlorofluorocarbons, and the separation of isomers of halogenated compounds. Still other embodiments of the present invention provide catalytic synthetic techniques that demonstrate extended catalyst lifetime. In other embodiments, the present invention provides catalytic techniques for the purification of isomeric mixtures.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: February 12, 2008
    Assignee: Great Lakes Chemical Corporation
    Inventors: Yuichi Iikubo, Stephen Owens, Mitchel Cohn, Stephan M. Brandstadter, Vicki E. Hedrick, Janet K. Boggs, John Chengping Chien, Julie Sacarias, Vimal Sharma
  • Patent number: 7312367
    Abstract: The invention provides an economic process for the manufacture of the hydrofluorocarbon 1,1,3,3,3-pentafluoropropene (HFC-1225zc). HFC-1225zc can be made from the dehydrochlorination of 1-chloro-1,1,3,3,3-pentafluoropropane (HCFC-235fa). Alternatively, HFC-1225zc can also be made from the dehydrofluorination of 1,1,1,3,3,3-hexafluoropropane (HFC-236fa). HFC-1225zc) is a compound that has the potential to be used as a low Global Warming Potential refrigerant, blowing agent, aerosol propellant, or solvent.
    Type: Grant
    Filed: June 14, 2006
    Date of Patent: December 25, 2007
    Assignee: Honeywell International Inc.
    Inventors: Hsueh Sung Tung, Daniel C. Merkel, Rajiv R. Singh
  • Patent number: 7294747
    Abstract: Process for the manufacture of 1,1-difluoroethane by liquid-phase fluorination of 1,2-dichloroethane using hydrofluoric acid in the presence of a Lewis acid as catalyst and of FeCl3 as cocatalyst. Process for the manufacture of 1,1-difluoroethylene employing it.
    Type: Grant
    Filed: October 17, 2003
    Date of Patent: November 13, 2007
    Assignee: Arkema France
    Inventor: Phillipe Bonnet
  • Patent number: 7230146
    Abstract: Dehydrohalogenation processes for the preparation of fluoropropenes from corresponding halopropanes, in which the fluoropropenes have the formula CF3CY?CXNHP, wherein X and Y are independently hydrogen or a halogen selected from fluorine, chlorine, bromine and iodine; and N and P are independently integers equal to 0, 1 or 2, provided that (N+P)=2.
    Type: Grant
    Filed: October 27, 2003
    Date of Patent: June 12, 2007
    Assignee: Honeywell International Inc.
    Inventors: Daniel C. Merkel, Rajiv R. Singh, Hsueh Sung Tung
  • Patent number: 7214839
    Abstract: A manufacturing process for making hydrofluorocarbons (HFCs), by reacting a hydrochlorocarbon and HF in a liquid phase catalytic reactor using a large mole ratio of HF to hydrochlorocarbon to minimize formation of high boiling by-products and improve HF consumption and hydrofluorocarbon yields.
    Type: Grant
    Filed: May 23, 2003
    Date of Patent: May 8, 2007
    Assignee: Honeywell International Inc.
    Inventors: Hsueh Sung Tung, Chad L. Marks, Stephen A. Cottrell
  • Patent number: 7183448
    Abstract: A mixture comprising at least 1,1,1,3,3-pentafluoropropane and 1,1,1-trifluoro-3-chloro-2-propene is subjected to a distillation operation, and thereby, a distillate comprising an azeotropic composition consisting substantially of 1,1,1,3,3-pentafluoropropane and 1,1,1-trifluoro-3-chloro-2-propene is obtained and a bottom product comprising 1,1,1,3,3-pentafluoropropane or 1,1,1-trifluoro-3-chloro-2-propene which each is separated and purified.
    Type: Grant
    Filed: November 10, 1999
    Date of Patent: February 27, 2007
    Assignee: Daikin Industries, Ltd.
    Inventors: Tatsuo Nakada, Masayoshi Imoto, Takashi Shibanuma
  • Patent number: 7176338
    Abstract: The invention relates to a process for preparing 1,1,1-trifluoro-2,2-dichloroethane (F123). This process consists in placing 1,1,1-trifluoro-2-chloroethane (F133a) in contact with chlorine in the presence of hydrogen fluoride and a fluorination catalyst. F133a may be obtained by fluorination of trichloroethylene, and the F123 may be subsequently fluorinated to F125.
    Type: Grant
    Filed: April 1, 2004
    Date of Patent: February 13, 2007
    Assignee: Atofina
    Inventors: Béatrice Boussand, Eric Jorda
  • Patent number: 7109386
    Abstract: Process for the preparation of a halogenated olefin by reaction of an alkyne and/or of an allene compound with a hydrogen halide in a liquid medium comprising at least one hydrohalogenation catalyst comprising at least one palladium compound.
    Type: Grant
    Filed: March 20, 2002
    Date of Patent: September 19, 2006
    Assignee: Solvay (Societe Anonyme)
    Inventor: Véronique Mathieu
  • Patent number: 7102040
    Abstract: The invention provides an apparatus useful in fluorinating organic compounds, or more particularly to a reactor system suitable for the fluorination of organic compounds on a commercial scale. The apparatus is also useful in chemical reactions including heating or cooling.
    Type: Grant
    Filed: April 4, 2003
    Date of Patent: September 5, 2006
    Assignee: Honeywell International Inc.
    Inventors: Yuon Chiu, Merwyn E. Howells, Stephen A. Cottrell
  • Patent number: 7094934
    Abstract: In a process for producing a hydrogen-containing fluorinated hydrocarbon in which a halogenated hydrocarbon reaction raw material, which includes a chlorinated alkene and/or a hydrogen-containing chlorinated alkane, is subjected to a fluorination reaction with hydrogen fluoride in a liquid phase in a reactor in the presence of a fluorination catalyst to obtain a reaction mixture which includes the hydrogen-containing fluorinated hydrocarbon, the reactor to be used has a portion which is able to contact with the reaction mixture, at least a part of this portion being made of an alloy material of 18 to 20% by weight of chromium, 18 to 20% by weight of molybdenum, 1.5 to 2.2% by weight of at least one element selected from niobium and tantalum and the balance of nickel.
    Type: Grant
    Filed: January 31, 2001
    Date of Patent: August 22, 2006
    Assignee: Daikin Industries, Ltd.
    Inventors: Noriaki Shibata, Tatsuo Nakada, Takashi Shibanuma
  • Patent number: 7091388
    Abstract: The invention provides an economic process for the manufacture of the hydrofluorocarbon 1,1,3,3,3-pentafluoropropene (HFC-1225zc). HFC-1225zc can be made from the dehydrochlorination of 1-chloro-1,1,3,3,3-pentafluoropropane (HCFC-235fa). Alternatively, HFC-1225zc can also be made from the dehydrofluorination of 1,1,1,3,3,3-hexafluoropropane (HFC-236fa). HFC-1225zc) is a compound that has the potential to be used as a low Global Warming Potential refrigerant, blowing agent, aerosol propellant, or solvent.
    Type: Grant
    Filed: September 26, 2003
    Date of Patent: August 15, 2006
    Assignee: Honeywell International Inc.
    Inventors: Hsueh Sung Tung, Daniel C. Merkel, Rajiv R. Singh
  • Patent number: 7074973
    Abstract: A process for the preparation of pentafluoroethane is disclosed which involves contacting a mixture comprising hydrogen fluoride and at least one starting material selected from haloethanes of the formula CX3CHX2 and haloethanes of the formula CX2?CX2, where each X is independently selected from the group consisting of F and Cl (provided that no more than four of X are F), with a fluorination catalyst in a reaction zone to produce a product mixture comprising HF, HCl, pentafluoroethane, underfluorinated halogenated hydrocarbon intermediates and less than 0.2 mole percent chloropentafluoroethane based on the total moles of halogenated hydrocarbons in the product mixture. The process is characterized by the fluorination catalyst comprising (i) a crystalline cobalt-substituted alpha-chromium oxide where from about 0.05 atom % to about 6 atom % of the chromium atoms in the alpha-chromium oxide lattice are replaced by trivalent cobalt (Co+3) and/or (ii) a fluorinated crystalline oxide of (i).
    Type: Grant
    Filed: August 21, 2003
    Date of Patent: July 11, 2006
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Mario J. Nappa, Velliyur Nott Mallikarjuna Rao, H. David Rosenfeld, Shekhar Subramoney, Munirpallam A. Subramanian, Allen C. Sievert