From Wood Patents (Class 585/242)
  • Patent number: 8574404
    Abstract: In this fast pyrolysis processor the reaction conditions are tailored to minimize the production of gas, while using calcined limestone to provide the heat for fast pyrolysis of biomass and to lower the acidity and oxygen content of the liquid bio-oil which is produced.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: November 5, 2013
    Inventor: Douglas Stewart Sinclair
  • Patent number: 8575408
    Abstract: The present invention involves a process for processing an acidic biorenewable feedstock comprising olefins, in which the acidic biorenewable feedstock is diluted with a deoxygenated feed to produce a diluted biorenewable feedstock and then is sent through a guard bed comprising a hydroprocessing catalyst to cause the olefins to be saturated with hydrogen and thereby to produce a treated biorenewable feedstock. This treated biorenewable feedstock can then be treated under standard hydroprocessing condition to produce an upgraded feedstock for transportation fuels.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: November 5, 2013
    Assignee: UOP LLC
    Inventors: Terry L. Marker, Timothy A. Brandvold, Charles P. Luebke
  • Patent number: 8563792
    Abstract: A method of manufacturing a purified renewable diesel product from a biofeedstock includes filtering the biofeedstock, heating the biofeedstock to about 520° F., introducing hydrogen into the biofeedstock, and treating the biofeedstock in a reactor to generate a renewable diesel product. Additionally, the method includes cooling the renewable diesel product wherein the renewable diesel product comprises a liquid, separating vapors from the liquid, and distilling the liquid in a distillation column to generate the purified renewable diesel product. In at least one embodiment the biofeedstock comprises at least one of waste grease, tallow, algae, algal oil, vegetable oil, and soybean oil.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: October 22, 2013
    Assignee: Cetane Energy, LLC
    Inventors: Richard Aves, Jason Smith
  • Patent number: 8558044
    Abstract: A biochar generator to be carried by a vehicle may comprise a pyrolysis chamber, an auger, a heater, and a vapor condenser each connected to the pyrolysis chamber. The biochar generator may also include a synthesis gas collection chamber to collect synthesis gas, and a bio oil collection chamber to collect bio oil, each in communication with the vapor condenser. A biochar collection chamber may be included to collect biochar dispensed from the pyrolysis chamber.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: October 15, 2013
    Inventor: Thomas F Smaidris
  • Patent number: 8558043
    Abstract: A modular biomass treatment unit includes a first module having a pretreater and a first frame for transportation to and operation at a site adjacent to a solid biomass growth source. The pretreater is operable to process solid biomass to produce a plurality of solid biomass particles for conversion into a fuel or specialty chemical. The first frame supports the pretreater during transportation to and operation at the site adjacent to the solid biomass growth source. The modular biomass treatment unit can also include additional modules each comprising a reactor, a separator, and a frame for transportation to and operation at a site such as the site adjacent to the solid biomass growth source.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: October 15, 2013
    Assignee: KiOR, Inc.
    Inventors: Steve Yanik, Paul O'Connor, Robert Bartek
  • Patent number: 8557000
    Abstract: A process for converting lignocellulosic materials which are field residues such as cotton stalks and corn stover, process residues such as sugarcane bagasse and sweet sorghum bagasse, woody parts of energy crops such as switchgrass and miscanthus, forest residues or byproducts of the wood processing industries such as sawdust from sawmills to a liquid biofuel by a series of processing steps wherein the feed materials are hydrolysed in three stages and withdrawn as three product streams each consisting of solubilized fragments of one of the three major components of the feed materials and a set of concurrently operating processing steps wherein each of the three product streams is transformed through chemical or biochemical processes into products, such as pure lignin and ethanol, that have a high calorific value and process wherein these products with high calorific value are combined to form a liquid biofuel.
    Type: Grant
    Filed: February 4, 2009
    Date of Patent: October 15, 2013
    Assignee: Lignoil Technologies Private Limited
    Inventor: Pradyot A. Agaskar
  • Patent number: 8552235
    Abstract: A process for hydrodeoxygenation of feeds derived from renewable sources with conversion by decarboxylation/decarbonylation limited to at most 10%, using a bulk or supported catalyst comprising an active phase constituted by at least one element from group VIB and at least one element from group VIII, said elements being in the sulphide form, and the atomic ratio of the metal (or metals) from group VIII to the metal (or metals) from group VIB being strictly more than 0 and less than 0.095, said process being carried out at a temperature in the range 120° C. to 450° C., at a pressure in the range 1 MPa to 10 MPa, at an hourly space velocity in the range 0.1 h?1 to 10 h?1, and in the presence of a total quantity of hydrogen mixed with the feed such that the hydrogen/feed ratio is in the range 50 to 3000 Nm3 of hydrogen/m3 of feed.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: October 8, 2013
    Assignee: Merck Patent GmbH
    Inventors: Antoine Daudin, Laurent Bournay, Thierry Chapus
  • Patent number: 8552233
    Abstract: A composition of matter is described herein that can be subjected to pyrolysis and converted into a bio-oil. The composition comprises an intimate mixture of a particulate solid biomass material and a carbonaceous material. The carbonaceous material acts as a reducing agent during the pyrolysis reaction. The composition of matter produces bio-oil in a greater yield than prior art processes. The bio-oil is of improved quality, as evidenced by its low TAN value.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: October 8, 2013
    Assignee: KiOR Inc.
    Inventors: Dennis Stamires, Paul O'Connor
  • Patent number: 8549769
    Abstract: A method for torrefaction of water containing cellulosic materials is performed in an inert atmosphere. The cellulosic material is cascaded through the apparatus between a plurality of rotatable trays vertically stacked within multiple processing zones. Steam being generated from heating of the cellulosic material is recycled back to the apparatus to provide an inert atmosphere. The steam may be superheated in a heat exchanger. Exhaust from the torrefaction zone of the apparatus has some moisture and other volatiles removed prior to being reheated in a burner. The heated exhaust is used in the heat exchanger to superheat the recycled steam.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: October 8, 2013
    Assignee: Wyssmont Company Inc.
    Inventors: Edward Weisselberg, Joseph Bevacqua, Robert Borre
  • Patent number: 8546625
    Abstract: A process for the conversion of sugars and/or other biomass to produce hydrocarbons, hydrogen, and/or other related compounds is described. In one aspect, the process includes fermenting biomass to produce one or more organic intermediates, for example, a carboxylic acid, and optionally, hydrogen. The carboxylic acids may then be decarboxylated to produce carbon dioxide and one or more hydrocarbon compounds. Also described are steps to further react the hydrocarbon compounds to form polymers, hydrocarbon compounds having at least 4 carbon atoms, or the like.
    Type: Grant
    Filed: February 22, 2008
    Date of Patent: October 1, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Andrew A. Peterson, Curt R. Fischer
  • Patent number: 8546626
    Abstract: The invention is concerned with a supported or unsupported catalyst comprising an active phase constituted by a sulfur-containing group VIB element, the group VIB element being molybdenum, and a hydrodeoxygenation process with a yield of hydrodeoxygenation product which is greater than or equal to 90% of charges from renewable sources using a catalyst according to the invention.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: October 1, 2013
    Assignee: IFP Energies Nouvelles
    Inventors: Antoine Daudin, Laurent Bournay, Thierry Chapus
  • Publication number: 20130237728
    Abstract: Oxygenate feedstocks derived from biomass are converted to a variety of fuels including gas, jet, and diesel fuel range hydrocarbons. General methods are provided including hydrolysis, dehydration, hydrogenation, condensation, oligomerization, and/or a polishing hydrotreating.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: CONOCOPHILLIPS COMPANY
    Inventors: Edgar LOTERO, Kristi FJARE, TiePan SHI, Sourabh PANSARE, Yun BAO
  • Patent number: 8524960
    Abstract: A process is disclosed for fluid catalytic cracking of oxygenated hydrocarbon compounds such as glycerol and bio-oil. In the process the oxygenated hydrocarbon compounds are contacted with a fluid cracking catalyst material for a period of less than 3 seconds. In a preferred process a crude-oil derived material, such as VGO, is also contacted with the catalyst.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: September 3, 2013
    Assignee: KiOR, Inc.
    Inventors: Paul O'Connor, George W. Huber, Avelino Corma Camos, Laurent Louis Andre Sauvanaud
  • Patent number: 8524959
    Abstract: Disclosed is a process for small-scale operation of biomass catalytic cracking. The process is suitable for lab scale and pilot plant operation, as well as for small-scale commercial operation. The process is suitable for simulating a continuous biomass catalytic cracking (BCC) process. The process comprises a biomass conversion cycle and a catalyst regeneration cycle. A fluid bed reactor and a reaction feed fluidizer suitable for use in the process are also disclosed.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: September 3, 2013
    Assignee: KiOR, Inc.
    Inventors: Paul O'Connor, Henrique Soares Cerqueira, Robert Bartek, Steve Yanik
  • Patent number: 8519203
    Abstract: Low oxygen biomass-derived pyrolysis oils and methods for producing them from carbonaceous biomass feedstock are provided. The carbonaceous biomass feedstock is pyrolyzed in the presence of a catalyst comprising base metal-based catalysts, noble metal-based catalysts, treated zeolitic catalysts, or combinations thereof to produce pyrolysis gases. During pyrolysis, the catalyst catalyzes a deoxygenation reaction whereby at least a portion of the oxygenated hydrocarbons in the pyrolysis gases are converted into hydrocarbons. The oxygen is removed as carbon oxides and water. A condensable portion (the vapors) of the pyrolysis gases is condensed to low oxygen biomass-derived pyrolysis oil.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: August 27, 2013
    Assignee: UOP LLC
    Inventors: Richard Marinangeli, Timothy A. Brandvold, Joseph A. Kocal
  • Patent number: 8519205
    Abstract: Low water-containing biomass-derived pyrolysis oils and processes for producing them are provided. The process includes condensing pyrolysis gases including condensable pyrolysis gases and non-condensable gases to separate the condensable pyrolysis gases from the non-condensable gases, the non-condensable gases having a water content, drying the non-condensable pyrolysis gases to reduce the water content of the-non-condensable gases to form reduced-water non-condensable pyrolysis gases, and providing the reduced-water non-condensable pyrolysis gases to a pyrolysis reactor for forming the biomass-derived pyrolysis oil.
    Type: Grant
    Filed: July 23, 2010
    Date of Patent: August 27, 2013
    Assignee: Ensyn Renewables, Inc.
    Inventors: Stanley J. Frey, Douglas A. Clarke
  • Patent number: 8513475
    Abstract: The present invention relates to a method in which a catalytic reaction is used in order to produce hydrocarbons from renewable starting material derived from biological organisms such as vegetable lipids, animal lipids, and lipids extracted from macroalgae and microalgae, and more specifically relates to a method for selectively making a hydrocarbon, which is suitable for making gasoline or diesel, by removing the oxygen contained in the starting material without consuming hydrogen. In the present invention, the production takes place by bringing the starting material into contact with hydrotalcite, which constitutes a catalyst, thereby removing oxygen via a decarboxylation or decarbonylation reaction; and the starting material is one or more such material selected from triglycerides, fatty acids, and fatty acid derivatives obtained from a renewable source of supply originating from a biological organism.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: August 20, 2013
    Assignee: Korea Institute of Energy Research
    Inventors: Chang-Hyun Ko, Jeong-Geol Na, Jong-Nam Kim, Kwang-Bok Yi, Sung-Youl Park, Jong-Ho Park, Hee-Tae Beum, Bo-Eun Yi
  • Patent number: 8507739
    Abstract: The present invention is a self-powered method for conversion of disposable hydrocarbons into diesel and heating oil fuels and conversion of biomass into biodiesel fuel. The method is operated using a feedstock tank, a preparation tank for first stage warming of the feedstock, a first heat exchanger to separate out water as steam and light ends, a stack to vent steam to the atmosphere, a second heat extension to raise the temperature to the necessary for processing the feedstock in a cracking kettle, a fume incinerator burning the light ends to generate heat for the first and second heat exchangers, a distillation column to process the gases from the cracking kettle, a condenser to convert gas to liquid #2 diesel fuel, a filter and chiller unit and storage tanks to hold the fuels and residuals. The method uses retained heat in the residuals to preheat the feedstock to save energy.
    Type: Grant
    Filed: May 14, 2010
    Date of Patent: August 13, 2013
    Inventor: Michael Carter
  • Patent number: 8502003
    Abstract: A lignocellulosic biomass material is converted into precursors for liquid hydrocarbon transportation fuels by contacting the biomass material with water and carbon monoxide at elevated temperature, typically from 280 to 350° C., an elevated pressure, typically a total system pressure of 12 to 30 MPa and a CO partial pressure from 5 to 10 MPa and a weight ratio of water:biomass material from 0.5:1 to 5.0:1, to dissolve the biomass material into the reaction mixture and depolymerize, deoxygenate and hydrogenate the lignocellulose biomass material, so converting the biomass material into liquid transportation fuel precursors.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: August 6, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Michael Siskin, Glen E. Phillips, Simon R. Kelemen
  • Patent number: 8500829
    Abstract: A pyrolysis oil derived from a lignocellulosic biomass material is converted into precursors for liquid hydrocarbon transportation fuels by contacting the oil with water and carbon monoxide at elevated temperature, typically from 280 to 350° C., an elevated pressure, typically a total system pressure of 12 to 30 MPa and a CO partial pressure from 5 to 10 MPa and a weight ratio of water:biomass oil from 0.5:1 to 5.0:1, to dissolve the oil into the reaction mixture and depolymerize, deoxygenate and hydrogenate the oil, so converting it into liquid transportation fuel precursors.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: August 6, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Michael Siskin, Glen E. Phillips, Simon R. Kelemen
  • Patent number: 8500910
    Abstract: A process is disclosed for preparing biomass particles for thermolytic or enzymatic conversion whereby the biomass particles baying a moisture content of at least 20% are subjected to flash heating. The flash heating may be preceded by one or more adsorption/desorption cycles with water or steam. A swelling aid may be added during the adsorption part of an adsorption/desorption cycle.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: August 6, 2013
    Assignee: KiOR, Inc.
    Inventors: Michael Brady, Dennis Stamires, Paul O'Connor
  • Patent number: 8497403
    Abstract: The present disclosure relates to methods for converting biomass-derived streams of hydrocarbon diols into products suitable for use as a biomass-derived fuel additive. These methods involve the condensation of diols comprising five or six carbon atoms to form condensation products containing at least ten carbon atoms. The remaining hydroxyl functional groups of the condensation products are optionally modified to decrease overall polarity of the products, and improve miscibility with liquid hydrocarbon mixtures.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: July 30, 2013
    Assignee: Phillips 66 Company
    Inventor: Matthew J. Truitt
  • Patent number: 8487148
    Abstract: Biomass based feeds are processed under hydrothermal treatment conditions, e.g., to produce a hydrocarbon liquid product and a solids portion. The hydrothermal treatment can be performed in the presence of heterogeneous catalyst particles that can optionally include a catalyst metal or metal salt. The presence of the heterogeneous catalyst can modify the nature of the hydrocarbon products produced from the hydrothermal treatment.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: July 16, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Virginia M. Roberts, Michel Daage, Paul D. Oldenburg, James R. Bielenberg, Paul J. Berlowitz, David C. Long, Halou Oumar-Mahamat
  • Patent number: 8487147
    Abstract: Doped nanomaterials are used for the conversion of non-edible oils into biodiesels.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: July 16, 2013
    Inventors: Syed Tajammul Hussain, M. Bilal Khan
  • Patent number: 8480765
    Abstract: Biomass pyrolysis oil is converted into precursors for hydrocarbon transportation fuels by contacting the oil with liquid superheated water or supercritical water to depolymerize and deoxygenate the components of the oil and form the transportation fuel precursors. Temperatures above 200° C. and preferably above 300° C. are preferred with supercritical water at temperatures above 374° C. and pressures above 22 MPA providing the capability for fast conversion rates.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: July 9, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Michael Siskin, Glen E. Phillips, Simon R. Kelemen
  • Patent number: 8476480
    Abstract: A method of fractionating bio-oil vapors which involves providing bio-oil vapors comprising bio-oil constituents is described. The bio-oil vapors are cooled in a first stage which comprises a condenser having passages for the bio-oil separated by a heat conducting wall from passages for a coolant. The coolant in the condenser of the first stage is maintained at a substantially constant temperature, set at a temperature in the range of 75 to 100° C., to condense a first liquid fraction of liquefied bio-oil constituents in the condenser of the first stage. The first liquid fraction of liquified bio-oil constituents from the condenser in the first stage is collected. Also described are steps for subsequently recovering further liquid fractions of liquefied bio-oil constituents. Particular compositions of bio-oil condensation products are also described.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: July 2, 2013
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Robert C. Brown, Samuel T. Jones, Anthony Pollard
  • Patent number: 8476479
    Abstract: In processing of biomass by catalytic cracking in a fluidized catalytic cracker having a reaction zone, a separation zone, a stripping zone, and a regeneration zone, the feedstock oil containing the biomass is processed in the reaction zone using a catalyst containing 10 to 50 mass % of ultrastable Y-type zeolite under the conditions: outlet temperature of the reaction zone 580 to 680° C., catalyst/oil ratio 10 to 40 wt/wt, reaction pressure 1 to 3 kg/cm2 G, and contact time of the feedstock oil with the catalyst in the reaction zone 0.1 to 1.0 sec, and the catalyst is then treated in the regeneration zone under the conditions: regeneration zone temperature 640 to 720° C., regeneration zone pressure 1 to 3 kg/cm2 G, and exhaust gas oxygen concentration at the regeneration zone outlet 0 to 3 mol %.
    Type: Grant
    Filed: August 6, 2007
    Date of Patent: July 2, 2013
    Assignee: Nippon Oil Corporation
    Inventors: Yuichiro Fujiyama, Shigeko Okuhara
  • Patent number: 8471079
    Abstract: A process for producing a fuel or fuel blending component from co-processing at least two different classes of renewable feedstocks, is presented. One feedstock comprises glycerides and free fatty acids in feedstocks such as plant and animal oils while the other feedstock comprises biomass derived pyrolysis oil. The source of the animal or plant oil and the biomass may be the same renewable source.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: June 25, 2013
    Assignee: UOP LLC
    Inventors: Timothy A. Brandvold, Michael J. McCall
  • Patent number: 8471080
    Abstract: Described is a methodology aiming to the removal of harmful ash constituents from the ash of biomass, such as alkali metals, chlorine and sulfur, prior to is thermochemical conversion, in order to minimize/eliminate the ash-related corrosion, deposition and agglomeration problems, as well as the emissions of alkali metals, chlorine and sulfur. This removal is achieved by a combined pre-treatment which includes prepyrolysis of biomass at temperatures varying in the range of 200-300° C. and for a period of 5 min up to 2 h, followed by the leaching of the biomass materials using water with a solid/water mass ratio varying from 33 g/L up to 300 g/L with water temperature varying from 13° up to 55° C. and residence time varying from 5 min up to 24 h.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: June 25, 2013
    Assignee: Thesmorefinery Technologies LLC
    Inventor: Emmanouil Koukios
  • Patent number: 8471081
    Abstract: A process has been developed for producing diesel fuel from crude tall oil. The process involves treating a renewable feedstock by hydrogenating and deoxygenating to provide a diesel boiling range fuel hydrocarbon product. If desired, the hydrocarbon product can be isomerized to improve cold flow properties. A portion of the hydrocarbon product is recycled to the treatment zone to increase the hydrogen solubility of the reaction mixture.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: June 25, 2013
    Assignee: UOP LLC
    Inventor: Michael J. McCall
  • Patent number: 8460406
    Abstract: The process of the invention describes a set of steps for preparing a solid lignocellulosic biomass type feed, alone or mixed with a liquid hydrocarbon phase with a view to supplying a unit for gasification of said feed. The various steps include drying, torrefaction, milling and constituting a suspension of particles of biomass in a hydrocarbon cut.
    Type: Grant
    Filed: July 25, 2007
    Date of Patent: June 11, 2013
    Assignee: IFP Energies Nouvelles
    Inventors: Eric Lemaire, Nicolas Boudet
  • Publication number: 20130144089
    Abstract: This invention is a method for converting biomass derived pyrolysis oil (bio-oil) into materials that will be more useful for transportation fuels including the following two steps: 1) solubilizing and extracting bio-oil oxygenates, and 2) zeolite catalyzed hydrogenation of the oxygenates into renewable fuel range materials.
    Type: Application
    Filed: December 6, 2011
    Publication date: June 6, 2013
    Applicant: CONOCOPHILLIPS COMPANY
    Inventors: Kristi A. FJARE, Tie-Pan SHI, Edward L. SUGHRUE, II, Jianhua YAO
  • Publication number: 20130144093
    Abstract: The present invention generally relates to a method for sequestering carbon dioxide. Biomass is converted into paraffinic hydrocarbons. The paraffinic hydrocarbons are steam cracked into olefins. The olefins are polymerized into non-biodegradable polyolefins.
    Type: Application
    Filed: January 24, 2013
    Publication date: June 6, 2013
    Inventor: Ramin Abhari
  • Patent number: 8455705
    Abstract: Processes and reactor systems are provided for the conversion of oxygenated hydrocarbons to hydrocarbons, ketones and alcohols useful as liquid fuels, such as gasoline, jet fuel or diesel fuel, and industrial chemicals. The process involves the conversion of mono-oxygenated hydrocarbons to aromatics and gasonline range hydrocarbons where the oxygenated hydrocarbons are derived from biomass.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: June 4, 2013
    Assignee: Virent, Inc.
    Inventors: Randy D. Cortright, Paul G. Blommel
  • Patent number: 8450543
    Abstract: Isobutene, isoprene, and butadiene are obtained from mixtures of C4 and/or C5 olefins by dehydrogenation. The C4 and/or C5 olefins can be obtained by dehydration of C4 and C5 alcohols, for example, renewable C4 and C5 alcohols prepared from biomass by thermochemical or fermentation processes. Isoprene or butadiene can be polymerized to form polymers such as polyisoprene, polybutadiene, synthetic rubbers such as butyl rubber, etc. in addition, butadiene can be converted to monomers such as methyl methacrylate, adipic acid, adiponitrile, 1,4-butadiene, etc. which can then be polymerized to form nylons, polyesters, polymethylmethacrylate etc.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: May 28, 2013
    Assignee: Gevo, Inc.
    Inventors: Matthew W. Peters, Joshua D. Taylor, David E. Henton, Leo E. Manzer, Patrick R. Gruber, Josefa M. Griffith, Yassin Al Obaidi
  • Patent number: 8445258
    Abstract: A process and apparatus for recycling municipal domestic waste comprises subjecting the waste to steam at 150° C.-200° C. at above atmospheric pressure but less than twice atmospheric pressure, After steam treatment, the resultant material is separated into constituent parts and biomass and/or plastics subjected to further treatment: The further treatment preferably produces bioethanol from the biomass and diesel from the plastics. As an alternative, some or all of the biomass may be gasified in order to produce hydrogen which may, in turn be fed to a fuel cell to produce an electrical output.
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: May 21, 2013
    Assignee: VWP Waste Processing Limited
    Inventor: Philip Hall
  • Publication number: 20130115653
    Abstract: A method for utilizing woody biomass components, namely cellulose, hemicellose, and lignin, and converting them to value-added biobased chemical products is described herein. The present method provides treatments to obtain a plurality of component streams from woody biomass for producing derivative products while minimizing waste products.
    Type: Application
    Filed: November 9, 2011
    Publication date: May 9, 2013
    Applicant: Thesis Chemistry, LLC
    Inventors: John R. Peterson, Christopher M. Yost, Jian Wu
  • Publication number: 20130116424
    Abstract: A method for utilizing biomass components, namely cellulose, hemicellose, and lignin, and converting them to value-added biobased chemical products is described herein. The present method provides treatments to obtain a plurality of component streams from biomass for producing derivative products while minimizing waste products.
    Type: Application
    Filed: November 9, 2011
    Publication date: May 9, 2013
    Applicant: Thesis Chemistry, LLC
    Inventors: John R. Peterson, Christopher M. Yost, Jian Wu
  • Patent number: 8431757
    Abstract: Multiple catalytic processing stations enable a method for producing volatile gas streams from biomass decomposition at discrete increasing temperatures. These catalytic processing stations can be programmed to maximize conversion of biomass to useful renewable fuel components based on input feedstock and desired outputs.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: April 30, 2013
    Assignee: Cool Planet Biofuels, Inc.
    Inventors: Michael Cheiky, Rajashekharam Malyala
  • Patent number: 8431756
    Abstract: This invention relates to a method for processing oxygenated hydrocarbons to form a hydroisomerized and/or dewaxed hydrocarbon product having a reduced oxygen content, an increased iso-paraffin content, a low n-paraffin content, and good cold flow properties. Advantageously, the method can utilize a zeolitic base catalyst, optionally but preferably containing at least one activated metal component, and a hydrothermally-stable binder such as titania.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: April 30, 2013
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Virginia M. Roberts, Michel Daage, William J. Novak
  • Patent number: 8431755
    Abstract: A process to integrate a first biofuels process and a second generation cellulosic biofuels process is provided. The pyrolysis means which produces the char stream and a bioliquid stream. The low pressure hydrotreating component, a high pressure hydrotreating component, the low pressure hydrotreating component which produces the hydrocarbon stream, the high pressure hydrotreating component which produces the steam stream and bioliquid stream. A distillation means, which produces a green gasoline stream and a green diesel stream from the bioliquid stream. The second biofuels process may be a first generation bio-ethanol process, which produces a bio-ethanol stream. The hydrogen production unit, which produces the hydrogen stream and the steam stream. The hydrogen production unit may be a steam reformer or partial oxidation unit.
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: April 30, 2013
    Assignee: Air Liquide Large Industries U.S. LP
    Inventor: Dennis A. Vauk
  • Patent number: 8425633
    Abstract: Methods, process, apparatus, equipment, and systems are disclosed for converting biomass into bio-oil fractions for chemicals, materials, feedstocks and fuels using a low-cost, integrated fast pyrolysis system. The system improves upon prior art by creating stable, bio-oil fractions which have unique properties that make them individually superior to conventional bio-oil. The invention enables water and low-molecular weight compounds to be separated into a final value-added fraction suitable for upgrading or extracting into value-added chemicals, fuels and water. Initial bio-oil fractions from the process are chemically distinct, have low-water content and acidity which reduces processing costs normally associated with conventional bio-oil post-production upgrading since fewer separation steps, milder processing conditions and lower auxiliary inputs are required. Biochar is stabilized so that it can be handled safely.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: April 23, 2013
    Assignee: Avello Bioenergy, Inc.
    Inventors: Dennis Stephan Banasiak, Cody James Ellens, Anthony Joseph Sherwood Pollard, Jared Nathaniel Brown
  • Publication number: 20130079566
    Abstract: A process for the conversion of lignocellulosic biomass to hydrocarbons is provided. The biomass is subjected to aqueous phase partial oxidation (APPO) in the presence of a heterogeneous oxidation catalyst to selectively provide one or more carboxylic acids in good yields. The carboxylic acids are further upgraded to hydrocarbons in the presence of one or more catalysts, which are capable of catalyzing a ketonization reaction, an aldol condensation reaction, a hydrodeoxygenation reaction, or combinations thereof, and then separating out the hydrocarbons from the one or more catalysts.
    Type: Application
    Filed: September 27, 2012
    Publication date: March 28, 2013
    Applicants: Nevada,
    Inventor: Board of Regents of the Nevada System of Higher Education, on behalf of the University of Nevada, Reno
  • Patent number: 8404908
    Abstract: A process is presented for the production of high value chemicals from lignin. The process comprises combining several internal steps to use the hydrogen generated by the process, rather than adding an external source of hydrogen. The process can combine the decomposition of oxygenates formed during the deoxygenation process with hydrogenation of deoxygenated lignin compounds.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: March 26, 2013
    Assignee: UOP LLC
    Inventor: John Q. Chen
  • Patent number: 8404910
    Abstract: Methods are provided for producing low oxygen biomass-derived pyrolysis oil from carbonaceous biomass feedstock. The carbonaceous biomass feedstock is pyrolyzed in the presence of a steam reforming catalyst to produce char and pyrolysis gases. During pyrolysis, a portion of the oxygenated hydrocarbons in the pyrolysis gases is converted into hydrocarbons by steam reforming also yielding carbon oxides and hydrogen gas. The hydrogen gas at least partially deoxygenates a residual portion of the oxygenated hydrocarbons. Additional hydrogen gas may also be produced by water-gas shift reactions to deoxygenate the residual portion of the oxygenated hydrocarbons in the pyrolysis gases. Deoxygenation may occur in the presence of a hydroprocessing catalyst. A condensable portion of the pyrolysis gases is condensed to form low oxygen biomass-derived pyrolysis oil.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: March 26, 2013
    Assignee: UOP LLC
    Inventors: Joseph A. Kocal, Richard Marinangeli, Francis Stephen Lupton, Lisa King
  • Patent number: 8394900
    Abstract: The present invention generally relates to a method for sequestering carbon dioxide. Biomass is converted into paraffinic hydrocarbons. The paraffinic hydrocarbons are steam cracked into olefins. The olefins are polymerized into non-biodegradable polyolefins.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: March 12, 2013
    Assignee: Syntroleum Corporation
    Inventor: Ramin Abhari
  • Publication number: 20130060070
    Abstract: The invention relates to methods for producing fluid hydrocarbon products, and more specifically, to methods for producing fluid hydrocarbon product via catalytic pyrolysis. The reactants comprise solid hydrocarbonaceous materials, and hydrogen or a source of hydrogen (e.g., an alcohol). The products may include specific aromatic compounds (e.g., benzene, toluene, naphthalene, xylene, etc.).
    Type: Application
    Filed: August 13, 2012
    Publication date: March 7, 2013
    Applicant: UNIVERSITY OF MASSACHUSETTS
    Inventors: George W. Huber, Huiyan Zhang, Torren Carlson
  • Patent number: 8389782
    Abstract: A process useful for treating biologically derived oils in the production of biofuels is described. A biologically derived oil feed is deoxygenated by contacting the feed with a metal titanate catalyst comprising a metal titanate having an MTiO3 perovskite structure wherein M is a metal having a valence of 2+. The process does not require the addition of hydrogen.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: March 5, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Zhen Zhou, Lin Li, Shabbir Husain
  • Patent number: 8383870
    Abstract: A process of energy production is disclosed. The process includes integrating three or more energy production technologies such that a first byproduct of a first energy production technology is applied to a second energy production technology and a second byproduct of the second energy production technology is applied to a third energy production technology. The process also includes operating the integrated energy production technologies to produce energy such that at least a portion of the first byproduct is utilized in an operation of the second energy production technology and a portion of the second byproduct is utilized in an operation of the third energy production technology.
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: February 26, 2013
    Assignee: Federal Express Corporation
    Inventors: Roy C. Knight, Rolf L. Onjukka, Patrick J. Doyle
  • Publication number: 20130036660
    Abstract: The present invention provides methods, reactor systems, and catalysts for converting in a continuous process biomass to fuels and chemicals. The invention includes methods of converting the water insoluble components of biomass, such as hemicellulose, cellulose and lignin, to volatile C2+O1-2 oxygenates, such as alcohols, ketones, cyclic ethers, esters, carboxylic acids, aldehydes, and mixtures thereof. In certain applications, the volatile C2+O1-2 oxygenates can be collected and used as a final chemical product, or used in downstream processes to produce liquid fuels, chemicals and other products.
    Type: Application
    Filed: May 23, 2012
    Publication date: February 14, 2013
    Applicant: Virent, Inc.
    Inventors: Elizabeth Woods, Ming Qiao, Paul Myren, Randy D. Cortright, John Kania