Production Of Hydrocarbon Mixture From Refuse Or Vegetation Patents (Class 585/240)
  • Patent number: 10619105
    Abstract: Various techniques are disclosed for pretreating municipal solid waste (MSW) and other biomass-containing feedstocks that may be of a poorer quality and consequently more difficult, or even impossible, to convert to higher value liquid products (e.g., transportation fuels) using conventional processes. Such conventional processes may otherwise be satisfactory for the conversion of the biomass portion of the feedstock alone. The pretreatment of biomass-containing feedstocks may generally include steps carried out prior to a hydropyrolysis step and optionally further steps, in order to change one or more characteristics of the feedstock, rendering it more easily upgradable.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: April 14, 2020
    Assignee: Gas Technology Institute
    Inventors: Larry G. Felix, Martin B. Linck, Terry L. Marker, Michael J. Roberts
  • Patent number: 10619106
    Abstract: The present invention provides methods, reactor systems and catalysts for converting biomass and biomass-derived feedstocks to C8+ hydrocarbons using heterogenous catalysts. The product stream may be separated and further processed for use in chemical applications, or as a neat fuel or a blending component in jet fuel and diesel fuel, or as heavy oils for lubricant and/or fuel oil applications.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: April 14, 2020
    Assignee: Virent, Inc.
    Inventors: Brice Dally, Warren Lyman, Randy Cortright, Paul Blommel
  • Patent number: 10563129
    Abstract: Biomass is converted into a bio-oil containing stream in a riser reactor containing a cooling media. The cooling media quenches the rapid heat transfer to the biomass during cracking of the biomass in the mixing zone of the riser. By lowering the temperature to which the mixing zone effluent is exposed, production of carbon monoxide and light gases is decreased during thermolysis of the biomass.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: February 18, 2020
    Assignee: Inaeris Technologies, LLC
    Inventors: Bruce Adkins, Lorenz J. Bauer, Ronald Cordle, Richard A. Engelman, J. Christopher Lewis
  • Patent number: 10544367
    Abstract: The present invention relates to an apparatus and method for processing reusable fuel wherein the apparatus comprises a support body and a plurality of augers disposed within the support body. The augers may be configured to rotate against a vapor flow to clean carbon char from vapors comprising condensable and non-condensable hydrocarbons. A drive system may be connected to drive and control the plurality of augers. An exhaust system is connected to the support body. A gearbox housing is connected to the exhaust system, wherein the drive system is accommodated in the gearbox housing. A ventilation system is disposed within the gearbox housing. Additionally, a thermal expansion system may be connected to the support body.
    Type: Grant
    Filed: June 21, 2017
    Date of Patent: January 28, 2020
    Assignee: Golden Renewable Energy, LLC
    Inventors: Anthony F. Tenore, Oluwadare Oluwaseun, David Fowler, Anthony N. Tenore
  • Patent number: 10538464
    Abstract: A system and process for processing biologically-derived compounds or a complex bio-oil by converting cyclic compounds in a complex bio-oil or biologically-derived compounds to desired materials such as high molecular weight paraffins with minimal carbon loss by using a ring-contraction catalyst to selectively produce C5 ring containing compounds; and then reacting the C5 ring containing compounds with a C5 ring opening catalyst in a second reactor to minimize carbon loss via cracking reactions.
    Type: Grant
    Filed: October 19, 2018
    Date of Patent: January 21, 2020
    Assignee: BATTELLE MEMORIAL INSTITUTE
    Inventors: Vanessa Dagle, Karl O. Albrecht, Robert A. Dagle
  • Patent number: 10526555
    Abstract: A process for producing methane from a biomass, biomass-containing and/or biomass-derived feedstock is provided. The process comprises: a) providing in a hydropyrolysis reactor vessel a hydropyrolysis catalyst composition, said composition comprising one or more active metals supported on an oxide-based support, said one or more active metals comprising at least one of cobalt and nickel and said one or more active metals being present in total in an amount in the range of from 2 to 75 wt % based on the overall weight of the catalyst composition; b) contacting the feedstock with said hydropyrolysis catalyst composition and molecular hydrogen in said hydropyrolysis reactor vessel, to produce a first product stream comprising char, catalyst fines and gases comprising hydrogen and hydrocarbons, of which hydrocarbons at least 70 wt % is methane and, optionally, CO and CO2; and c) removing said char and catalyst fines from said first product stream.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: January 7, 2020
    Assignee: SHELL OIL COMPANY
    Inventors: Vikrant Nanasaheb Urade, Laxmi Narasimhan Chilkoor Soundararajan, Madhusudhan Rao Panchagnula, Dhairya Dilip Mehta
  • Patent number: 10472587
    Abstract: The present invention relates to methods of producing industrial products from plant lipids, particularly from vegetative parts of plants. In particular, the present invention provides oil products such as biodiesel and synthetic diesel and processes for producing these, as well as plants having an increased level of one or more non-polar lipids such as triacylglycerols and an increased total non-polar lipid content. In one particular embodiment, the present invention relates to combinations of modifications in two or more of lipid handling enzymes, oil body proteins, decreased lipid catabolic enzymes and/or transcription factors regulating lipid biosynthesis to increase the level of one or more non-polar lipids and/or the total non-polar lipid content and/or mono-unsaturated fatty acid content in plants or any part thereof. In an embodiment, the present invention relates to a process for extracting lipids.
    Type: Grant
    Filed: July 7, 2015
    Date of Patent: November 12, 2019
    Assignee: COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANISATION
    Inventors: Thomas Vanhercke, James Robertson Petrie, Anna El Tahchy, Surinder Pal Singh, Kyle Reynolds, Qing Liu, Benjamin Aldo Leita
  • Patent number: 10457875
    Abstract: The present invention discloses a catalytic process for the manufacture of hydrogen and hydrocarbons simultaneously in the same reactor from renewable source, i.e. lipids, glycerides and fatty acids from plant, animal or algae oil, where in the multiple unsaturations in the renewable feedstock and the catalytic intermediates produced in the process from renewable feedstock is converted catalytically using simultaneous combination of in-situ occurring reactions. These in-situ occurring reactions are simultaneous combination of hydroconversion, reforming and water gas shift reactions wherein the reaction is performed in the presence of one or more metal sulfides form of metals of Group VI and/or Group IX and/or Group X elements, specifically comprises of one or more active metal combinations such as Co, W, Mo, Ni, P, with Pt, Pd encapsulated inside sodalite cages for prevention against poisoning from sulfur based compounds.
    Type: Grant
    Filed: July 10, 2017
    Date of Patent: October 29, 2019
    Assignee: COUNCIL OF SCIENTIFIC & INDUSTRIAL RESEARCH
    Inventors: Anil Kumar Sinha, Mohit Anand, Saleem Akthar Farooqui, Rakesh Kumar, Rakesh Kumar Joshi, Rohit Kumar, Aditya Rai
  • Patent number: 10450701
    Abstract: The present invention relates generally to the generation of bio-products from organic matter feedstocks. More specifically, the present invention relates to the use of pulping liquors in the hydrothermal/thermochemical conversion of lignocellulosic and/or fossilised organic feedstocks into biofuels (e.g. bio-oils) and/or chemical products (e.g. platform chemicals).
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: October 22, 2019
    Assignees: Licella Pty Ltd, Canfor Pulp Ltd
    Inventors: William Rowlands, Leonard James Humphreys, Robert Downie, Paul Watson
  • Patent number: 10385278
    Abstract: The use of bio oil from at least one renewable source in a hydrotreatment process, in which process hydrocarbons are formed from said glyceride oil in a catalytic reaction, and the iron content of said bio oil is less than 1 w-ppm calculated as elemental iron. A bio oil intermediate including bio oil from at least one renewable source and the iron content of said bio oil is less than 1 w-ppm calculated as elemental iron.
    Type: Grant
    Filed: April 16, 2018
    Date of Patent: August 20, 2019
    Assignee: Neste OYJ
    Inventors: Tuomas Ouni, Vainö Sippola, Petri Lindqvist
  • Patent number: 10385276
    Abstract: A waste material process reactor is configured to convers waste to fuel by exposing a carbon-based material to liquid media to form hydrocarbon fuel. Heat exchangers, power generation processes and combustion turbine exhaust apparatus are also provided. Fuel generation processes and generation systems are provided. Reaction media conduit systems as well as processes for servicing reactant media pumps coupled to both inlet and outlet conduits containing reactant media, are also provided.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: August 20, 2019
    Assignee: GPI PATENT HOLDING LLC
    Inventors: Michael P. Spitzauer, James D. Osterloh
  • Patent number: 10358605
    Abstract: The invention relates to a method to reduce the formation of high molecular weight compounds and catalyst coking in the production of renewable diesel. Renewable diesel is produced using hydrogenation, decarboxylation, decarbonylation, and/or hydrodeoxygenation of renewable feedstocks such as animal and/or plant fats, oils, and/or greases (FOG). By first reacting the most reactive species in the FOG in an initial reaction zone prior to the main reaction zone, maximum reaction temperatures and side reactions that lead to the formation of high molecular weight compounds are reduced. This reduces catalyst coking (extends catalyst life) and improves product quality.
    Type: Grant
    Filed: May 18, 2017
    Date of Patent: July 23, 2019
    Assignee: SAOLA RENEWABLES LLC
    Inventor: Dean Camper
  • Patent number: 10329494
    Abstract: The present disclosure relates to a system and a process for producing biofuel. The system comprises at least one feed tank; a low pressure pump; a high pressure pump; a first heat exchanger; a second heat exchanger; a reaction vessel; a precipitation vessel; a first pressure let-down station; a third heat exchanger; a second pressure let-down station; a gas-liquid separator; and a biofuel separator. The process comprises pressurizing and heating a feed, followed by reforming the pressurized and heated feed to obtain a slurry. The solids are separated from the slurry by precipitation to obtain a mixture comprising biofuel and the non-reformed feed. The mixture is then cooled and de-pressurized, followed by separation of gases and the non-reformed feed to obtain the biofuel. The system and process of the present disclosure can be used to produce biofuel from diverse, easily available and inexpensive starting material.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: June 25, 2019
    Assignee: RELIANCE INDUSTRIES LIMITED
    Inventors: Ramesh Bhujade, Rajaram Shrimant Ghadge, Roshni Krishnarao Bahekar, Somesh Gupta, Nitin Nagwani, Piyush Jain, Nikhlesh Saxena, Pavan Kumar Konakandla
  • Patent number: 10294427
    Abstract: This invention is directed to the discovery of a reactive catalytic fast pyrolysis (RCFP) process utilizing hydrogen at low pressures.
    Type: Grant
    Filed: September 11, 2014
    Date of Patent: May 21, 2019
    Assignee: Research Triangle Institute
    Inventors: Matthew Von Holle, John R. Carpenter, David C. Dayton
  • Patent number: 10287508
    Abstract: Multiple stages of reactors form a bio-reforming reactor that generates chemical grade bio-syngas for any of 1) a methanol synthesis reactor, 2) a Methanol-to-Gasoline reactor train, 3) a high temperature Fischer-Tropsch reactor train, and 4) any combination of these three that use the chemical grade bio-syngas derived from biomass fed into the bio-reforming reactor. A tubular chemical reactor of a second stage has inputs configured to receive chemical feedstock from at least two sources, i) the raw syngas from the reactor output of the first stage via a cyclone, and ii) purge gas containing renewable carbon-based gases that are recycled back via a recycle loop as a chemical feedstock from any of 1) the downstream methanol-synthesis-reactor train, 2) the downstream methanol-to-gasoline reactor train, or 3) purge gas from both trains. The plant produces fuel products with solely 100% biogenic carbon content as well as fuel products with 50-100% biogenic carbon content.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: May 14, 2019
    Assignee: Sundrop Fuels, Inc.
    Inventors: Douglas S. Jack, Renus C. Kelfkens, Steve C. Lythgoe, Wayne W. Simmons
  • Patent number: 10272417
    Abstract: The invention relates to the preparation of novel bi- or tri metallic silicate micro-porous and/or meso-porous materials based on cerium, nickel, copper and/or zinc on a porous silicate framework matrix to use its molecular sieve effect to target preferentially the acidic organic molecules present in hydrocarbon feedstocks like crude oil, bitumen, VGO and the like. The chosen metals are selected based on their ability to activate steam and transfer oxygen for completing the oxidation of carboxylic compounds or decarboxylating them. These composite materials can be prepared under hydrothermal synthesis conditions in order to produce suitable porous solids where the metals are well dispersed and preferentially distributed inside the channels of the silicate framework where they can interact only with the molecules that can go inside the channels.
    Type: Grant
    Filed: August 4, 2017
    Date of Patent: April 30, 2019
    Assignees: PC-CUPS Ltd., CENOVUS ENERGY INC
    Inventors: Pedro Pereira Almao, Gerardo Vitale-Rojas, Maria Josefina Perez Zurita, Lante Antonio Carbognani, Ronald Scott Smith, Clementina Sosa
  • Patent number: 10273415
    Abstract: A bio-reforming reactor receives biomass to generate chemical grade syngas for a coupled downstream train of a low-temperature Fischer-Tropsch reactor train that uses this syngas derived from the biomass in the bio-reforming reactor. A renewable carbon content of the produced gasoline, jet fuel, and/or diesel derived from the coupled downstream train the low-temperature Fischer-Tropsch reactor train are optimized for recovery of renewable carbon content to produce fuel products with 100% biogenic carbon content and/or fuel products with 50-100% biogenic carbon content. The low-temperature Fischer-Tropsch reactor train produces syncrude, transportation fuels such as bio-gasoline or bio-diesel, or a combination thereof.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: April 30, 2019
    Assignee: Sundrop Fuels, Inc.
    Inventors: Douglas S. Jack, Renus C. Kelfkens, Steve C. Lythgoe, Wayne W. Simmons
  • Patent number: 10273422
    Abstract: A bio-reforming reactor receives biomass to generate chemical grade syngas for a coupled downstream train of any of 1) a methanol-synthesis-reactor train, 2) a methanol-to-gasoline reactor train, and 3) a high-temperature Fischer-Tropsch reactor train, that use this syngas derived from the biomass in the bio-reforming reactor. A renewable carbon content of the produced gasoline, jet fuel, and/or diesel derived from the coupled downstream trains of any of 1) the methanol-synthesis-reactor train, 2) the methanol-to-gasoline reactor train, or 3) the high-temperature Fischer-Tropsch reactor train are optimized for recovery of renewable carbon content to produce fuel products with 100% biogenic carbon content and/or fuel products with 50-100% biogenic carbon content.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: April 30, 2019
    Assignee: Sundrop Fuels, Inc.
    Inventors: Douglas S. Jack, Renus C. Kelfkens, Steve C. Lythgoe, Wayne W. Simmons
  • Patent number: 10190056
    Abstract: The present invention provides a process for producing liquid hydrocarbon products from a solid biomass feedstock, said process comprising the steps of: a) providing in a first hydropyrolysis reactor vessel a first hydropyrolysis catalyst composition; b) contacting the solid biomass feedstock with said first hydropyrolysis catalyst composition and molecular hydrogen in said first hydropyrolysis reactor vessel to produce a product stream comprising partially deoxygenated hydropyrolysis product, H2O, H2, CO2, CO, C1-C3 gases, char and catalyst fines; c) removing said char and catalyst fines from said product stream; d) hydroconverting said partially deoxygenated hydropyrolysis product in a hydroconversion reactor vessel in the presence of one or more hydroconversion catalyst and of the H2O, CO2, CO, H2, and C1-C3 gas generated in step a), to produce a vapor phase product comprising substantially fully deoxygenated hydrocarbon product, H2O, CO, CO2, and C1-C3 gases.
    Type: Grant
    Filed: June 29, 2015
    Date of Patent: January 29, 2019
    Assignee: SHELL OIL COMPANY
    Inventors: Vikrant Nanasaheb Urade, Laxmi Narasimhan Chilkoor Soundararajan, Srikant Gopal, Madhusudhan Rao Panchagnula, Alan Anthony Del Paggio
  • Patent number: 10184085
    Abstract: A method for deoxygenating renewable oils comprised of natural oils or greases or derivatives thereof containing triglycerides or free fatty acids includes the steps of: providing a catalyst comprising a support predominantly comprised of alumina with metal compounds provided on the support based on Mo and at least one selected from the group consisting of Ni and Co, and at least one selected from the group consisting of Cu and Cr, and contacting the renewable oils with the catalyst under conditions sufficient to deoxygenate the renewable oils.
    Type: Grant
    Filed: June 8, 2015
    Date of Patent: January 22, 2019
    Assignee: W. R. GRACE & CO.-CONN
    Inventors: Sundaram Krishnamoorthy, Stephen Raymond Schmidt
  • Patent number: 10174260
    Abstract: A continuous process for converting carbonaceous material contained in one or more feedstocks into a liquid hydrocarbon product, said feedstocks including the carbonaceous material being in a feed mixture including one or more fluids, said fluids including water and further liquid organic compounds at least partly produced by the process in a concentration of at least 1% by weight, where the process comprises converting at least part of the carbonaceous material by pressurising the feed mixture to a pressure in the range 250-400 bar; heating the feed mixture to a temperature in the range 370-450° C., and maintaining said pressurized and heated feed mixture in the desired pressure and temperature ranges in a reaction zone for a predefined time; cooling the feed mixture to a temperature in the range 25-200° C.
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: January 8, 2019
    Assignee: STEEPER ENERGY APS
    Inventor: Steen Brummerstedt Iversen
  • Patent number: 10174259
    Abstract: The present invention provides a process for producing liquid hydrocarbon products from a solid biomass feedstock, said process comprising the steps of: a) providing in a first hydropyrolysis reactor vessel a first hydropyrolysis catalyst composition; b) contacting the solid biomass feedstock with said first hydropyrolysis catalyst composition and molecular hydrogen in said first hydropyrolysis reactor vessel to produce a product stream comprising partially deoxygenated hydropyrolysis product, H2O, H2, CO2, CO, C1-C3 gases, char and catalyst fines; c) removing said char and catalyst fines from said product stream; d) hydroconverting said partially deoxygenated hydropyrolysis product in a hydroconversion reactor vessel in the presence of one or more hydroconversion catalyst and of the H2O, CO2, CO, H2, and C1-C3 gas generated in step a), to produce a vapor phase product comprising substantially fully deoxygenated hydrocarbon product, H2O, CO, CO2, and C1-C3 gases.
    Type: Grant
    Filed: June 29, 2015
    Date of Patent: January 8, 2019
    Assignee: SHELL OIL COMPANY
    Inventors: Vikrant Nanasaheb Urade, Laxmi Narasimhan Chilkoor Soundararajan, Madhusudhan Rao Panchagnula, Alan Anthony Del Paggio
  • Patent number: 10167429
    Abstract: The present invention provides a process for producing liquid hydrocarbon products from a solid biomass feedstock, said process comprising the steps of: a) providing in a first hydropyrolysis reactor vessel a first hydropyrolysis catalyst composition; b) contacting the solid biomass feedstock with said first hydropyrolysis catalyst composition and molecular hydrogen in said first hydropyrolysis reactor vessel to produce a product stream comprising partially deoxygenated hydropyrolysis product, H2O, H2, CO2, CO, C1-C3 gases, char and catalyst fines; c) removing said char and catalyst fines from said product stream; d) hydroconverting said partially deoxygenated hydropyrolysis product in a hydroconversion reactor vessel in the presence of one or more hydroconversion catalyst and of the H2O, CO2, CO, H2, and C1-C3 gas generated in step a), to produce a vapor phase product comprising substantially fully deoxygenated hydrocarbon product, H2O, CO, CO2, and C1-C3 gases.
    Type: Grant
    Filed: June 29, 2015
    Date of Patent: January 1, 2019
    Assignee: SHELL OIL COMPANY
    Inventors: Vikrant Nanasaheb Urade, Laxmi Narasimhan Chilkoor Soundararajan, Madhusudhan Rao Panchagnula, Alan Anthony Del Paggio
  • Patent number: 10167437
    Abstract: This invention provides processes and systems for converting biomass into highcarbon biogenic reagents that are suitable for a variety of commercial applications. Some embodiments employ pyrolysis in the presence of an inert gas to generate hot pyrolyzed solids, condensable vapors, and non-condensable gases, followed by separation of vapors and gases, and cooling of the hot pyrolyzed solids in the presence of the inert gas. Additives may be introduced during processing or combined with the reagent, or both. The biogenic reagent may include at least 70 wt %, 80 wt %, 90 wt %, 95 wt %, or more total carbon on a dry basis. The biogenic reagent may have an energy content of at least 12,000 Btu/lb, 13,000 Btu/lb, 14,000 Btu/lb, or 14,500 Btu/lb on a dry basis. The biogenic reagent may be formed into fine powders, or structural objects.
    Type: Grant
    Filed: June 13, 2016
    Date of Patent: January 1, 2019
    Assignee: Carbon Technology Holdings, LLC
    Inventors: James A. Mennell, Daniel J. Despen
  • Patent number: 10150920
    Abstract: A continuous process for converting carbonaceous material contained in one or more feedstocks into a liquid hydrocarbon product, said feedstocks including the carbonaceous material being in a feed mixture including one or more fluids, said fluids including water and further liquid organic compounds at least partly produced by the process in a concentration of at least 1% by weight, where the process comprises converting at least part of the carbonaceous material by pressurizing the feed mixture to a pressure in the range 250-400 bar; heating the feed mixture to a temperature in the range 370-450° C., and maintaining said pressurized and heated feed mixture in the desired pressure and temperature ranges in a reaction zone for a predefined time; cooling the feed mixture to a temperature in the range 25-200° C.
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: December 11, 2018
    Assignee: STEEPER ENERGY APS
    Inventor: Steen Brummerstedt Iversen
  • Patent number: 10144875
    Abstract: Methods, systems, and devices for liquid hydrocarbon fuel production, hydrocarbon chemical production, and aerosol capture are provided. For example, a carbon-oxygen-hydrogen (C—O—H) compound may be heated to a temperature of at least 800 degrees Celsius such that the C—O—H compound reacts through a non-oxidation reaction to generate at least a hydrocarbon compound that may be at least a component of a liquid hydrocarbon fuel or a hydrocarbon chemical. The liquid hydrocarbon fuel may be a liquid when at a temperature of 20 degrees Celsius. The C—O—H compound may include biomass. In some cases, the hydrocarbon compound produced through the non-oxidation reaction includes a hydrocarbon aerosol form as the hydrocarbon compound at least as it is produced or cools. Some embodiments include aerosol capture methods, systems, and devices, which may include passing a hydrocarbon aerosol form through a material in a liquid phase in order to gather the aerosol material.
    Type: Grant
    Filed: January 9, 2015
    Date of Patent: December 4, 2018
    Assignee: Proton Power, Inc.
    Inventors: Samuel C. Weaver, Daniel L. Hensley, Samuel P. Weaver, Daniel C. Weaver, Lee S. Smith
  • Patent number: 10005974
    Abstract: Systems, processes, and catalysts are disclosed for obtaining fuels and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: June 26, 2018
    Assignee: Battelle Memorial Institute
    Inventors: Michael A. Lilga, Richard T. Hallen, Karl O. Albrecht, Alan R. Cooper, John G. Frye, Karthikeyan Kallupalayam Ramasamy
  • Patent number: 10005965
    Abstract: A process for converting one or more C3-C12 oxygenates comprising oxygenates comprising: contacting a feed, which feed comprises one or more C3-C12 oxygenates, with hydrogen at a hydrogen partial pressure of more than 1.0 Mega Pascal in the presence of a sulphided carbon-carbon coupling catalyst; wherein the carbon-carbon coupling catalyst comprises equal to or more than 60 wt % of a zeolite and in the range from equal to or more than 0.1 wt % to equal to or less than 10 wt % of a hydrogenation metal, based on the total weight of the carbon-carbon coupling catalyst; and wherein the zeolite comprises 10-membered and/or 12-membered ring channels and a Silica to Alumina molar Ratio (SAR) in the range from equal to or more than 10 to equal to or less than 300.
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: June 26, 2018
    Assignee: SHELL OIL COMPANY
    Inventors: Vikrant Nanasaheb Urade, Alan Anthony Del Paggio, Laxmi Narasimhan Chilkoor Soundararajan, Madhusudhan Rao Panchagnula
  • Patent number: 9963401
    Abstract: Paraffin compositions including mainly even carbon number paraffins, and a method for manufacturing the same, is disclosed herein. In one embodiment, the method involves contacting naturally occurring fatty acid/glycerides with hydrogen in a slurry bubble column reactor containing bimetallic catalysts with equivalent particle diameters from about 10 to about 400 micron. The even carbon number compositions are particularly useful as phase change material.
    Type: Grant
    Filed: January 15, 2016
    Date of Patent: May 8, 2018
    Assignee: REG SYNTHETIC FUELS, LLC
    Inventors: Ramin Abhari, H. Lynn Tomlinson, Vladimir Gruver
  • Patent number: 9951278
    Abstract: Processes for controlling afterburn in a reheater and loss of entrained solid particles in reheater flue gas are provided. Carbonaceous biomass feedstock is pyrolyzed using a heat transfer medium forming pyrolysis products and a spent heat transfer medium comprising combustible solid particles. The spent heat transfer medium is introduced into a fluidizing dense bed. The combustible solid particles of the spent heat transfer medium are combusted forming combustion product flue gas in a dilute phase above the fluidizing dense bed. The combustion product flue gas comprises flue gas and solid particles entrained therein. The solid particles are separated from the combustion product flue gas to form separated solid particles. At least a portion of the separated solid particles are returned to the fluidizing dense bed.
    Type: Grant
    Filed: February 24, 2016
    Date of Patent: April 24, 2018
    Assignee: Ensyn Renewables, Inc.
    Inventors: Paul A. Sechrist, Andrea G. Bozzano
  • Patent number: 9920255
    Abstract: Method for the depolymerization of plastics material (1), in particular pre- or post-consumer plastics wastes, by means of heat introduction, wherein the plastics material (1) is molten to form a plastics melt and degassed before being passed to a depolymerization reactor (3), adding a fraction obtained from crude oil as a solvent (6) to the plastics melt, thereby lowering the viscosity of the plastics melt solution supplied to the depolymerization reactor (3) relative to the viscosity of the plastics melt.
    Type: Grant
    Filed: May 4, 2012
    Date of Patent: March 20, 2018
    Assignee: OMV REFINING & MARKETING GMBH
    Inventor: Wolfgang Hofer
  • Patent number: 9914883
    Abstract: Processes for the production of transportation fuel from a renewable feedstock. A gaseous mixture of carbon monoxide and hydrogen is used to deoxygenate and hydrogenate the glycerides to produce long chain hydrocarbons. The hydrocarbons may be isomerized to improve cold flow properties to provide a diesel fuel. Prior to isomerization, the long chain hydrocarbons can be separated or the separation can be after isomerization. Recycle gas streams from the isomerization and the deoxygenation and hydrogenation reactions may be used to supply at least a portion of the gaseous mixture of carbon monoxide and hydrogen. Synthesis gas may also be used to supply at least a portion of the gaseous mixture of carbon monoxide and hydrogen.
    Type: Grant
    Filed: April 2, 2015
    Date of Patent: March 13, 2018
    Assignee: UOP LLC
    Inventors: Kanchan Dutta, Avnish Kumar, Krishna Mani, Anjan Ray
  • Patent number: 9834490
    Abstract: The invention is an integrated thermochemical process, also known as a looped-oxide catalysis, for providing an upgraded biofuel composition from a biomass-derived feedstock. First, the feedstock is deoxygenated through reaction with a low-valence metal oxide or zero-valent metal to yield a deoxygenated biofuel composition and a high-valence metal oxide. Second, the low-valence metal oxide is regenerated by reducing the high-valence metal oxide using solar thermal energy.
    Type: Grant
    Filed: August 4, 2014
    Date of Patent: December 5, 2017
    Assignee: Brown University
    Inventors: Andrew A. Peterson, Cory M. Hargus, Ronald Michalsky
  • Patent number: 9828552
    Abstract: A method of hydroprocessing is performed wherein non-petroleum feedstocks, such as those containing from about 10% or more olefinic compounds or heteroatom contaminants by weight, are treated in a first reaction zone to provide reaction products. The process involves introducing the feedstock along with diluents or a recycle and hydrogen in a first reaction zone and allowing the feed and hydrogen to react in a liquid phase within the first reaction zone to produce reaction products. The reaction products are cooled and/or water is removed from the reaction products. At least a portion of the cooled and/or separated reaction product are introduced as a feed along with hydrogen into a second reaction zone containing a hydroprocessing catalyst. The feed and hydrogen are allowed to react in a liquid phase within the second reaction zone to produce a second-reaction-zone reaction product.
    Type: Grant
    Filed: August 3, 2015
    Date of Patent: November 28, 2017
    Assignee: Duke Technologies, LLC
    Inventors: Michael D. Ackerson, Michael Steven Byars
  • Patent number: 9822314
    Abstract: Processes for the production of hydrocarbons from a renewable feedstock in which the renewable feedstock is partially hydrogenated prior to being deoxygenated. The partially hydrogenation utilizes a lower pressure, lower purity or both hydrogen gas compared to the deoxygenation. The partially hydrogenated product may be stored in containers and transported to be deoxygenated. Prior to partially hydrogenation, the feedstock may be pretreated. After deoxygenation an isomerization zone may be used to increase the cold flow properties for a diesel fuel.
    Type: Grant
    Filed: April 3, 2015
    Date of Patent: November 21, 2017
    Assignee: UOP LLC
    Inventor: Anjan Ray
  • Patent number: 9771533
    Abstract: Systems, processes, and catalysts are disclosed for obtaining fuels and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.
    Type: Grant
    Filed: October 30, 2014
    Date of Patent: September 26, 2017
    Assignee: Battelle Memorial Institute
    Inventors: Michael A. Lilga, Richard T. Hallen, Karl O. Albrecht, Alan R. Cooper, John G. Frye, Karthikeyan Kallupalayam Ramasamy
  • Patent number: 9765010
    Abstract: Methods of making branched isoparaffin compositions derived from natural oil based linear internal olefins are disclosed. Uses of branched isoparaffins formed by such methods are also disclosed.
    Type: Grant
    Filed: January 20, 2016
    Date of Patent: September 19, 2017
    Assignee: Elevance Renewable Sciences, Inc.
    Inventors: Georgeta Hategan, Alexander D. Ilseman, Ryan Littich
  • Patent number: 9758441
    Abstract: Methods and apparatuses are provided for deoxygenating pyrolysis oil. A method includes contacting a pyrolysis oil with a deoxygenation catalyst in a first reactor at deoxygenation conditions to produce a first reactor effluent. The first reactor effluent has a first oxygen concentration and a first hydrogen concentration, based on hydrocarbons in the first reactor effluent, and the first reactor effluent includes an aromatic compound. The first reactor effluent is contacted with a dehydrogenation catalyst in a second reactor at conditions that deoxygenate the first reactor effluent while preserving the aromatic compound to produce a second reactor effluent. The second reactor effluent has a second oxygen concentration lower than the first oxygen concentration and a second hydrogen concentration that is equal to or lower than the first hydrogen concentration, where the second oxygen concentration and the second hydrogen concentration are based on the hydrocarbons in the second reactor effluent.
    Type: Grant
    Filed: November 24, 2014
    Date of Patent: September 12, 2017
    Assignee: UOP LLC
    Inventors: Lance Awender Baird, Timothy A. Brandvold, Stanley Joseph Frey
  • Patent number: 9745517
    Abstract: The present disclosure provides methods to transfer a pressurized slurry of plant-based biomass into a reactor vessel. The methods allow for the transfer of practical-sized pieces of biomass in a slurry pressurized to above about 300 psi.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: August 29, 2017
    Assignee: Chevron U.S.A. Inc.
    Inventors: Benjamin Levie, Alex Coulthard, Daniel Euhus, Kent Douglas Robarge, Paul Spindler
  • Patent number: 9732282
    Abstract: Methods are provided for refining natural oil feedstocks. The methods comprise reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters. In certain embodiments, the methods further comprise separating the olefins from the esters in the metathesized product. In certain embodiments, the methods further comprise hydrogenating the olefins under conditions sufficient to form a fuel composition. In certain embodiments, the methods further comprise transesterifying the esters in the presence of an alcohol to form a transesterified product.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: August 15, 2017
    Assignee: Elevance Renewable Sciences, Inc.
    Inventors: Steven A. Cohen, Melvin L. Luetkens, Jr., Chander Balakrishnan, Robert Snyder
  • Patent number: 9701911
    Abstract: A method for producing a light oil fraction from plant-based and/or animal-based fats, oils or greases is disclosed. The method comprises introducing a feedstock including free fatty acids into a processing system. The system is heated at a controlled rate to a specified temperature, both of which are selected to produce a light oil fraction with a reduced fatty acid content. The system is permitted to reflux for a predetermined time, during which more of the light oil fraction is produced. The light oil fraction is separated from the remainder of the feedstock and contains less than 10% free fatty acids.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: July 11, 2017
    Assignees: Research Foundation of the City University of New York, University of Connecticut
    Inventors: Lawrence M. Pratt, Richard Steven Parnas
  • Patent number: 9663720
    Abstract: The present invention relates to a process for converting feedstock comprising materials of biological origin into hydrocarbons, said process comprising the steps where a) feedstock comprising at least one material of biological origin is subjected to purification treatment to obtain purified feedstock, and b) the purified feedstock is subjected to hydroprocessing in the presence of at least one hydrodeoxygenation catalyst, at least one hydrodewaxing catalyst and at least one hydrodearomatization catalyst to obtain a hydroprocessing product.
    Type: Grant
    Filed: July 11, 2014
    Date of Patent: May 30, 2017
    Assignee: UPM-KYMMENE CORPORATION
    Inventors: Jaakko Nousiainen, Teemu Lindberg, Isto Eilos, Heli Laumola, Kati Vilonen
  • Patent number: 9663416
    Abstract: Systems, processes, and catalysts are disclosed for obtaining fuel and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.
    Type: Grant
    Filed: October 30, 2014
    Date of Patent: May 30, 2017
    Assignee: Battelle Memorial Institute
    Inventors: Michael A. Lilga, Richard T. Hallen, Karl O. Albrecht, Alan R. Cooper, John G. Frye, Karthikeyan Kallupalayam Ramasamy
  • Patent number: 9650313
    Abstract: A styrene monomer reclamation process and system is described. The styrene monomer reclamation process includes providing a waste plastic. The waste plastic includes styrenic polymers. The waste plastic is formed into polymer particles. At least a portion of the polymer particles are dissolved in a solvent to form a polymer stream. The dissolved polymer particles are depolymerized to form a styrene monomer stream.
    Type: Grant
    Filed: December 30, 2014
    Date of Patent: May 16, 2017
    Assignee: Fina Technology, Inc.
    Inventors: Jon Tippet, James Butler, James Assef, John Ashbaugh, Jason Clark, Michel Duc, Jean-Bernard Cary
  • Patent number: 9624446
    Abstract: Disclosed is a renewable composition derived from the conversion of biomass at an elevated temperature, with conversion optionally in the presence of a catalyst, which is capable of reducing, and thereby improving, a low temperature property of a distillate. A process is also disclosed for mixing such renewable composition with the distillate.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: April 18, 2017
    Assignee: Inaeris Technologies, LLC
    Inventors: Jeffrey C. Trewella, Vicente Sanchez, Roger L. Leisenring, Jr.
  • Patent number: 9617479
    Abstract: Feeds containing triglycerides are processed to produce a diesel fuel product and propylene. The diesel product and propylene are generated by deoxygenating the triglyceride-containing feed using processing conditions that enhance preservation of olefins that are present in the triglycerides. The triglyceride-containing feed is processed in the presence of a catalyst containing a Group VI metal and a Group VIII non-noble metal and in the presence of CO.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: April 11, 2017
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Bradley R. Fingland, Joseph Emmanuel Gatt
  • Patent number: 9611554
    Abstract: Oils from plants and animal fats are hydrolyzed to fatty acids for a Kolbe reaction. The invention relates to a high productivity Kolbe reaction process for electrochemically decarboxylating C4-C28 fatty acids derived from sources selected based on their saturated and unsaturated fatty acid content in order to lower anodic passivation voltage during synthesis of C6-C54 hydrocarbons. The C6-C54 hydrocarbons may undergo olefin metathesis and/or hydroisomerization reaction processes to synthesize heavy fuel oil, diesel fuel, kerosene fuel, lubricant base oil, and linear alpha olefin products useful as precursors for polymers, detergents, and other fine chemicals.
    Type: Grant
    Filed: September 15, 2015
    Date of Patent: April 4, 2017
    Assignee: ADVONEX INTERNATIONAL CORP.
    Inventors: Dzmitry Malevich, Graham Thomas Thornton Gibson
  • Patent number: 9593211
    Abstract: Asphalt binder modifiers derived from the thermo-catalytic conversion of biomass are provided. The asphalt binder modifiers are useful as anti-stripping agents and in increasing tensile strength ratios for asphalt concrete, asphalt-containing roofing materials, and other asphalt applications.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: March 14, 2017
    Assignee: Inaeris Technologies, LLC
    Inventors: Jeffrey C. Trewella, Dan Strope
  • Patent number: 9534181
    Abstract: Disclosed is an alternative fuel composition derived from the conversion of biomass at an elevated temperature, with conversion optionally in the presence of a catalyst, which is capable of reducing, and thereby improving, a low temperature property of a distillate. A process is also disclosed for mixing such renewable composition with the distillate.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: January 3, 2017
    Assignee: INAERIS TECHNOLOGIES, LLC
    Inventors: Jeffrey C. Trewella, Daniel J. Strope, John Kasbaum, Stephen J. McGovern, Vicente Sanchez
  • Patent number: 9523046
    Abstract: Methods are provided herein for co-processing of biocomponent feeds as well processing of mineral feeds in a reaction system at hydrogen partial pressures of about 500 psig (3.4 MPag) or less. The methods include using stacked beds of both CoMo and NiMo catalysts. The stacked catalyst beds provided unexpectedly high catalyst activity as the input feed to a reaction system was switched between a mineral feed and a feed containing both mineral and biocomponent portions. Additionally, use of stacked catalyst beds can allow for maintenance of the activity for the catalyst system in a reaction system while still achieving a desired activity for both types of feeds.
    Type: Grant
    Filed: December 5, 2013
    Date of Patent: December 20, 2016
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Joseph E. Gatt, Bradley R. Fingland, William E. Lewis, Patrick L. Hanks