Using Same Catalyst, Solvent, Inert Heat Carrier, Or Component Thereof Patents (Class 585/301)
  • Patent number: 10214426
    Abstract: A process for post synthesis treatment of ZSM-5 catalyst for converting ethylene to liquid fuel products providing substantially improved catalyst life. The treatment comprises either a base treatment, an acid treatment or a two-step treatment where one is with an acid and the other is with a base. The base treatment is provided by a weak sodium hydroxide such as less than 1 Molar concentration. The acid treatment is stronger acid where, for example, a hydrogen chloride solution at greater than 2 Molar concentration is used.
    Type: Grant
    Filed: July 21, 2016
    Date of Patent: February 26, 2019
    Assignee: Phillips 66 Company
    Inventors: Jianhua Yao, Bruce B. Randolph
  • Patent number: 10214462
    Abstract: A process for post synthesis treatment of ZSM-5 catalyst for converting ethylene to liquid fuel products providing substantially improved catalyst life. The treatment comprises either a base treatment, an acid treatment or a two-step treatment where one is with an acid and the other is with a base. The base treatment is provided by a weak sodium hydroxide such as less than 1 Molar concentration. The acid treatment is stronger acid where, for example, a hydrogen chloride solution at greater than 2 Molar concentration is used.
    Type: Grant
    Filed: July 21, 2016
    Date of Patent: February 26, 2019
    Assignee: Phillips 66 Company
    Inventors: Jianhua Yao, Bruce B. Randolph
  • Patent number: 10207962
    Abstract: A process for post synthesis treatment of ZSM-5 catalyst for converting ethylene to liquid fuel products providing substantially improved catalyst life. The treatment comprises either a base treatment, an acid treatment or a two-step treatment where one is with an acid and the other is with a base. The base treatment is provided by a weak sodium hydroxide such as less than 1 Molar concentration. The acid treatment is stronger acid where, for example, a hydrogen chloride solution at greater than 2 Molar concentration is used.
    Type: Grant
    Filed: July 21, 2016
    Date of Patent: February 19, 2019
    Assignee: Phillips 66 Company
    Inventors: Jianhua Yao, Bruce B. Randolph
  • Patent number: 10071938
    Abstract: The invention relates to the production of aromatic hydrocarbon by the conversion of a feed comprising C2+ non-aromatic hydrocarbon, e.g., natural gas. The invention is particularly useful in converting natural gas to liquid-phase aromatic hydrocarbon, which can be more easily transported away from remote natural gas production facilities. The conversion is carried out in the presence of a dehydrocyclization catalyst comprising dehydrogenation and molecular sieve components. The dehydrocyclization catalyst has an average residence time of 90 seconds or less.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: September 11, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Mayank Shekhar, Paul F. Keusenkothen
  • Patent number: 9669382
    Abstract: Methods and apparatuses are provided for isomerizing a hydrocarbon stream. The method includes isomerizing a hydrocarbon stream in a reactor to produce an intermediate isomerized stream. The intermediate isomerized stream is fractionated to produce an off gas stream and a heavy isomerized stream, where the off gas stream includes an off gas recycle stream. The off gas recycle stream is dried in an off gas dryer to produce a hydrogen recycle stream, where the off gas drier includes an off gas dryer membrane separating the off gas recycle stream from an off gas purge stream. The off dryer membrane includes a perfluorosulfonated ionomer. The hydrogen recycle stream is then fed into the reactor.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: June 6, 2017
    Assignee: UOP LLC
    Inventor: Mohamed S. Shakur
  • Patent number: 9035118
    Abstract: A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and partially processing each feedstream in separate reactors. The processing includes passing the light stream to a combination hydrogenation/dehydrogenation reactor. The process reduces the energy by reducing the endothermic properties of intermediate reformed process streams.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: May 19, 2015
    Assignee: UOP LLC
    Inventors: Manuela Serban, Kurt M. VandenBussche, Mark D. Moser, David A. Wegerer
  • Patent number: 9029618
    Abstract: A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and partially processing each feedstream in separate reactors. The processing includes passing the light stream to a combination hydrogenation/dehydrogenation reactor. The process reduces the energy by reducing the endothermic properties of intermediate reformed process streams.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: May 12, 2015
    Assignee: UOP LLC
    Inventors: Manuela Serban, Kurt M. Vanden Bussche, Mark D. Moser, David A. Wegerer
  • Patent number: 9024099
    Abstract: A process is presented for the increasing the yields of aromatics from reforming a hydrocarbon feedstream. The process includes splitting a naphtha feedstream into a light hydrocarbon stream, and a heavier stream having a relatively rich concentration of naphthenes. The heavy stream is reformed to convert the naphthenes to aromatics and the resulting product stream is further reformed with the light hydrocarbon stream to increase the aromatics yields. The catalyst is passed through the reactors in a sequential manner.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: May 5, 2015
    Assignee: UOP LLC
    Inventors: Mark D. Moser, Kurt M. VandenBussche, David A. Wegerer, Gregory J. Gajda
  • Patent number: 9024098
    Abstract: A process for the production of aromatics through the reforming of a hydrocarbon stream is presented. The process utilizes the differences in properties of components within the hydrocarbon stream to increase the energy efficiency. The differences in the reactions of different hydrocarbon components in the conversion to aromatics allows for different treatments of the different components to reduce the energy used in reforming process.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: May 5, 2015
    Assignee: UOP LLC
    Inventors: Mark D. Moser, David A. Wegerer, Manuela Serban, Kurt M. VandenBussche
  • Patent number: 9024097
    Abstract: A process for reforming hydrocarbons is presented. The process involves applying process controls over the reaction temperatures to preferentially convert a portion of the hydrocarbon stream to generate an intermediate stream, which will further react with reduced endothermicity. The intermediate stream is then processed at a higher temperature, where a second reforming reactor is operated under substantially isothermal conditions.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: May 5, 2015
    Assignee: UOP LLC
    Inventors: Manuela Serban, Kurt M. VandenBussche, Mark D. Moser, David A. Wegerer
  • Patent number: 8926830
    Abstract: Processes for producing aromatics from a naphtha feedstream are provided. An exemplary process includes passing the feedstream to a fractionation unit, thereby generating a first stream including hydrocarbons having less than 8 carbon atoms and a second stream including hydrocarbons having at least 8 carbon atoms. The first stream is passed to a first reformer operated at a first set of reaction conditions to generate a first product stream. The first set of reaction conditions includes a first temperature and a first pressure. The second stream is passed to a second reformer operated at a second set of reaction conditions to generate a second product stream. The second set of reaction conditions includes a second temperature and a second pressure. The first pressure is lower than the second pressure.
    Type: Grant
    Filed: April 3, 2013
    Date of Patent: January 6, 2015
    Assignee: UOP LLC
    Inventors: Gregory J. Gajda, Mary J. Wier, Clayton Colin Sadler
  • Patent number: 8906226
    Abstract: A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and passing each feedstream to separation reformers. The reformers are operated under different conditions to utilize the differences in the reaction properties of the different hydrocarbon components. The process utilizes a common catalyst, and common downstream processes for recovering the desired aromatic compounds generated.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: December 9, 2014
    Assignee: UOP LLC
    Inventors: Gregory J. Gajda, Kurt M. VandenBussche, Mark D. Moser, David A. Wegerer
  • Patent number: 8895797
    Abstract: A reactor design and process for the dehydrogenation of hydrocarbons is presented. The reactor design includes a multibed catalytic reactor, where each of the reactor beds are fluidized. The catalyst in the reactor cascades through the reactor beds, with fresh catalyst input into the first reactor bed, and the spent catalyst withdrawn from the last reactor bed. The hydrocarbon feedstream is input to the reactor beds in a parallel formation, thereby decreasing the thermal residence time of the hydrocarbons when compared with a single bed fluidized reactor, or a series reactor scheme.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: November 25, 2014
    Assignee: UOP LLC
    Inventors: David N. Myers, Lev Davydov
  • Patent number: 8845884
    Abstract: A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and passing each feedstream to separation reformers. The reformers are operated under different conditions to utilize the differences in the reaction properties of the different hydrocarbon components. The process utilizes a common catalyst, and common downstream processes for recovering the desired aromatic compounds generated.
    Type: Grant
    Filed: March 10, 2012
    Date of Patent: September 30, 2014
    Assignee: UOP LLC
    Inventors: Gregory J. Gajda, Mary Jo Wier, Mark P. Lapinski, David A. Wegerer, Kurt M. VandenBussche, Mark D. Moser
  • Patent number: 8835706
    Abstract: A process for the conversion of mixed lower alkanes into aromatics which comprises first reacting a mixed lower alkane feed comprising at least propane and ethane in the presence of an aromatization catalyst under reaction conditions which maximize the conversion of propane into first stage aromatic reaction products, separating ethane from the first stage aromatic reaction products, reacting ethane in the presence of an aromatization catalyst under reaction conditions which maximize the conversion of ethane into second stage aromatic reaction products, and optionally separating ethane from the second stage aromatic reaction products.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: September 16, 2014
    Assignee: Shell Oil Company
    Inventors: Mahesh Venkataraman Iyer, Ann Marie Lauritzen, Ajay Madhav Madgavkar
  • Patent number: 8609912
    Abstract: Separated volumes can be created in a reactor using interior dividing wall or interior conduit structures. Feedstocks can be hydroprocessed in the separated volumes to allow multiple types of hydroprocessing conditions and/or feeds to be processed in a single reactor. The feedstocks can remain separate for the entire volume of the reactor, or the dividing barrier can end at some intermediate point in the reactor.
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: December 17, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Patrick L. Hanks, Michel Daage
  • Patent number: 8604262
    Abstract: A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and passing each feedstream to separation reformers. The reformers are operated under different conditions to utilize the differences in the reaction properties of the different hydrocarbon components. The process utilizes a common catalyst, and common downstream processes for recovering the desired aromatic compounds generated.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: December 10, 2013
    Assignee: UOP LLC
    Inventors: David A. Wegerer, Kurt M. Vanden Bussche, Mark D. Moser
  • Patent number: 8598396
    Abstract: Olefin feeds with high olefin content and/or containing a substance that generates water when contacting the catalyst, are oligomerised over solid phosphoric acid catalyst in tubular reactors by introducing the olefin feed into the reactor and maintaining the reacting mixture under conditions whereby the peak temperature is controlled to be below 265° C. and preferably a single liquid or dense phase is maintained and the average temperature throughout the reactor is maintained in the range 190° C. to 260° C.
    Type: Grant
    Filed: June 9, 2006
    Date of Patent: December 3, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Stephen Wayne Beadle, John Stephen Godsmark, Robert L. Wolf
  • Patent number: 8530714
    Abstract: Disclosed is a method for production of lower olefins from a raw material containing dimethyl ether (DME), which can produce lower olefins (e.g. propylene) with good yield and in an economically advantageous manner by prolonging the time until the reversible deactivation of a zeolite catalyst and preventing the irreversible deactivation of the catalyst, can reduce the amount of water to be recycled to increase the thermal efficiency of the process, and can simplify the facilities and operations. Also disclosed is a method for improving the yield of propylene with good efficiency under practical operating conditions. A feed gas which comprises a DME-containing feedstock gas and an additive gas and further contains steam at a specific proportion is introduced into an olefin synthesis reactor to contact the feed gas with a zeolite catalyst, thereby producing a hydrocarbon product containing C2-C5 olefins.
    Type: Grant
    Filed: November 13, 2006
    Date of Patent: September 10, 2013
    Assignee: JGC Corporation
    Inventors: Hirofumi Ito, Kazunori Honda, Koji Oyama, Nobuyasu Chikamatsu, Kazutaka Hiraoka, Atsushi Okita
  • Patent number: 8502004
    Abstract: Process for evaluating the effect of a refinery feedstock on a refinery process by (i) providing a refinery feedstock (ii) treating the refinery feedstock to produce a plurality of fractions each representative of a feedstock for the refinery process, the plurality of fractions having at least two fractions with different properties; (iii) treating each of the plurality of fractions under experimental conditions representative of those in the refinery process, the treatments being carried out in an essentially parallel manner; and (iv) determining one or more performance criteria for each fraction for the refinery process by analyzing the respective product streams produced from each fraction at least partially in parallel.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: August 6, 2013
    Assignee: BP Oil International Limited
    Inventors: Graham Butler, John William Couves, Paul Greenough, Nicholas John Gudde, Michael Graham Hodges
  • Patent number: 8373013
    Abstract: A process for combining the catalytic conversion of organic oxygenates and the catalytic conversion of hydrocarbons: an organic oxygenate feedstock is contacted with a Y-zeolite containing catalyst to produce a reaction stream, and a coked catalyst and a product stream are obtained after separating the reaction stream; a hydrocarbon feedstock is contacted with a Y-zeolite containing catalyst to produce a reaction stream, a spent catalyst and a reaction oil vapor are obtained after separating the reaction stream, and the reaction oil vapor is further separated to give the products such as gas, gasoline and the like; a part or all of the coked catalyst and a part or all of the spent catalyst enter the regenerator for the coke-burning regeneration, and the regenerated catalyst is divided into two portions, wherein one portion returns to be contacted with the hydrocarbon feedstock, and the other portion, after cooling, returns to be contacted with the organic oxygenate feedstock.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: February 12, 2013
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, SINOPEC
    Inventors: Wenhua Xie, Genquan Zhu, Qiang Fu, Zhiguo Wu, Shaobing Yu, Yihua Yang, Qiang Liu, Zhiqiang Qiao, Xuhong Mu, Chaogang Xie, Yibin Luo, Jiushun Zhang, Xingtian Shu
  • Patent number: 8373015
    Abstract: Catalytic methods for the production of saturated hydrocarbons with 2 to 5 carbon atoms per molecule by conversion of small hydrocarbon halides and/or hydrogenation of carbonaceous material are disclosed that result in high yield of saturated C2 to C5 hydrocarbons at reduced corrosion of the reactors and in good lifetime of the catalyst. The methods are performed in the presence of a Lewis acid comprising catalyst and in the absence of oxygen or oxygen containing compounds, whereby an upper limit of at most 50 parts per million mass of oxygen or oxygen containing compounds can be tolerated.
    Type: Grant
    Filed: March 19, 2007
    Date of Patent: February 12, 2013
    Assignee: ETH Zürich
    Inventors: Jan Wendelin Stark, Neil Osterwalder
  • Publication number: 20120277504
    Abstract: A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and passing each feedstream to separation reformers. The reformers are operated under different conditions to utilize the differences in the reaction properties of the different hydrocarbon components. The process utilizes a common catalyst, and common downstream processes for recovering the desired aromatic compounds generated.
    Type: Application
    Filed: March 9, 2012
    Publication date: November 1, 2012
    Applicant: UOP LLC
    Inventors: Gregory J. Gajda, Kurt M. Vanden Bussche, Mark D. Moser, David A. Wegerer
  • Publication number: 20120277501
    Abstract: A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and passing each feedstream to separation reformers. The reformers are operated under different conditions to utilize the differences in the reaction properties of the different hydrocarbon components. The process further includes passing one or more catalyst streams through the reformers to optimize selectivity and conversions.
    Type: Application
    Filed: March 9, 2012
    Publication date: November 1, 2012
    Applicant: UOP LLC
    Inventor: Gregory J. Gajda
  • Publication number: 20120277503
    Abstract: A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and passing each feedstream to separation reformers. The reformers are operated under different conditions to utilize the differences in the reaction properties of the different hydrocarbon components. The process utilizes a common catalyst, and common downstream processes for recovering the desired aromatic compounds generated.
    Type: Application
    Filed: March 9, 2012
    Publication date: November 1, 2012
    Applicant: UOP LLC
    Inventors: David A. Wegerer, Kurt M. Vanden Bussche, Mark D. Moser
  • Publication number: 20120277502
    Abstract: A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and passing each feedstream to separation reformers. The reformers are operated under different conditions to utilize the differences in the reaction properties of the different hydrocarbon components. The process utilizes a common catalyst, and common downstream processes for recovering the desired aromatic compounds generated.
    Type: Application
    Filed: March 9, 2012
    Publication date: November 1, 2012
    Applicant: UOP LLC
    Inventors: Gregory J. Gajda, Kurt M. Vanden Bussche, Mark D. Moser, David A. Wegerer
  • Patent number: 8273930
    Abstract: A process for producing ethylene from ethanol combining the catalytic conversion of hydrocarbons: an ethanol feedstock is contacted with a Y-zeolite containing catalyst to give a product stream, and a coked catalyst and an target product of ethylene are obtained after separating the reaction stream; a hydrocarbon feedstock is contacted with a Y-zeolite containing catalyst to give a product stream, a spent catalyst and an oil vapor are obtained after separating the reaction stream, and the oil vapor is further separated to give the products such as gas, gasoline and the like; a part or all of the coked catalyst and a part or all of the spent catalyst enter the regenerator for the coke-burning regeneration, and the regenerated catalyst is divided into two portions, wherein one portion returns to be contacted with the hydrocarbon feedstock, and the other portion, after cooling, returns to be contacted with ethanol feedstock.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: September 25, 2012
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Zhiguo Wu, Wenhua Xie, Chaogang Xie, Qiang Liu, Xuhong Mu, Jiushun Zhang, Yibin Luo, Xingtian Shu, Chenghan Yan
  • Publication number: 20120123175
    Abstract: A process for increasing the yield of ethylene and propylene, comprising: (1) feeding a feedstock into a reaction zone with a catalyst to produce (i) a product stream and a catalyst to be regenerated; (2) stripping and then dividing the catalyst to be regenerated into at least two parts, wherein a first part is recycled into the reaction zone at a first position, and a second part is regenerated in the regenerator to form a regenerated catalyst and then recycled into the reaction zone at a second position; and (3) controlling the temperature increase in the reaction zone.
    Type: Application
    Filed: November 16, 2011
    Publication date: May 17, 2012
    Inventors: Guozhen QI, Zhe Yang, Huiming Zhang, Li Wang, Ju Wang, Xiaohong Li, Huawen Wang
  • Patent number: 8124034
    Abstract: One exemplary embodiment can be a method of modifying an alkylation unit to increase capacity. The method may include combining a first alkylation zone with a second alkylation zone. Generally, the first alkylation zone includes a first settler having a height and a width. Typically, the width is greater than the height. In addition, the second alkylation zone may have a second settler having a height and a width. Usually, the height is greater than the width.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: February 28, 2012
    Assignee: UOP LLC
    Inventors: Daryl Dunham, Dale James Shields
  • Patent number: 8058494
    Abstract: A process for the production of phenylalkanes comprising at least two catalytic alkylation reactors placed in parallel among which are present in reaction zones that each contain at least one acidic solid catalyst, whereby n is greater than or equal to 2, is described. One of the reactors carries out the alkylation of at least one aromatic compound by at least one olefin that has 9 to 16 atoms. An olefin fraction is introduced at the inlet of each of the reaction zones of the reactor that operates in alkylation mode. While one of the reactors carries out the alkylation, the other reactor carries out the reactivation of each catalyst, partially deactivated, that it contains. The functions of each reactor are switched regularly so as to limit the deactivation of catalysts in each of the reactors. The phenylalkanes that are obtained by the process according to the invention are particularly suitable for the production of detergents.
    Type: Grant
    Filed: October 4, 2005
    Date of Patent: November 15, 2011
    Assignee: IFP Energies Nouvelles
    Inventors: Emmanuelle Guillon, Eric Sanchez
  • Publication number: 20110245557
    Abstract: A reactor design and process for the dehydrogenation of hydrocarbons is presented. The reactor design includes a multibed catalytic reactor, where each of the reactor beds are fluidized. The catalyst in the reactor cascades through the reactor beds, with fresh catalyst input into the first reactor bed, and the spent catalyst withdrawn from the last reactor bed. The hydrocarbon feedstream is input to the reactor beds in a parallel formation, thereby decreasing the thermal residence time of the hydrocarbons when compared with a single bed fluidized reactor, or a series reactor scheme.
    Type: Application
    Filed: March 30, 2010
    Publication date: October 6, 2011
    Applicant: UOP LLC
    Inventors: David N. Myers, Lev Davydov
  • Publication number: 20110218373
    Abstract: A process for producing at least one light olefin comprising: (a) contacting a first raw material comprising methanol with a least one catalyst comprising at least one silicon-aluminophosphate molecular sieve in a first reaction zone to produce a product stream I comprising at least one light olefin and at least one inactivated catalyst; (b) transporting the at least one inactivated catalyst to a first regeneration zone to produce at least one first regenerated catalyst, and transporting a portion of the at least one first regenerated catalyst to the first reaction zone, wherein the at least one first regenerated catalyst comprises a carbon deposit present in an amount ranging from about 0.8% to about 2.
    Type: Application
    Filed: March 3, 2011
    Publication date: September 8, 2011
    Inventors: Guozhen Qi, Siqing Zhong, Hongtao Wang, Yongming Jin
  • Patent number: 8013197
    Abstract: A method for the absorption of alkynes and diolefins from an ethylene or propylene containing stream with conversion to alkenes by catalytic hydrogenation in a solvent over a fixed bed comprising a supported catalyst.
    Type: Grant
    Filed: February 2, 2006
    Date of Patent: September 6, 2011
    Assignee: Synfuels International, Inc.
    Inventors: Edward R. Peterson, Sean C. Gattis
  • Patent number: 7875754
    Abstract: A method of operation for producing high yield of alkylate product using catalytic reactors. The catalytic reactors which cycle between reaction mode and catalyst regeneration mode have their contents exchanged with each other at the beginning of each cycle in order to increase the yield of the desired product. This exchange increases the yield by minimizing the contact of reactant in reaction mode with regenerant utilized in regeneration mode. Thus, reducing/preventing the undesirable alternate reaction between the two, which consumes the reactant making it unavailable for the production of the desired product.
    Type: Grant
    Filed: July 27, 2006
    Date of Patent: January 25, 2011
    Assignee: Lummus Technology Inc.
    Inventor: Vincent James D′Amico
  • Publication number: 20100076234
    Abstract: One exemplary embodiment can be an alkylation unit. The alkylation unit can include at least one alkylation reaction zone having an alkylation catalyst, at least one cooler communicating with the at least one alkylation reaction zone, a settler communicating with the at least one alkylation reaction zone and the at least one cooler, a fractionation zone receiving an effluent from the settler passing through a line, and a boot coupled to a substantially horizontal portion of the line. Generally, the boot receives an effluent portion rich in the alkylation catalyst.
    Type: Application
    Filed: September 24, 2008
    Publication date: March 25, 2010
    Inventors: Mark A. Clark, Jason J. Gislason
  • Patent number: 7651606
    Abstract: The invention concerns a process for the hydrodesulphurization of gasoline cuts for the production of gasolines with a low sulphur and mercaptans content. Said process comprises at least two hydrodesulphurization steps, HDS1 and HDS2, operated in parallel on two distinct cuts of the gasoline constituting the feed. The flow rate of hydrogen in the hydrodesulphurization step HDS2 is such that the ratio between the flow rate of hydrogen and the flow rate of feed to be treated is less than 80% of the ratio of the flow rates used to desulphurize in the hydrodesulphurization step HDS1.
    Type: Grant
    Filed: April 23, 2007
    Date of Patent: January 26, 2010
    Assignee: Institut Francais du Petrole
    Inventors: Florent Picard, Quentin Debuisschert, Annick Pucci
  • Publication number: 20090062583
    Abstract: A process for the production of phenylalkanes comprising at least two catalytic alkylation reactors placed in parallel among which are present in reaction zones that each contain at least one acidic solid catalyst, whereby n is greater than or equal to 2, is described. One of the reactors carries out the alkylation of at least one aromatic compound by at least one olefin that has 9 to 16 atoms. An olefin fraction is introduced at the inlet of each of the reaction zones of the reactor that operates in alkylation mode. While one of the reactors carries out the alkylation, the other reactor carries out the reactivation of each catalyst, partially deactivated, that it contains. The functions of each reactor are switched regularly so as to limit the deactivation of catalysts in each of the reactors. The phenylalkanes that are obtained by the process according to the invention are particularly suitable for the production of detergents.
    Type: Application
    Filed: October 4, 2005
    Publication date: March 5, 2009
    Inventors: Emmanuelle Guillon, Eric Sanchez
  • Patent number: 7476773
    Abstract: A process for preparing a gas oil cut comprises the following steps in succession: 1) oligomerizing an olefinic C2-C12 hydrocarbon cut, preferably C3-C7 and more preferably C3-C5; 2) separating the mixture of products obtained in step 1) into three cuts: a light cut containing unreacted C4 and/or C5 olefinic hydrocarbons, an intermediate cut having a T95 in the range 200-220° C. and a heavy cut comprising the complement; T95 being the temperature at which 95% by weight of product has evaporated, as determined in accordance with standard method ASTM D2887; 3) oligomerizing the intermediate cut obtained in the separation step; characterized in that in step 3), oligomerization is carried out in the presence of an olefinic C4 and/or C5 hydrocarbon cut in a weight ratio of intermediate cut to olefinic C4 and/or C5 cut in the range of 60/40 to 80/20.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: January 13, 2009
    Assignee: Institut Francais du Petrole
    Inventors: Sylvain Louret, Vincent Coupard, Laurent Simon
  • Patent number: 7429685
    Abstract: The invention relates to a method of isomerising a charge comprising hydrocarbons containing between 5 and 8 carbon atoms per molecule. According to the invention, said charge is separated into at least two fractions: fraction A mostly comprising hydrocarbons containing 5 or 6 carbon atoms and fraction B mostly comprising hydrocarbons containing 7 or 8 carbon atoms. Subsequently, said fractions A and B are treated separately under specific conditions in different isomerisation reaction zones.
    Type: Grant
    Filed: July 8, 2002
    Date of Patent: September 30, 2008
    Assignee: Institut Francais du Petrole
    Inventors: Christophe Bouchy, Olivier Ducreux, Elsa Jolimaitre, Paul Broutin
  • Patent number: 7271304
    Abstract: This invention provides a process for the production of diesel boiling range hydrocarbons, the process including at least the steps of obtaining an olefinic feed stream from one or more hydrocarbon producing processes wherein the olefinic feed stream contains branched short chain olefins having a chain length of from three to eight carbon atoms, and contacting the feed stream with a shape selective medium pore acid zeolite catalyst in a pressurised reactor at elevated temperature so as to convert said short chain olefins to higher hydrocarbons. The invention also provides an apparatus for carrying out the process and recovering the catalyst for reuse.
    Type: Grant
    Filed: January 6, 2003
    Date of Patent: September 18, 2007
    Assignee: Sasol Technology (Pty) Ltd.
    Inventor: Francois Benjamin Du Toit
  • Patent number: 7176340
    Abstract: A continuous alkylation process performed in an apparatus comprising a series of at least two zone A reactors and a series of at least two zone B reactors, in which the zone A reactors and the zone B reactors cycle between alkylation mode and mild regeneration mode, and wherein the alkylation mode comprises introducing an alkylation agent into a first reactor of the zone through which the alkylatable compound passes, reacting a portion of the alkylatable compound with a portion of the alkylation agent to produce a product stream, and performing this operation at least once more in a downstream reactor in the same zone employing, instead of alkylatable compound, a stream comprising the product stream.
    Type: Grant
    Filed: June 5, 2002
    Date of Patent: February 13, 2007
    Assignee: Albemarle Netherlands B.V.
    Inventors: Emanuel Hermanus Van Broekhoven, Johannes Wilhelmus Maria Sonnemans, Stephan Zuijdendorp
  • Patent number: 6504038
    Abstract: A process for the joint preparation of styrene and propylene oxide comprising the steps of: (a) reacting ethane and benzene to form ethylbenzene; (b) reacting ethylbenzene with oxygen or air to form ethylbenzene hydroperoxide; (c) reacting at least part of the ethylbenzene hydroperoxide obtained with propene in the presence of an epoxidation catalyst to form propylene oxide and 1-phenyl ethanol, and (d) dehydrating at least part of the 1-phenyl ethanol obtained into styrene in the presence of a suitable dehydration catalyst, wherein the ethene used in step (a) and the propene used in step (c) are at least partly provided by a fluid catalytic cracking unit.
    Type: Grant
    Filed: January 17, 2001
    Date of Patent: January 7, 2003
    Assignee: Shell Oil Company
    Inventor: Jacobus Johannes Van Der Sluis
  • Patent number: 5648586
    Abstract: A process is provided to react a feedstock comprising isobutane with pentenes in the presence of sulfuric acid catalyst to produce a high octane alkylate as well as a higher octane isopentane gasoline blending component. A method to reduce sulfuric acid consumption during alkylation is provided wherein a diolefinic contaminant of a pentene system feed is selectively hydrogenated before alkylation. An alkylation method is provided wherein the alkylation feed is separated into a fraction comprising substantially C.sub.4 and lower olefins and a fraction comprising substantially C.sub.5 olefins and the stream comprising C.sub.5 olefins is alkylated in a different reactor than the fraction comprising substantially C.sub.4 and lower olefins.
    Type: Grant
    Filed: September 5, 1995
    Date of Patent: July 15, 1997
    Assignee: Atlantic Richfield Company
    Inventor: Vijay R. Sampath
  • Patent number: 5649281
    Abstract: A process is provided to react a feedstock comprising isobutane with pentenes in the presence of sulfuric acid catalyst to produce a high octane alkylate as well as a higher octane isopentane gasoline blending component. A method to reduce sulfuric acid consumption during alkylation is provided wherein a diolefinic contaminant of a pentene system feed is selectively hydrogenated before alkylation. An alkylation method is provided wherein the alkylation feed is separated into a fraction comprising substantially C.sub.4 and lower olefins and a fraction comprising substantially C.sub.5 olefins and the stream comprising C.sub.5 olefins is alkylated in a different reactor than the fraction comprising substantially C.sub.4 and lower olefins.
    Type: Grant
    Filed: July 17, 1995
    Date of Patent: July 15, 1997
    Assignee: Atlantic Richfield Company
    Inventor: Vijay R. Sampath
  • Patent number: 5430217
    Abstract: An integrated fluid coking/paraffin dehydrogenation process. The fluid coking unit is comprised of a fluid coker reactor, a heater, and a gasifier. Solids from the fluidized beds are recycled between the coking zone and the heater and between the heater and the gasifier. A separate stream of hot solids from the gasifier is passed to the scrubbing zone or to a satellite fluidized reactor. A first stream containing an effective amount of C.sub.1 to C.sub.2 paraffins is introduced into this stream of hot solids between the point where the diluent is added and the scrubbing zone. The hot particles act to catalyze the dehydrogenation of paraffins to olefins. A second stream containing C.sub.3 to C.sub.10 paraffins is introduced downstream of the introduction of said first stream.
    Type: Grant
    Filed: October 27, 1993
    Date of Patent: July 4, 1995
    Assignee: Exxon Research & Engineering Co.
    Inventors: Roby Bearden, Jr., Michael C. Kerby, Stephen M. Davis
  • Patent number: 5430216
    Abstract: An integrated fluid coking/paraffin dehydrogenation process. The fluid coking unit is comprised of a fluid coker reactor, a heater, and a gasifier. Solids from the fluidized beds are recycled between the coking zone and the heater and between the heater and the gasifier. A separate stream of hot solids from the gasifier is diluted with hot solids from the heater then passed to the scrubbing zone of the coker reactor. A light paraffin stream is introduced into this stream of hot solids between the point where the heater solids are introduced and the scrubbing zone. The hot particles act to catalyze the dehydrogenation of the paraffins to olefins.
    Type: Grant
    Filed: October 27, 1993
    Date of Patent: July 4, 1995
    Assignee: Exxon Research & Engineering Co.
    Inventors: Michael C. Kerby, Roby Bearden, Jr., Stephen M. Davis
  • Patent number: 5364976
    Abstract: A process for simultaneously producing C.sub.5 -C.sub.12 alkane(s) and C.sub.5 -C.sub.8 tertiary alkyl ether(s) employs a liquid feed mixture containing (a) at least one C.sub.4 -C.sub.7 isoalkane, (b) at least one second reactant which is at least one C.sub.4 -C.sub.8 isoalkane, and/or at least one C.sub.4 -C.sub.8 tertiary alkyl alcohol, and (c) at least one C.sub.1 -C.sub.6 linear alkyl alcohol, wherein the liquid feed mixture is contacted at effective reaction conditions with a catalyst consisting essentially of trifluoromethanesulfonic acid and a specific solid carrier material (preferably alumina).
    Type: Grant
    Filed: October 29, 1993
    Date of Patent: November 15, 1994
    Assignee: Phillips Petroleum Company
    Inventor: Lyle R. Kallenbach
  • Patent number: 5227554
    Abstract: A process for the isomerization of C.sub.4 and higher molecular weight hydrocarbons, preferably C.sub.4 to C.sub.6 paraffins with high C.sub.6 cyclics content. A C.sub.5 to C.sub.6 hydrocarbon stream is isomerized in a first isomerization reaction zone and a C.sub.4 hydrocarbon stream is isomerized in a second isomerization reaction zone. At least one or both of the effluent streams from the first and second isomerization zones are conveyed to a gas-liquid separator which separates a hydrogen-rich recycle stream. At least a portion of the hydrogen-rich recycle stream is conveyed to the C.sub.5 to C.sub.6 hydrocarbon feed stream and at least a portion of the hydrogen-rich recycle stream is conveyed to the C.sub.4 hydrocarbon feed stream whereby the hydrogen recycle stream is shared during both the C.sub.4 isomerization reaction and the C.sub.5 to C.sub.6 isomerization reaction. The product stream is conveyed to a shared stabilizer which removes the gaseous and volatile components.
    Type: Grant
    Filed: November 29, 1991
    Date of Patent: July 13, 1993
    Assignee: Mobil Oil Corporation
    Inventor: Tai-Sheng Chou
  • Patent number: 5196612
    Abstract: Ethers suitable for use as high octane oxygenate additives for motor fuels are produced in increased yields by a catalytic distillation process wherein a mixture of C.sub.5 -plus isoolefin isomers and an alcohol are charged to a catalytic distillation zone containing both etherification and double bond isomerization catalysts. Otherwise unreactive isomers are isomerized to reactive species within the zone to allow them to participate in the etherification reaction, resulting in a higher ether yield.
    Type: Grant
    Filed: February 3, 1992
    Date of Patent: March 23, 1993
    Assignee: UOP
    Inventor: Dennis J. Ward
  • Patent number: 5177285
    Abstract: A process for the production of alkylaromatic hydrocarbons uses a high water content in an alkylation zone and a low water content in a transalkylation zone to improve yields improve process yields and catalyst life. An aromatic feed and an acyclic feed are first passed through the alkylation reaction zone that operates at a high water content. A separator receives the effluent from the alkylation reaction zone and removes water from a sidecut of unreacted aromatic feed. The sidecut of aromatic feed and a stream of polyalkylated aromatics are contacted in the transalkylation zone. The differing water content improves the operation of both the alkylation zone and the transalkylation zone.
    Type: Grant
    Filed: December 23, 1991
    Date of Patent: January 5, 1993
    Assignee: UOP
    Inventors: Peter J. Van Opdorp, Brian M. Wood