Including An Alkylation Step Patents (Class 585/323)
  • Publication number: 20110224469
    Abstract: Disclosed is a process for the production of alkylated aromatics by contacting a feed stream comprising an alkylatable aromatic, an alkylating agent and trace amounts of water and impurities in the presence of first and second alkylation catalysts wherein the water and impurities are removed in order to improve the cycle length of such alkylation catalysts. Water and a portion of impurities are removed in a dehydration zone. A first alkylation zone having a first alkylation catalyst which, in some embodiments is a large pore molecular sieve, acts to remove a larger portion of impurities, such as nitrogenous and other species, and to alkylate a smaller portion of the alkylatable aromatic compound. A second alkylation zone, which in some embodiments is a medium pore molecular sieve, acts to remove a smaller portion of impurities, and to alkylate a larger portion of the alkylatable aromatic compound.
    Type: Application
    Filed: March 10, 2010
    Publication date: September 15, 2011
    Inventors: Matthew J. Vincent, Vijay Nanda, Maruti Bhandarkar, Brian Maerz, Terry E. Helton
  • Publication number: 20110224468
    Abstract: In a process for alkylation of an alkylatable aromatic compound to produce a monoalkylated aromatic compound, a first feed stream comprising fresh alkylatable aromatic compound is passed to a first reaction zone which comprises a transalkylation catalyst and which also receives a second feed stream comprising polyalkylated aromatic compounds. The first and second feed streams are contacted with the transalkylation catalyst in the first reaction zone under conditions to transalkylate the polyalkylated aromatic compounds with the alkylatable aromatic compound to produce the desired monoalkylated aromatic compound. A first effluent stream comprising unreacted alkylatable aromatic compound and the monoalkylated aromatic compound is removed from the first reaction zone and passed to a fractionation system to separate the first effluent stream into a first light fraction comprising the unreacted alkylatable aromatic compound and a first heavy fraction comprising the monoalkylated aromatic compound.
    Type: Application
    Filed: September 24, 2009
    Publication date: September 15, 2011
    Inventors: Matthew J. Vincent, Charles Morris Smith
  • Publication number: 20110201858
    Abstract: In a process for producing cumene from acetone and benzene, a feed stream comprising acetone is contacted with hydrogen in the presence of a hydrogenation catalyst in a first reaction zone under hydrogenation conditions sufficient to convert at least part of the acetone to isopropanol and produce a first liquid effluent stream rich in isopropanol and a first vapor stream rich in unreacted hydrogen. Benzene is then added to at least part of the first liquid effluent stream, without intermediate purification of the first liquid effluent stream, and optionally to at least part of the first vapor stream, to form a second feed stream.
    Type: Application
    Filed: September 23, 2009
    Publication date: August 18, 2011
    Applicant: BADGER LICENSING LLC
    Inventors: Shyh-Yuan Henry Hwang, Dana E. Johnson, Joseph C. Peters, Chung-Ming Chi, Kevin J. Fallon, Francis A. Demers
  • Publication number: 20110166399
    Abstract: Provided is a method for improving productivity and process stability in styrene monomer manufacturing system which uses ethylbenzene dehydrogenation and multiple reactors connected in series by divergence of the feed containing steam and ethylbenzene and injection thereof into a certain point of the system.
    Type: Application
    Filed: December 30, 2010
    Publication date: July 7, 2011
    Applicant: SAMSUNG TOTAL PETROCHEMICALS CO., LTD.
    Inventors: Jong Kuk WON, Hee-Heon JANG
  • Publication number: 20110160506
    Abstract: A process for producing an alkylated aromatic product in a reactor by reacting an alkylatable aromatic compound feedstock with another feedstock comprising alkene component and alkane component in a reaction zone containing an alkylation catalyst. The reaction zone is operated in predominantly liquid phase without inter-zone alkane removal. The polyalkylated aromatic compounds can be separated as feed stream for transalkylation reaction in a transalkylation reaction zone.
    Type: Application
    Filed: March 7, 2011
    Publication date: June 30, 2011
    Inventors: Michael C. Clark, Brian Maerz
  • Publication number: 20110152577
    Abstract: In a process for producing sec-butylbenzene, a C4 olefinic hydrocarbon feedstock comprising isobutene and at least one n-butene is contacted with methanol and/or water in the presence of an acid catalyst to selectively oxygenate isobutene to produce an effluent stream rich in n-butene and containing less isobutene than the feedstock. The effluent stream is then contacted with benzene under alkylation conditions and in the presence of an alkylation catalyst to produce alkylation stream comprising sec-butylbenzene.
    Type: Application
    Filed: August 4, 2009
    Publication date: June 23, 2011
    Inventors: John S. Buchanan, Jon E.R. Stanat, James R. Lattner, Jane C. Cheng
  • Publication number: 20110137095
    Abstract: The present invention provides a process for producing olefins, comprising: a. providing a feed comprising at least methane, ethane and carbon dioxide; b. separating the feed into at least a methane-comprising feed, an ethane-comprising feed and a carbon dioxide-comprising feed; c. providing at least part of the methane-comprising feed to a process for preparing synthesis gas to obtain a synthesis gas; d. cracking the ethane-comprising feed in a cracking zone under cracking conditions to obtain a cracking zone effluent comprising at least olefins and hydrogen; e. providing at least part of the carbon dioxide-comprising feed and at least part the synthesis gas obtained in step c) to an oxygenate synthesis zone and synthesising oxygenates; f. converting at least part of the oxygenates obtained in step (e) in an oxygenate-to-olefin zone to obtain an oxygenate-to-olefin zone effluent comprising at least olefins and hydrogen; g.
    Type: Application
    Filed: November 9, 2010
    Publication date: June 9, 2011
    Inventors: Leslie Andrew CHEWTER, Herve Henry, Jeroen Van Westrenen
  • Patent number: 7951984
    Abstract: The present invention provides a reactor system having: (1) a first reactor receiving an oxygenate component and a hydrocarbon component and capable of converting the oxygenate component into a light olefin and the hydrocarbon component into alkyl aromatic compounds; (2) a separator system for providing a first product stream containing a C3 olefin, a second stream containing a C7 aromatic, and a third stream containing C8 aromatic compounds; (3) a first line connecting the separator to the inlet of the first reactor for conveying the second stream to the first reactor; (4) a second line in fluid communication with the separator system for conveying the C3 olefin to a propylene recovery unit, and (4) a third line in fluid communication with the separator system for conveying the C8 aromatic compounds to a xylene recovery unit.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: May 31, 2011
    Assignee: UOP LLC
    Inventors: Andrea G. Bozzano, Timur V. Voskoboynikov, Tom N. Kalnes, Paul T. Barger, Gavin P. Towler, Bryan K. Glover
  • Publication number: 20110118517
    Abstract: A process is presented for the preparation of surfactants that are useable in enhanced oil recovery. The surfactants are long chained sulfonated alkylaryl compounds. The process includes recovering linear and lightly branched paraffins from a hydrocarbon stream, dehydrogenating the paraffins, and then alkylating benzene with the olefins generated. The process uses pentasil zeolites to selectively separate the normal and lightly branched paraffins from the hydrocarbon stream.
    Type: Application
    Filed: November 19, 2009
    Publication date: May 19, 2011
    Applicant: UOP LLC
    Inventors: Stephen W. Sohn, Mark G. Riley, Bryan K. Glover
  • Publication number: 20110112314
    Abstract: The present invention provides a process for producing olefins, comprising: a. cracking an ethane-comprising feed in a cracking zone under cracking conditions to obtain at least olefins and hydrogen; b. converting an oxygenate feedstock in an oxygenate-to-olefin zone to obtain at least olefins; wherein at least part of the oxygenate feedstock is obtained by providing hydrogen obtained in step a) and a feed containing carbon monoxide and/or carbon dioxide to an oxygenate synthesis zone and synthesizing oxygenates. In another aspect the invention provides an integrated system for producing olefins.
    Type: Application
    Filed: November 9, 2010
    Publication date: May 12, 2011
    Inventors: Leslie Andrew Chewter, Jeroen Van Westrenen
  • Patent number: 7939704
    Abstract: Disclosed are ethylbenzene processes in which a series-arranged or combined vapor phase alkylation/transalkylation reaction zone is retrofitted to have a vapor phase alkylation reactor and a liquid phase transalkylation reactor, and in which a parallel-arranged vapor phase alkylation reactor and vapor phase transalkylation reactor is retrofitted to have a vapor phase alkylation reactor and liquid phase transalkylation reactor, wherein the xylenes content of the ethylbenzene product is less than 700 wppm.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: May 10, 2011
    Assignees: ExxonMobil Chemical Patents Inc., Stone & Webster, Inc.
    Inventors: Michael C. Clark, Vijay Nanda, Carlos N. Lopez, Brian Maerz, Maruti Bhandarkar
  • Patent number: 7935320
    Abstract: A system and/or process for decreasing the level of at least one organic fluoride present in a hydrocarbon phase contained in an alkylation settler by contacting the hydrocarbon phase with an HF containing stream, containing greater than about 80 wt. % and less than about 94 wt. % HF, in the intermediate portion of the settler which contains at least one tray system, with each tray system comprising a perforated tray defining a plurality of perforations and a layer of packing below the perforated tray, are disclosed.
    Type: Grant
    Filed: October 9, 2008
    Date of Patent: May 3, 2011
    Assignee: UOP LLC
    Inventors: Keith W. Hovis, Bruce B. Randolph
  • Patent number: 7923590
    Abstract: A process for producing a monoalkylation aromatic product, such as ethylbenzene and cumene, utilizing an alkylation reactor zone and a transalkylation zone in series or a combined alkylation and transalkylation reactor zone. This process requires significantly less total aromatics distillation and recycle as compared to the prior art.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: April 12, 2011
    Assignees: ExxonMobil Chemical Patents Inc, Stone & Webster, Inc.
    Inventors: Shiou-Shan Chen, Shyh-Yuan H. Hwang
  • Patent number: 7923589
    Abstract: A process for producing an alkylated aromatic product in a reactor by reacting an alkylatable aromatic compound feedstock with another feedstock comprising alkene component and alkane component in a reaction zone containing an alkylation catalyst. The reaction zone is operated in predominantly liquid phase without inter-zone alkane removal. The polyalkylated aromatic compounds can be separated as feed stream for transalkylation reaction in a transalkylation reaction zone.
    Type: Grant
    Filed: March 1, 2006
    Date of Patent: April 12, 2011
    Assignees: ExxonMobil Chemical Patents Inc., Stone & Webster, Inc.
    Inventors: Michael C. Clark, Brian Maerz
  • Patent number: 7910785
    Abstract: This disclosure relates to a process for hydrocarbon conversion comprising contacting, under conversion conditions, a feedstock suitable for hydrocarbon conversion with a catalyst comprising an EMM-10 family molecular sieve.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: March 22, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Wieslaw J. Roth, Jane C. Cheng, Mohan Kalyanaraman, Michael C. Kerby, Terry E. Helton
  • Patent number: 7868215
    Abstract: A process for producing cumene is provided which comprises the step of contacting benzene and propylene under at least partial liquid phase alkylating conditions with a particulate molecular sieve alkylation catalyst, wherein the particles of said alkylation catalyst have a surface to volume ratio of about 80 to less than 200 inch?1.
    Type: Grant
    Filed: November 10, 2009
    Date of Patent: January 11, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Ajit B. Dandekar, Michael Hryniszak, David Lawrence Stern
  • Patent number: 7863492
    Abstract: This invention relates to a process for producing linear alkyl benzene and linear paraffins, the process including the steps of obtaining a hydrocarbon condensate containing olefins, paraffins and oxygenates from a low temperature Fischer-Tropsch reaction; a) fractionating a desired carbon number distribution from the hydrocarbon condensate to form a fractionated hydrocarbon condensate stream; b) extracting oxygenates from the fractionated hydrocarbon condensate stream from step a) to form a stream containing olefins and paraffins; c) alkylating the stream containing olefins and paraffins from step b) with benzene in the presence of a suitable alkylation catalyst; and d) recovering linear alkyl benzene and linear paraffin.
    Type: Grant
    Filed: March 10, 2004
    Date of Patent: January 4, 2011
    Assignee: Sasol Technology (Proprietary) Limited
    Inventors: Edward Ludovicus Koper, Ivan Greager, Jan Hendrik Scholtz, Johan Pieter de Wet, Mieke Ann Desmet, Wilhelmina Jansen, Paul Jacobson
  • Patent number: 7847138
    Abstract: The disclosed invention relates to a process for converting ethylbenzene to styrene, comprising: flowing a feed composition comprising ethylbenzene in at least one process microchannel in contact with at least one catalyst to dehydrogenate the ethylbenzene and form a product comprising styrene; exchanging heat between the process microchannel and at least one heat exchange channel in thermal contact with the process microchannel; and removing product from the process microchannel. Also disclosed is an apparatus comprising a process microchannel, a heat exchange channel, and a heat transfer wall positioned between the process microchannel and heat exchange channel wherein the heat transfer wall comprises a thermal resistance layer.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: December 7, 2010
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Tonkovich, Kai Tod Paul Jarosch, Bin Yang, Francis P. Daly, Thomas P. Hickey, Jeffrey Marco, Timothy J. LaPlante, Richard Q. Long
  • Publication number: 20100305373
    Abstract: The present invention refers to a procedure for obtaining a linear monoalkylaromatic compound, with adjustable 2-phenyl isomer content and an extremely low sulphonation color, in which a catalytic system is used based on highly stable and active solid catalysts and with a high selectivity for linear monoalkylaromatic compounds.
    Type: Application
    Filed: December 4, 2007
    Publication date: December 2, 2010
    Applicant: CEPSA QUIMICA, S.A.
    Inventors: José Luis Berna Tejero, José Luis Almeida
  • Publication number: 20100298617
    Abstract: Disclosed herein is a process and catalyst for producing an ethylbenzene feed from a polyethylbenzene feed, comprising the step of contacting a benzene feed with a polyethylbenzene feed under at least partial liquid phase conditions in the presence of a zeolite beta catalyst having a phosphorus content in the range of 0.01 wt. % to 0.5 wt. % of said catalyst, to provide a product which comprises ethylbenzene.
    Type: Application
    Filed: July 29, 2010
    Publication date: November 25, 2010
    Inventors: Michael C. Clark, Jane C. Cheng, Ajit B. Dandekar
  • Patent number: 7834227
    Abstract: The present invention provides a reactor system having: (1) a first reactor receiving an oxygenate component and a hydrocarbon component and capable of converting the oxygenate component into a light olefin and the hydrocarbon component into alkyl aromatic compounds; (2) a separator system for providing a first product stream containing a C3 olefin, a second stream containing a C7 aromatic, and a third stream containing C8 aromatic compounds; (3) a first line connecting the separator to the inlet of the first reactor for conveying the second stream to the first reactor; (4) a second line in fluid communication with the separator system for conveying the C3 olefin to a propylene recovery unit, and (4) a third line in fluid communication with the separator system for conveying the C8 aromatic compounds to a xylene recovery unit.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: November 16, 2010
    Assignee: UOP LLC
    Inventors: Andrea G. Bozzano, Timur V. Voskoboynikov, Tom N. Kalnes, Paul T. Barger, Gavin P. Towler, Bryan K. Glover
  • Publication number: 20100249472
    Abstract: A process is described for producing an alkylaromatic compound in a multistage reaction system comprising at least first and second series-connected alkylation reaction zones each containing an alkylation catalyst. A first feed comprising an alkylatable aromatic compound and a second feed comprising an alkene and one or more alkanes are introduced into said first alkylation reaction zone, having operating conditions, e.g., temperature and pressure, which are controlled effective to cause the alkylatable aromatic compound to be partly in the vapor phase and partly in the liquid phase with the ratio of liquid volume to vapor volume of the feed in each zone to be from about 0.5 to about 10.
    Type: Application
    Filed: June 9, 2010
    Publication date: September 30, 2010
    Inventors: Michael C. Clark, Brian Maerz
  • Patent number: 7799961
    Abstract: A process for producing an alkylated aromatic compound from polyalkylated aromatic compound(s) having bi-alkylated aromatic compound(s) and tri-alkylated aromatic compound(s), comprising the step of contacting alkylatable aromatic compound(s) with the polyalkylated aromatic compound(s) at a transalkylation condition in the presence of a transalkylation catalyst. The transalkylation catalyst has high activity sufficient to achieve a ratio of bi-alkylated aromatic compound(s) conversion over tri-alkylated aromatic compound(s) conversion in a range of from about 0.5 to about 2.5.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: September 21, 2010
    Assignees: ExxonMobil Chemical Patents Inc., Stone & Webster, Inc.
    Inventors: Michael C. Clark, Vijay Nanda, Carlos N. Lopez, Brian Maerz, Chung-Ming Chi
  • Patent number: 7795487
    Abstract: Disclosed herein is a process and catalyst for producing a monoalkylated aromatic compound from a polyalkylated aromatic compound, comprising the step of contacting an alkylatable aromatic compound with a polyalkylated aromatic compound under at least partial liquid phase conditions in the presence of a zeolite beta catalyst having a phosphorus content in the range of 0.001 wt. % to 10.0 wt. % of said catalyst, to provide a product which comprises a monoalkylated aromatic compound.
    Type: Grant
    Filed: February 27, 2006
    Date of Patent: September 14, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michael C. Clark, Jane C. Cheng, Ajit B. Dandekar
  • Patent number: 7795483
    Abstract: The present invention is a process for producing phenyl-alkanes by paraffin adsorptive separation followed by paraffin dehydrogenation and then by alkylation of a phenyl compound by a lightly branched olefin. The adsorptive separation step employs a silicalite adsorbent and, as the desorbent, a C5-C8 linear paraffin, a C5-C8 cycloparaffin, a branched paraffin such as isooctane, or mixtures thereof. The effluent of the alkylation zone comprises paraffins that are recycled to the adsorptive separation step or to the dehydrogenation step. This invention is also a process that that sulfonates phenyl-alkanes having lightly branched aliphatic alkyl groups that to produce modified alkylbenzene sulfonates. In addition, this invention is the compositions produced by these processes, which can be used as detergents having improved cleaning effectiveness in hard and/or cold water while also having biodegradability comparable to that of linear alkylbenzene sulfonates, as lubricants, and as lubricant additives.
    Type: Grant
    Filed: September 9, 2003
    Date of Patent: September 14, 2010
    Assignee: UOP LLC
    Inventors: Santi Kulprathipanja, Richard E. Marinangeli, Stephen W. Sohn, Thomas R. Fritsch, R. Joe Lawson
  • Publication number: 20100217056
    Abstract: A process is disclosed for the alkylation of aromatics by charging a hydrocarbon feed containing aromatic hydrocarbons and olefinic hydrocarbons to a distillation column for separation into at least one fraction; removing an aromatics/olefin stream containing at least a portion of the aromatic hydrocarbons and at least a portion of the olefinic hydrocarbons; charging the aromatics/olefin stream to an alkylation reactor, operated at a temperature in the range of from about 80° C. to about 220° C., for alkylation of at least a portion of the aromatic hydrocarbons with the olefinic hydrocarbons; recycling at least a portion of the resulting reactor effluent to the distillation column; and removing a product stream containing alkylated aromatics from the distillation column.
    Type: Application
    Filed: February 20, 2009
    Publication date: August 26, 2010
    Applicant: ConocoPhillips Company
    Inventors: Bradley M. Taylor, Barbara A. Todd
  • Patent number: 7781630
    Abstract: Integrated processes for making detergent range alkylbenzenes from C5-C6-containing feeds involve feed pretreatment and/or selective hydrogenation to enable acceptable quality alkylbenzene production at attractive capital and operating costs.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: August 24, 2010
    Assignee: UOP LLC
    Inventors: Bryan K. Glover, Stephen W. Sohn, Mark G. Riley, Dean E. Rende
  • Patent number: 7781632
    Abstract: Integrated processes for making detergent range alkylbenzenes from C5-C6-containing feeds involve feed pretreatment and/or selective hydrogenation to enable acceptable quality alkylbenzene production at attractive capital and operating costs.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: August 24, 2010
    Assignee: UOP LLC
    Inventors: Bryan K. Glover, Stephen W. Sohn, Mark G. Riley, Dean E. Rende
  • Patent number: 7781631
    Abstract: Integrated processes for making detergent range alkylbenzenes from C5-C6-containing feeds involve feed pretreatment and/or selective hydrogenation to enable acceptable quality alkylbenzene production at attractive capital and operating costs.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: August 24, 2010
    Assignee: UOP LLC
    Inventors: Bryan K. Glover, Stephen W. Sohn, Mark G. Riley, Dean E. Rende
  • Publication number: 20100210886
    Abstract: A process for producing an ethylbenzene product having a purity of at least 99.50 percent based on the weight of ethylbenzene present in the product by the ethylation of the benzene present in non-extracted feed, e.g., non-extracted hydrocarbon composition. The non-extracted feed is substantially free of both C4? hydrocarbons and the C7+ aromatic hydrocarbons and contains benzene and benzene coboilers. The process is carried out in the liquid phase, in the presence of an acid-active catalyst containing MCM-22 family molecular sieve, and under specified conditions.
    Type: Application
    Filed: April 29, 2010
    Publication date: August 19, 2010
    Inventors: Stephen H. Brown, Nick A. Collins
  • Patent number: 7776207
    Abstract: A process for producing alkyl aromatic middle distillate fuels is described. The process includes (a) catalytically converting paraffinic naphtha to a composition containing benzene and olefins; (b) processing the olefin/benzene composition in an aromatic alkylation reactor to produce alkyl-benzene components (c) separating the alkyl aromatics from the unconverted naphtha; and (d) optionally recycling the unconverted paraffinic naphtha to the dehydrogenation/amortization reactor of step a.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: August 17, 2010
    Assignee: Syntroleum Corporation
    Inventors: Ramin Abhari, Paul Ahner
  • Patent number: 7772447
    Abstract: In a process for converting methane to liquid hydrocarbons, a feed containing methane is contacted with 0 dehydrocyclization catalyst under conditions effective to convert said methane to aromatic hydrocarbons, including benzene and/or naphthalene, and produce a first effluent stream comprising hydrogen and 0t least 5 wt % m>35 aromatic hydrocarbons than said feed. At least part the aromatic hydrocarbons from the first effluent stream is then reacted with hydrogen to produce a second effluent stream having a reduced benzene and/or naphthalene content compared with said first effluent stream.
    Type: Grant
    Filed: December 19, 2005
    Date of Patent: August 10, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Larry L. Iaccino, Elizabeth L. Stavens, Matthew J. Vincent
  • Publication number: 20100174121
    Abstract: The present invention relates to the production of butenes and derivatives thereof from dry ethanol, optionally obtained from a fermentation broth. The butenes thus produced find use as intermediates for the production of polyethylenes and other materials.
    Type: Application
    Filed: November 30, 2007
    Publication date: July 8, 2010
    Applicant: E.I DU PONT DE NEMOURS AND COMPANY
    Inventors: Leo Ernest Manzer, Michael B. D'Amore, Edward S. Miller, JR.
  • Publication number: 20100168347
    Abstract: A method for the separation of hydrocarbon compounds utilizing a dividing wall distillation column is described. The dividing wall distillation column enables one or more side draw stream to be removed from the dividing wall distillation column in addition to an overhead stream and a bottoms stream.
    Type: Application
    Filed: December 31, 2008
    Publication date: July 1, 2010
    Applicant: Fina Technology, Inc.
    Inventor: James R. Butler
  • Patent number: 7744750
    Abstract: This invention relates to a process for reducing the Bromine Index of a hydrocarbon feedstock having less than 5 wppm oxygenates-oxygen, comprising the step of contacting the feedstock with a catalyst at conversion conditions to form a first effluent, wherein the catalyst includes a molecular sieve having a zeolite structure type of MWW.
    Type: Grant
    Filed: November 17, 2005
    Date of Patent: June 29, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Stephen H. Brown, James R. Waldecker, Khavinet Lourvanij
  • Patent number: 7745674
    Abstract: A process for alkylation of benzene, including: feeding benzene, a polyalkylate, and a catalyst to a reactor comprising a first and a second reaction zone; reacting the benzene and the polyalkylate in the first reaction zone under transalkylation conditions to form a monoalkylate product; feeding a C2-C4 olefin to the reactor intermediate the first and second reaction zones; reacting benzene and the C2-C4 olefin in the second reaction zone under alkylation conditions to form additional monoalkylate product; recovering an effluent from the reactor, wherein the effluent comprises benzene, the monoalkylate product, any unreacted C2-C4 olefins, heavy hydrocarbons, and the catalyst; separating the catalyst from the effluent; separating the benzene from the monoalkylate product and the heavy hydrocarbons within the liquid effluent; separating the monoalkylate product from the heavy hydrocarbons within the liquid effluent; and recovering the monoalkylate product.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: June 29, 2010
    Assignee: Catalytic Distillation Technologies
    Inventors: Christopher C. Boyer, Lawrence A. Smith, Jr.
  • Patent number: 7744828
    Abstract: Disclosed is a process and apparatus for removing nitrogen compounds from an alkylation substrate such as benzene. A conventional adsorbent bed can be used to adsorb basic organic nitrogen compounds and a hot adsorbent bed of acidic molecular sieve can adsorb the weakly basic nitrogen compounds such as nitrites. Water facilitates the adsorption of the weakly basic nitrogen compounds. Running an alkylation substrate stream from a fractionation column of elevated temperature and suitable water concentration to the hot adsorbent bed may be advantageous.
    Type: Grant
    Filed: January 28, 2005
    Date of Patent: June 29, 2010
    Assignee: UOP LLC
    Inventors: Robert J. Schmidt, Andrew S. Zarchy
  • Patent number: 7737312
    Abstract: This invention relates to a process for producing linear alkyl benzene, the process including the steps of obtaining a hydrocarbon condensate containing olefins, paraffins and oxygenates from a low temperature Fischer-Tropsch reaction; a) fractionating a desired carbon number distribution from the hydrocarbon condensate to form a fractionated hydrocarbon condensate stream; b) extracting oxygenates from the fractionated hydrocarbon condensate stream from step (a) to form a stream containing olefins and paraffins; c) combining the stream containing olefins and paraffins from step (b) with the feed stream from step (g) to form a combined stream; d) alkylating olefins in the combined stream from step (c) with benzene in the presence of a suitable alkylation catalyst in an alkylation reactor; e) recovering linear alkyl benzene from the alkylation reactor; f) recovering unreacted paraffins from the alkylation reactor; g) dehydrogenating the unreacted paraffins in the presence of a suitable dehydrogenation catalyst
    Type: Grant
    Filed: March 10, 2004
    Date of Patent: June 15, 2010
    Assignee: Sasol Technology (Proprietary) Limited
    Inventors: Ivan Greager, Jan Hendrik Scholtz, Johan Pieter de Wet, Mieke Ann Desmet, Wilhelmina Jansen, Paul Jacobson, Luis Pablo Fidel Dancuart
  • Publication number: 20100145119
    Abstract: Disclosed is a method for separating aromatic compounds using a simulated moving bed adsorptive chromatography, comprising a sulfolan process that is a non-aromatic compound removing process, a benzene/toluene fractionation process, an aromatic compound fractionation process, a selective toluene disproportionation process, a transalkylation process, a simulated moving bed para-xylene separation process and a xylene isomerization process, wherein the method is characterized by further comprising a simulated moving bed xylene mixture pre-treatment process and an additional xylene isomerization process. The separation method of aromatic compounds according to the present invention can make significant improvement in para-xylene and benzene production in the overall process, as compared to the conventional aromatic compound separation process.
    Type: Application
    Filed: October 31, 2007
    Publication date: June 10, 2010
    Applicant: SAMSUNG TOTAL PETROCHEMICALS CO., LTD.
    Inventors: Jin-Suk Lee, Hyun-Chul Kim
  • Patent number: 7731839
    Abstract: A process for reducing the Bromine Index of a hydrocarbon feedstock, the process comprising the step of contacting the hydrocarbon feedstock with a catalyst at conversion conditions, wherein the catalyst includes at least one molecular sieve and at least one clay, and wherein said catalyst is sufficient to reduce more than 50% of the Bromine Index of a hydrocarbon feedstock.
    Type: Grant
    Filed: May 27, 2005
    Date of Patent: June 8, 2010
    Assignee: Exxonmobil Chemical Patents Inc.
    Inventors: Stephen Harold Brown, Gary David Mohr, Michael Christopher Clark, Selma Lawrence
  • Patent number: 7732651
    Abstract: A process for alkylating an aromatic compound containing no hydroxyl groups comprising reacting at least one non-hydroxyl containing aromatic compound with at least one olefinic oligomer in the presence of an acidic ionic liquid catalyst, wherein the olefinic oligomer has a carbon range of from about C12 to about C70 and is synthesized by oligomerizing at least one monoolefin monomer in the presence of an acidic ionic liquid catalyst.
    Type: Grant
    Filed: June 1, 2006
    Date of Patent: June 8, 2010
    Assignee: Chevron Oronite Company, LLC
    Inventors: Michael Driver, Curt B. Campbell, Thomas V. Harris
  • Patent number: 7728184
    Abstract: Process for the production of vinyl-aromatic monomers which comprises: a) feeding an aromatic stream and an olefinic stream to alkylation; b) feeding the reaction product coming from the alkylation section to a first separation section; c) recovering the mono-alkylated aromatic hydrocarbon from the first separation section; d) feeding the mono-alkylated aromatic product to a dehydrogenation section; e) cooling and condensing the reaction gases in the shell of one or more heat exchangers; f) feeding the reaction product coming from the dehydrogenation section to a second separation section; g) recovering the stream of vinyl-aromatic monomer.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: June 1, 2010
    Assignee: Polimeri Europa S.p.A.
    Inventors: Mario Lucchini, Armando Galeotti
  • Patent number: 7718836
    Abstract: The present invention relates to an integrated process for the production of high purity 2,6-dimethylnaphthalene starting from hydrocarbon mixtures containing naphthalene and/or isomers of methylnaphthalene and/or isomers of dimethylnaphthalene and/or isomers of polymethylnaphthalene, and from an alkylating agent, preferably methanol, reacted in the presence of a methylated benzene solvent or mixture of various methylated benzene solvents, preferably selected from toluene, xylene and trimethylbenzene, and a catalyst consisting of ZSM-12 zeolite and an inorganic ligand.
    Type: Grant
    Filed: June 6, 2002
    Date of Patent: May 18, 2010
    Assignees: ENI S.p.A., Polimeri Europa S.p.A.
    Inventors: Gianni Girotti, Giuseppe Terzoni, Oscar Cappellazzo, Renzo Bignazzi, Giannino Pazzuconi
  • Publication number: 20100105971
    Abstract: Disclosed is a method for separating aromatic compounds using a simulated moving bed adsorptive chromatography and a crystallization process, comprising a sulfolan process that is a non-aromatic compound removing process, a benzene/toluene fractionation process, an aromatic compound fractionation process, a selective toluene disproportionation process, a transalkylation process, a crystallization process for para-xylene separation, a simulated moving bed para-xylene separation process and a xylene isomerization process, wherein the method is characterized by further comprising a simulated moving bed xylene mixture pre-treatment process and an additional xylene isomerization process. The separation method of aromatic compounds according to the present invention can make significant improvement in para-xylene and benzene production in the overall process, as compared to the conventional aromatic compound separation process.
    Type: Application
    Filed: October 31, 2007
    Publication date: April 29, 2010
    Applicant: SAMSUNG TOTAL PETROCHEMICALS CO., LTD.
    Inventors: Jin-Suk Lee, Hyun-Chul Kim
  • Patent number: 7696394
    Abstract: Methods and processes for reducing alkylation catalyst poisoning are described herein.
    Type: Grant
    Filed: December 3, 2008
    Date of Patent: April 13, 2010
    Assignee: Fina Technology, Inc.
    Inventors: James R. Butler, Marcus Ledoux, Michael Betbeze
  • Publication number: 20100087686
    Abstract: An integrated process for producing aromatic hydrocarbons and ethylene and/or propylene and optionally other lower olefins from low molecular weight hydrocarbons, preferably methane, which comprises: (a) contacting at least one low molecular weight alkane, preferably methane, with a halogen, preferably bromine. under process conditions sufficient to produce a monohaloalkane, preferably monobromomethane, (b) reacting the monohaloalkane in the presence of a coupling catalyst to produce aromatic hydrocarbons and C2+ alkanes, (c) separating the aromatic hydrocarbons from the product mixture of step (b) to produce aromatic hydrocarbons, and (d) cracking at least part of the C2+ alkanes in an alkane cracking system to produce ethylene and/or propylene and optionally other lower olefins.
    Type: Application
    Filed: October 5, 2009
    Publication date: April 8, 2010
    Inventors: Howard Lam Ho FONG, Richard Dale SWAIN
  • Publication number: 20100081853
    Abstract: A process for alkylation of an alkylatable aromatic compound to produce a monoalkylated aromatic compound, comprising the steps of: (a) providing at least one reaction zone having a water content with at least one alkylation catalyst having an activity and a selectivity for said monoalkylated benzene, said alkylation catalyst comprising a porous crystalline molecular sieve of a MCM-22 family material, said MCM-22 family material is characterized by having an X-ray diffraction pattern including d-spacing maxima at 12.4±0.25, 3.57±0.07 and 3.42±0.
    Type: Application
    Filed: December 7, 2009
    Publication date: April 1, 2010
    Inventor: Michael C Clark
  • Patent number: 7686946
    Abstract: One exemplary embodiment can include a method of altering a feed to a transalkylation zone by changing a destination of a stream rich in an aromatic C9 for increasing production of at least one of benzene, toluene, para-xylene, and an aromatic gasoline blend. The method can include providing the stream rich in an aromatic C9 from a first fractionation zone that receives an effluent from a second fractionation zone. The second fractionation zone may produce a stream rich in at least one of benzene and toluene. The stream rich in the aromatic C9 can be at least partially comprised in at least one of the feed to the transalkylation zone and the aromatic gasoline blend.
    Type: Grant
    Filed: August 17, 2007
    Date of Patent: March 30, 2010
    Assignee: UOP LLC
    Inventor: Lubo Zhou
  • Publication number: 20100076237
    Abstract: A process for alkylation or transalkylation of an alkylatable aromatic compound having reactive impurities with an alkylating agent to produce a monoalkylated aromatic compound, comprising the steps of contacting at least a portion of said alkylatable aromatic compounds and said alkylating agent with a first molecular sieve catalyst in a guard bed under suitable conditions to remove said reactive impurities and form a first effluent comprising monoalkylated aromatic compound, unreacted alkylatable aromatic compounds and unreacted alkylating agent; contacting said first effluent with a second molecular sieve catalyst different from said first molecular sieve catalyst in said reaction zone under suitable alkylation or transalkylation conditions to produce additional said monoalkylated aromatic compounds; and maintaining said water content from about 1 wppm to about 10 wt.
    Type: Application
    Filed: December 2, 2009
    Publication date: March 25, 2010
    Inventors: Michael C. Clark, Vijay Nanda
  • Patent number: 7683226
    Abstract: Integrated processes for making detergent range alkylbenzenes from C5-C6-containing feeds involve feed pretreatment and/or selective hydrogenation to enable acceptable quality alkylbenzene production at attractive capital and operating costs.
    Type: Grant
    Filed: December 7, 2006
    Date of Patent: March 23, 2010
    Assignee: UOP LLC
    Inventors: Bryan K. Glover, Stephen W. Sohn, Mark G. Riley, Dean E. Rende