Including An Alkylation Step Patents (Class 585/323)
  • Patent number: 6670517
    Abstract: A process for alkylating aromatics is provided which comprises contacting an aromatic-containing feed with alkylating agent in the presence of a silica-bound ZSM-5 zeolite catalyst, wherein the ZSM-5 has a crystal size no greater than 0.05 micron, said contacting being conducted under alkylating conditions to provide a product containing a monoalkylated aromatic fraction and a polyalkylated aromatic fraction, wherein the polyalkylated aromatic fraction contains at least 40 wt. % of the para-dialkylaromatic species. The polyalkylated aromatic fraction may be contacted with unsubstituted aromatic and a transalkylation catalyst under transalkylating conditions to provide a mono-alkylated aromatic-rich stream, e.g., an ethylbenzene-rich stream.
    Type: Grant
    Filed: August 24, 2000
    Date of Patent: December 30, 2003
    Assignee: Exxon Mobil Chemical Patents Inc.
    Inventors: Jeevan Sahib Abichandani, Chaya Rao Venkat, Dominick Nicholas Mazzone
  • Patent number: 6670516
    Abstract: A process for producing phenyl-alkanes by paraffin dehydrogenation followed by olefin isomerization and then by alkylation of a phenyl compound by a lightly branched olefin is disclosed. An effluent of the alkylation section comprises paraffins that are recycled to the dehydrogenation step. A process that sulfonates phenyl-alkanes having lightly branched aliphatic alkyl groups to produce modified alkylbenzene sulfonates is also disclosed. In addition, the compositions produced by these processes, which can comprise detergents, lubricants, and lubricant additives, are disclosed.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: December 30, 2003
    Assignee: UOP LLC
    Inventors: Richard E. Marinangeli, Leonid B. Galperin, Thomas R. Fritsch, R. Joe Lawson
  • Patent number: 6642425
    Abstract: A unified process for reactive distillation under pressure for the alkylation of light aromatic hydrocarbons such as benzene and cumene with straight chain C6-C18 olefins using a solid acid alkylation catalyst supported in the reflux zone of the distillation column. The process is continuous, using a reactive distillation configuration such that at least a portion of the olefin is injected below the benzene rectification zone at the top of the column. The aromatic hydrocarbon is injected continuously at a low rate above the rectification zone at the base of the column and above the reboiler. The alkylation reaction takes place primarily in the liquid phase on the solid acid catalyst and is characterized in that the molar ratio of aromatic hydrocarbon to olefin in the liquid phase may be adjusted.
    Type: Grant
    Filed: March 5, 2002
    Date of Patent: November 4, 2003
    Assignee: Sasol North America Inc.
    Inventors: J. Barry Winder, Donald L. Wharry, John R. Schell, Mary J. Brown, Joy L. Murray, Richard C. Howe, Wayne L. Sorensen, Daniel P. Szura
  • Patent number: 6632971
    Abstract: A process for treating methane-containing natural gas is provided which comprises: i) converting methane to methanol at or near a site of natural gas production; ii) transporting the methanol to a refinery remote from said site of production, said refinery producing ethylene and propylene and comprising an alkylation unit which can utilize a propylene feed; and iii) converting said methanol to gasoline boiling range fuel product and petrochemicals, including ethylene, propylene, butenes and xylenes.
    Type: Grant
    Filed: August 30, 2001
    Date of Patent: October 14, 2003
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Stephen H. Brown, William A. Weber, Reuel Shinnar
  • Patent number: 6620387
    Abstract: A transalkylation reactor having a plurality of catalyst beds with individual feed points for each bed for converting poly alkylated benzene, typically products from a alkylation process, to mono alkylated benzene. Only so many of the catalyst beds are used to optimize the conversion of poly substituted benzene to mono substituted benzene. As the catalyst ages more of the beds are utilized to maintain conversion.
    Type: Grant
    Filed: August 21, 1998
    Date of Patent: September 16, 2003
    Assignee: Catalytic Distillation Technologies
    Inventor: Angel Sy
  • Publication number: 20030171630
    Abstract: A unified process for reactive distillation under pressure for the alkylation of light aromatic hydrocarbons such as benzene and cumene with straight chain C6-C18 olefins using a solid acid alkylation catalyst supported in the reflux zone of the distillation column. The process is continuous, using a reactive distillation configuration such that at least a portion of the olefin is injected below the benzene rectification zone at the top of the column. The aromatic hydrocarbon is injected continuously at a low rate above the rectification zone at the base of the column and above the reboiler. The alkylation reaction takes place primarily in the liquid phase on the solid acid catalyst and is characterized in that the molar ratio of aromatic hydrocarbon to olefin in the liquid phase may be adjusted.
    Type: Application
    Filed: March 5, 2002
    Publication date: September 11, 2003
    Inventors: J. Barry Winder, Donald L. Wharry, John R. Schell, Mary J. Brown, Joy L. Murray, Richard C. Howe, Wayne L. Sorensen, Daniel P. Szura
  • Patent number: 6617481
    Abstract: The present invention is a process for producing phenyl-alkanes by paraffin adsorptive separation followed by paraffin dehydrogenation and then by alkylation of a phenyl compound by a lightly branched olefin. The adsorptive separation step employs a silicalite adsorbent and, as the desorbent, a C5-C8 linear paraffin, a C5-C8 cycloparaffin, a branched paraffin such as isooctane, or mixtures thereof. The effluent of the alkylation zone comprises paraffins that are recycled to the adsorptive separation step or to the dehydrogenation step. This invention is also a process that sulfonates phenyl-alkanes having lightly branched aliphatic alkyl groups that to produce modified alkylbenzene sulfonates. In addition, this invention is the compositions produced by these processes, which can be used as detergents having improved cleaning effectiveness in hard and/or cold water while also having biodegradability comparable to that of linear alkylbenzene sulfonates, as lubricants, and as lubricant additives.
    Type: Grant
    Filed: August 29, 2000
    Date of Patent: September 9, 2003
    Assignee: UOP LLC
    Inventors: Santi Kulprathipanja, Richard E. Marinangeli, Stephen W. Sohn, Thomas R. Fritsch, R. Joe Lawson
  • Publication number: 20030166982
    Abstract: A Fischer-Tropsch C3-C4 olefin stream is treated to lower the oxygenate content to below 4000 ppm. Another Fischer-Tropsch fraction is hydrotreated and hydrocracked to provide an isobutane-containing stream. The treated C3-C4 olefin stream is reacted with the isobutane stream in an alkylation reactor to provide a highly branched, high octane isoparaffinic alkylate. The alkylate is useful as a blending component in motor gasoline.
    Type: Application
    Filed: January 31, 2002
    Publication date: September 4, 2003
    Inventors: Dennis J. O' Rear, Steven S. Mathur, Thomas Van Harris, Curtis L. Munson, Cong-Yan Chen
  • Publication number: 20030125591
    Abstract: In a process for the selective production of meta-diisopropylbenzene, a C9+ aromatic hydrocarbon feedstock containing meta- and ortho-diisopropylbenzene is contacted with benzene under conversion conditions with a catalyst comprising a molecular sieve selected from the group consisting of zeolite beta, mordenite and a porous crystalline inorganic oxide material having an X-ray diffraction pattern including the d-spacing maxima at 12.4±0.25, 6.9±0.15, 3.57±0.07 and 3.42±0.07 Angstrom. The contacting step selectively converts ortho-diisopropylbenzene in the feedstock to produce an effluent in which the ratio of meta-diispropylbenzene to ortho-diispropylbenzene is greater than that of the feedstock. The effluent is the fed to a separation zone for recovery of a product rich in meta-diisopropylbenzene.
    Type: Application
    Filed: December 13, 2002
    Publication date: July 3, 2003
    Inventors: William A. Weber, Charles Morris Smith, Francis S. Bryan, Stephen H. Brown, Jane C. Cheng
  • Publication number: 20030094398
    Abstract: A process is provided to produce a dilute ethylene stream and a dilute propylene stream to be used as feedstocks for producing olefin-based derivatives. Specifically, the dilute ethylene stream is used as a feedstock to produce ethylbenzene, and the dilute propylene stream is used as a feedstock to produce cumene, acrylic acid, propylene oxide and other propylene based derivatives.
    Type: Application
    Filed: November 16, 2001
    Publication date: May 22, 2003
    Inventors: Rodney L. Porter, Anne M. Balinsky, Eric P. Weber
  • Publication number: 20030092949
    Abstract: A process for producing cumene is provided which comprises the step of contacting benzene and propylene under at least partial liquid phase alkylating conditions with a particulate molecular sieve alkylation catalyst, wherein the particles of said alkylation catalyst have a surface to volume ratio of about 80 to less than 200 inch−1.
    Type: Application
    Filed: December 13, 2002
    Publication date: May 15, 2003
    Inventors: Ajit B. Dandekar, Michael Hryniszak, David Lawrence Stern
  • Publication number: 20030088133
    Abstract: The invention provides methods for preparing a blended lube base oils comprising at least one highly paraffinic Fischer Tropsch lube base stocks and at least one base stock composed of alkylaromatics, alkylcycloparaffins, or mixtures thereof. The use of base stocks composed of alkylaromatics, alkylcycloparaffins, or mixtures thereof improves the yield of lube base oils from Fischer Tropsch facilities, as well as provides moderate improvements in physical properties including additive solubility. The invention provides processes for obtaining such blended lube base oils using the products of Fischer Tropsch processes.
    Type: Application
    Filed: October 19, 2001
    Publication date: May 8, 2003
    Inventor: Dennis J. O'Rear
  • Patent number: 6525233
    Abstract: Processes for making particularly branched, especially monomethyl-branched or nongeminal dimethyl-branched surfactants used in cleaning products; preferred processes comprising particular combinations of two or more adsorptive separation steps and, more preferably, particular alkylation steps; products of such processes, including certain modified alkylbenzenes, modified alkylbenzenesulfonate surfactants, and consumer cleaning products, especially laundry detergents, containing them. Preferred processes herein more specifically use specific, unconventional sequences of sorptive separation steps to secure certain branched hydrocarbon fractions which are used in further process steps as alkylating agents for arenes or for other useful surfactant-making purposes. Surprisingly, such fractions can even be derived from effluents from current linear alkylbenzene manufacture.
    Type: Grant
    Filed: January 7, 2000
    Date of Patent: February 25, 2003
    Assignee: The Procter & Gamble Company
    Inventors: Daniel Stedman Connor, Jeffrey John Scheibel, James Charles Theophile Roger Burkett-St. Laurent, Thomas Anthony Cripe, Kevin Lee Kott, Phillip Kyle Vinson
  • Patent number: 6521804
    Abstract: The present invention is a process for producing phenyl-alkanes by alkylation of an aryl compound with an olefinic compound and which uses a mordenite catalyst and a silica-alumina catalyst. This invention is also a process that sulfonates phenyl-alkanes having lightly branched aliphatic alkyl groups to produce modified alkylbenzene sulfonates. In addition, this invention is the compositions produced by these processes, which can be used as detergents having improved cleaning effectiveness in hard and/or cold water while also having biodegradability comparable to that of linear alkylbenzene sulfonates, as lubricants, and as lubricant additives. This invention is moreover the use of compositions produced by these processes as lubricants and lubricant additives.
    Type: Grant
    Filed: August 24, 2001
    Date of Patent: February 18, 2003
    Assignee: UOP LLC
    Inventors: Richard E. Marinangeli, R. Joe Lawson
  • Publication number: 20030028059
    Abstract: An integrated process of preparing a C2-5 alkenyl-substituted aromatic compound using a C6-12 aromatic compound and a C2-5 alkane as raw materials.
    Type: Application
    Filed: July 11, 2002
    Publication date: February 6, 2003
    Inventors: Simon Hamper, William M. Castor, Richard A. Pierce
  • Patent number: 6512153
    Abstract: Process for the alkylation of aromatic compounds by the reaction of the aromatic compound of interest with isopropanol, alone or mixed with propylene, wherein the reaction is carried out in the presence of a catalytic composition based on zeolite, under mixed gas-liquid phase conditions or under completely liquid phase conditions, at such temperature and pressures that the concentration of water in the reaction liquid phase is not higher than 8,000 ppm w/w, regardless of the total water content present in the reaction mixture.
    Type: Grant
    Filed: July 7, 2000
    Date of Patent: January 28, 2003
    Assignee: Enichem S.p.A.
    Inventors: Oscar Cappellazzo, Gianni Girotti, Massimiliano Pollastri, Sergio Lombardini, Domenico Piccininno
  • Publication number: 20030018227
    Abstract: In a process for the selective production of meta-diisopropylbenzene, a C9+ aromatic hydrocarbon feedstock containing meta- and ortho-diisopropylbenzene is contacted with benzene under conversion conditions with a catalyst comprising a molecular sieve selected from the group consisting of zeolite beta, mordenite and a porous crystalline inorganic oxide material having an X-ray diffraction pattern including the d-spacing maxima at 12.4±0.25, 6.9±0.15, 3.57±0.07 and 3.42±0.07 Angstrom. The contacting step selectively converts ortho-diisopropylbenzene in the feedstock to produce an effluent in which the ratio of meta-diisopropylbenzene to ortho-diisopropylbenzene is greater than that of the feedstock. The effluent is the fed to a separation zone for recovery of a product rich in meta-diisopropylbenzene.
    Type: Application
    Filed: June 25, 2001
    Publication date: January 23, 2003
    Inventors: William A. Weber, Charles Morris Smith, Francis S. Bryan, Stephen H. Brown, Jane C. Cheng
  • Patent number: 6500996
    Abstract: A process for the removal of hydrocarbon contaminants, such as dienes and olefins, from an aromatics reformate by contacting an aromatics reformate stream with a hydrotreating catalyst and/or a molecular sieve. The hydrotreating catalyst substantially converts all dienes to oligomers and partially converts olefins to alkylaromatics. The molecular sieve converts the olefins to alkylaromatics. The process provides an olefin depleted product which can be passed through a clay treater to substantially convert the remaining olefins to alkylaromatics. The hydrotreating catalyst has a metal component of nickel, cobalt, chromium, vanadium, molybdenum, tungsten, nickel-molybdenum, cobalt-nickel-molybdenum, nickel-tungsten, cobalt-molybdenum or nickel-tungsten-titanium, with a nickel molybdenum/alumina catalyst being preferred. The molecular sieve is an intermediate pore size zeolite, preferably MCM-22. The clay treatment can be carried out with any clay suitable for treating hydrocarbons.
    Type: Grant
    Filed: October 28, 1999
    Date of Patent: December 31, 2002
    Assignee: ExxonMobil Oil Corporation
    Inventors: Stephen H. Brown, Tarun K. Chaudhuri, Jose G. Santiesteban
  • Patent number: 6479721
    Abstract: A process for the alkylation of aromatics with olefins using a solid catalyst is disclosed, wherein the olefin ratio and/or the maximum olefin concentration in the alkylation catalyst, bed is maintained less than an upper limit. Such operation can decrease the catalyst deactivation rate and the formation of diphenylalkanes. This invention is applicable to processes for the production of a wide variety of commercially important alkylated aromatics, including ethylbenzene and cumene.
    Type: Grant
    Filed: March 28, 2000
    Date of Patent: November 12, 2002
    Assignee: UOP LLC
    Inventors: Gregory J. Gajda, James F. McGehee
  • Patent number: 6479720
    Abstract: A process for the production of alkylaromatic hydrocarbons by alkylating aromatic hydrocarbons with linear olefinic hydrocarbons is disclosed. The linear olefinic hydrocarbons are produced by dehydrogenating linear paraffinic hydrocarbons which are extracted from a heartcut that is distilled from a kerosene boiling range fraction in either a dividing wall fractionation column or in two fully thermally coupled fractionation columns. The process significantly decreases the cost of utilities in producing alkylaromatic precursors for detergent manufacture.
    Type: Grant
    Filed: December 29, 1999
    Date of Patent: November 12, 2002
    Assignee: UOP LLC
    Inventors: Dennis E. O'Brien, Dennis H. Bielinski, Zhanping Xu
  • Patent number: 6429345
    Abstract: The invention concerns a process for producing at least one compound selected from 2-, 3-, 4-, 5- and 6-phenylalkanes by alkylating benzene using at least one olefin containing at least 9 carbon atoms per molecule, in the presence of a catalyst comprising at least one zeolite with structure type EUO, at least partially in its acid form and at least one matrix, said zeolite comprising silicon and at least one element T selected from the group formed by aluminium, iron, gallium and boron (preferably aluminium and boron), with an Si/T atomic ratio of more than 5; said process being carried out at a temperature in the range 30° C. to 400° C., a pressure in the range 0.1 to 10 MPa, with an hourly space velocity of 0.50 to 200 h−1, and a benzene/olefins mole ratio in the range 1:1 to 50:1.
    Type: Grant
    Filed: June 22, 2000
    Date of Patent: August 6, 2002
    Assignee: Institut Francais du Petrole
    Inventors: Jean-François Joly, Fabio Alario, Elisabeth Merlen, Julia Magne-Drisch
  • Patent number: 6417420
    Abstract: A process for the production of alkylaromatic hydrocarbons by alkylating aromatic hydrocarbons with olefinic hydrocarbons is disclosed. The olefinic hydrocarbons are produced by dehydrogenating paraffinic hydrocarbons. Aromatic byproducts formed in dehydrogenation are removed using an aromatic byproducts removal zone and either a dividing wall distillation column or thermally coupled distillation columns. The process significantly decreases the cost of utilities in producing alkylaromatics, such as precursors for detergent manufacture.
    Type: Grant
    Filed: February 26, 2001
    Date of Patent: July 9, 2002
    Assignee: UOP LLC
    Inventors: Douglas G. Stewart, Dennis E. O'Brien
  • Patent number: 6392109
    Abstract: An integrated process for producing alkylbenzenes, sulfonated alkylbenzenes and/or alkylcyclohexanes from syngas is disclosed. The process involves subjecting syngas to Fischer-Tropsch conditions. Fractions rich in C6-8 and C18-26 hydrocarbons are isolated from the resulting product stream. The C6-8 fraction is subjected to catalytic reforming conditions to form aromatics. The C18-26 fraction may include sufficient olefins for use in an alkylation reaction with the aromatics. Optionally, the fraction may be subjected to dehydrogenation conditions to provide additional olefins. The resulting olefins are reacted with the aromatics in an alkylation reaction to yield alkylbenzenes. Unconverted olefins, paraffins, and aromatics can be obtained from the product stream via fractional distillation and recycled to form additional products. The alkylbenzenes can be hydrogenated to yield alkylcyclohexanes, which are useful as synlubes or as components in lube oil compositions.
    Type: Grant
    Filed: February 29, 2000
    Date of Patent: May 21, 2002
    Assignee: Chevron U.S.A. Inc.
    Inventors: Dennis J. O'Rear, William L. Schinski
  • Publication number: 20020052534
    Abstract: The invention concerns a process for converting hydrocarbons using at least one globally endothermic chemical reaction, in which a hydrocarbon feed successively traverses at least two reaction zones each containing at least one solid catalyst and comprising between said reaction zones an intermediate step, in a non catalytic zone, for reheating the stream (ST) from the first of the two reaction zones prior to its introduction into said second reaction zone, and in which said reheating is carried out in a heat exchanger, with heat transfer essentially by convection using a thermal fluid TF with a coking sensitivity index CS that is less than that of the stream ST, the difference in temperature &Dgr;T between the temperature of the fluid TF at the inlet to the exchanger and the temperature of the stream ST at the heat exchanger outlet being less than 250° C. The invention also concerns the use of said process for converting hydrocarbons and a unit for carrying out the process.
    Type: Application
    Filed: October 30, 2001
    Publication date: May 2, 2002
    Applicant: Institut Francais du Petrole
    Inventors: Eric Lenglet, Frederic Hoffmann, Nicolas Boudet
  • Patent number: 6376729
    Abstract: A process for the production of ethylbenzene by the gas phase alkylation of benzene over a molecular sieve aromatic alkylation catalyst followed by liquid phase alkylation of the product of the gas phase alkylation. A feedstock containing benzene and ethylene is supplied to a first alkylation reaction zone containing a molecular sieve aromatic alkylation catalyst. The reaction zone is operated at temperature and pressure conditions to cause gas phase ethylation of the benzene with the production of an alkylation product comprising a mixture of ethylbenzene and polyalkylated aromatic components including diethylbenzene. The output from the first alkylation reaction zone is supplied, at least in part, to a second alkylation zone which is operated in the liquid phase or in the supercritical region followed by supply to an intermediate recovery zone for the separation and recovery of ethylbenzene and a polyalkylated aromatic compound component including diethylbenzene.
    Type: Grant
    Filed: December 4, 2000
    Date of Patent: April 23, 2002
    Assignee: Fina Technology, Inc.
    Inventors: James T. Merrill, James R. Butler
  • Patent number: 6376730
    Abstract: A layered catalyst composition is disclosed where the composition is prepared by bonding an outer layer comprising a bound zeolite (e.g. zeolite beta) to an inner core material (e.g. cordierite). The use of an organic bonding agent in the catalyst preparation procedure provides a composition that is sufficiently resistant to mechanical attrition to be used commercially in aromatic alkylation processes (e.g. benzene alkylation to ethylbenzene). Advantages associated with the use of layered compositions include a significant reduction in the amount of zeolite used for a given reactor loading and improved selectivity to desired alkylated aromatic products. Further benefits are realized when the layered composition is formed into shapes having a sufficiently high void volume to reduce pressure drop across the alkylation catalyst bed. This is especially relevant for operation involving high recycle rates and consequently low alkylating agent concentrations in the reaction zone.
    Type: Grant
    Filed: June 26, 2000
    Date of Patent: April 23, 2002
    Assignee: UOP LLC
    Inventors: Deng-Yang Jan, James F. Mc Gehee, Guy B. Woodle, Masao Takayama, Raelynn M. Miller
  • Patent number: 6368496
    Abstract: Bromine reactive hydrocarbon contaminants are removed from aromatic streams by first providing an aromatic feedstream having a negligible diene level. The feedstream is contacted with an acid active catalyst composition under conditions sufficient to remove mono-olefins. An aromatic stream may be pretreated to remove dienes by contacting the stream with clay, hydrogenation or hydrotreating catalyst under conditions sufficient to substantially remove dienes but not mono-olefins.
    Type: Grant
    Filed: February 3, 1998
    Date of Patent: April 9, 2002
    Assignee: ExxonMobil Oil Corporation
    Inventors: Stephen H. Brown, Terry E. Helton, Arthur P. Werner
  • Patent number: 6350930
    Abstract: A method for producing an aromatic compound styrenic compound adduct comprising the steps of: (1) reacting an aromatic compound and a styrenic compound in a first reactor 1 of fixed-bed flow type in a liquid phase in the presence of a solid acid catalyst, (2) circulating a part of the reaction mixture from the above step to the first reactor 1, (3) feeding a reaction mixture flowing out from the first reactor to a second reactor 3, thereby reducing the content of unsaturated components with the aid of a solid acid catalyst, and (4) distilling the resultant reaction mixture, to thereby obtain a fraction having a reduced content of unsaturated components. The method can be used for producing an aromatic compound/styrenic compound adduct having a reduced content of unsaturated components in high yield and at a low cost.
    Type: Grant
    Filed: April 19, 2000
    Date of Patent: February 26, 2002
    Assignee: Nippon Petrochemicals Company, Limited
    Inventors: Hideyuki Dohi, Shozo Hayashi
  • Publication number: 20020016520
    Abstract: Integrated process for the preparation of cumene which comprises dehydrogenating a stream of propane to propylene in a dehydrogenation unit and sending the stream leaving the dehydrogenation unit, containing 25-40% by weight of propylene, to an alkylation unit together with a stream of benzene with a molar ratio benzene/propylene ranging from 8 to 10. The alkylation product is distilled in a first distillation column to recover a light fraction, essentially consisting of propane which is recycled to the dehydrogenation, and a heavy fraction which is distilled in a second distillation column to recover non-reacted benzene at the head, recycled to the alkylation unit, and cumene with a purity of over 99%, at the tail.
    Type: Application
    Filed: June 13, 2001
    Publication date: February 7, 2002
    Applicant: SNAMPROGETTI S.p.A.
    Inventors: Alberto Paggini, Domenico Sanfilippo, Elena Picciotto
  • Patent number: 6339179
    Abstract: A process for producing alkyl aromatics using a transalkylation reaction zone and an alkylation reaction zone is disclosed. One portion of the transalkylation reaction zone effluent passes to an alkylation reaction zone where an aromatic substrate is alkylated to the desired alkyl aromatic. At least a portion of the alkylation reaction zone effluent and another portion of the transalkylation reaction zone effluent pass to a product recovery zone. This process decreases the capital and operating costs of recycling aromatic substrate to the transalkylation and/or alkylation reaction zone while maintaining operational flexibility. This process is well suited for solid transalkylation and alkylation catalysts. Ethylbenzene and cumene may be produced by this process.
    Type: Grant
    Filed: July 25, 2000
    Date of Patent: January 15, 2002
    Assignee: UOP LLC
    Inventors: Russell C. Schulz, Gregory J. Gajda, Guy B. Woodle, Andrew S. Zarchy
  • Patent number: 6313362
    Abstract: Akylation product is contacted with a purification medium in a liquid phase pre-reaction step to remove impurities and form a purified stream. The purified stream may then be further processed by liquid phase transalkylation to convert the polyalkylated aromatic compound to a monoalkylated aromatic compound. The process may use a large pore molecular sieve catalyst such as MCM-22 as the purification medium in the pre-reaction step because of its high reactivity for alkylation, strong retention of catalyst poisons and low reactivity for oligomerization under the pre-reactor conditions. Olefins, diolefins, styrene, oxygenated organic compounds, sulfur containing compounds, nitrogen containing compounds and oligomeric compounds are removed.
    Type: Grant
    Filed: December 17, 1998
    Date of Patent: November 6, 2001
    Assignee: ExxonMobil Corporation
    Inventors: John R. Green, Thomas F. Degnan, Yun-Yang Huang, Chaya R. Venkat, Ronald A. Weiss
  • Patent number: 6281399
    Abstract: A process for producing isopropyl aromatics using a transalkylation reaction zone and an alkylation reaction zone is disclosed. Portions of the transalkylation reaction zone effluent pass to a multibed alkylation reaction zone where aromatics in the transalkylation reaction zone effluent are alkylated to the desired isopropyl aromatics. At least a portion of the transalkylation reaction zone effluent passes to an alkylation bed other than the first alkylation bed of the multibed alkylation reaction zone. This process decreases the capital and operating costs of recycling the aromatics in the transalkylation reaction zone effluent. This process is well suited for solid transalkylation and alkylation catalysts. Cumene may be produced by this process.
    Type: Grant
    Filed: February 23, 2000
    Date of Patent: August 28, 2001
    Assignee: UOP LLC
    Inventors: Russell C. Schulz, Gregory J. Gajda, Guy B. Woodle
  • Patent number: 6281398
    Abstract: A process is disclosed for improving the yield in the production of high octane gasoline after naphtha reforming by utilizing a transalkylation step to upgrade the heavy and light fractions coming from the reforming step.
    Type: Grant
    Filed: October 28, 1999
    Date of Patent: August 28, 2001
    Assignee: Fina Research, S.A.
    Inventors: Pierre Belloir, Eric Romers, Christian Lamotte, Jacques Grootjans
  • Patent number: 6268542
    Abstract: A process for the production of ethylbenzene by the alkylation of benzene over a molecular sieve aromatic alkylation catalyst followed by transalkylation of polyalkylated aromatic components and then liquid phase alkylation. A feedstock containing benzene and ethylene is supplied to a first alkylation reaction zone containing a molecular sieve aromatic alkylation catalyst. The reaction zone is operated at temperature and pressure conditions to cause gas phase ethylation of the benzene with the production of an alkylation product comprising a mixture of ethylbenzene and polyalkylated aromatic components including diethylbenzene with xylene present in only small amounts. The output from the alkylation reaction zone is supplied to an intermediate recovery zone for the separation and recovery of ethybenzene, a polyalkylated aromatic compound component including diethylbenzene.
    Type: Grant
    Filed: August 23, 1999
    Date of Patent: July 31, 2001
    Assignee: Fina Technology, Inc.
    Inventors: James T. Merrill, James R. Butler
  • Patent number: 6252126
    Abstract: An ethylbenzene production system comprises a reactor vessel, a vapor phase ethylene feed stream, a benzene feed stream entering the reactor vessel, and a product stream containing ethylbenzene exiting the reactor vessel. The reactor vessel has an ethylation section and a benzene stripping section, whereby fluid communication via integrated vapor and liquid traffic is maintained between the ethylation section and stripping section. The vapor phase ethylene feed stream contains 3 to 50 mol % ethylene and at least 20 mol % methane entering the reactor vessel.
    Type: Grant
    Filed: December 22, 1998
    Date of Patent: June 26, 2001
    Inventor: David Netzer
  • Patent number: 6232515
    Abstract: A process for producing ethyl aromatics using a transalkylation reaction zone and an alkylation reaction zone is disclosed. Portions of the transalkylation reaction zone effluent pass to a multibed alkylation reaction zone where aromatics in the transalkylation reaction zone effluent are alkylated to the desired ethyl aromatics. At least a portion of the transalkylation reaction zone effluent passes to an alkylation bed other than the first alkylation bed of the multibed alkylation reaction zone. This process decreases the capital and operating costs of recycling the aromatics in the transalkylation reaction zone effluent. This process is well suited for solid transalkylation and alkylation catalysts. Ethylbenzene may be produced by this process.
    Type: Grant
    Filed: March 17, 2000
    Date of Patent: May 15, 2001
    Assignee: UOP LLC
    Inventors: Russell C. Schulz, Gregory J. Gajda, Guy B. Woodle
  • Patent number: 6225516
    Abstract: Process for the production of linear alkylaromatic hydrocarbons comprising: a) dehydrogenating C10-C14 n-paraffins; b) selectively hydrogenating the diolefins produced during step (a); c) feeding stream (b) and an aromatic hydrocarbon to an alkylation unit; d) distilling the alkylated stream into its main constituents; e) subjecting a paraffinic stream containing aromatic by-products, leaving step (d), to a hydrogenation step; f) recycling the stream leaving step (e) to the dehydrogenation unit of step (a).
    Type: Grant
    Filed: July 15, 1999
    Date of Patent: May 1, 2001
    Assignee: Condea Augusta S.p.A.
    Inventors: Pierino Radici, Pierluigi Cozzi, Rosanna Ontano, Agostino Zatta
  • Patent number: 6222084
    Abstract: Process for the production of ethylbenzene by alkylation over a silicalite alkylation catalyst with subsequent transalkylation of diethylbenzene with the alkylation catalyst and conditions selected to retard xylene production and also heavies production. Benzene and ethylene are applied to a multi-stage alkylation reaction zone having a plurality of series-connected catalyst beds containing silicalite of a predominantly monoclinic symmetry having a silica/alumina ratio of at least 275. Gas-phase ethylation of benzene is at a flow rate to provide a space velocity of benzene over the catalyst to produce a xylene concentration of about 600 ppm or less of the ethylbenzene content. Periodically the space velocity may be increased to a value which is greater than the space velocity associated with a minimum concentration of diethylbenzene in the alkylation product such that diethylbenzene production is enhanced while minimizing any attendant transalkylation reactions within the alkylation reaction zone.
    Type: Grant
    Filed: April 9, 1999
    Date of Patent: April 24, 2001
    Assignee: Fina Technology, Inc.
    Inventors: Ashim Kumar Ghosh, James T. Merrill, James R. Butler
  • Patent number: 6187981
    Abstract: The present invention is a process for producing aryl-alkanes by paraffin isomerization followed by paraffin dehydrogenation and then by alkylation of an aryl compound by a lightly branched olefin. The effluent of the alkylation zone comprises paraffins that are recycled to the isomerization step or to the dehydrogenation step. This invention is also a process that that sulfonates phenyl-alkanes having lightly branched aliphatic alkyl groups that to produce modified alkylbenzene sulfonates. In addition, this invention is the compositions produced by these processes, which can be used as detergents having improved cleaning effectiveness in hard and/or cold water while also having biodegradability comparable to that of linear alkylbenzene sulfonates, as lubricants, and as lubricant additives. This invention is moreover the use of compositions produced by these processes as lubricants and lubricant additives.
    Type: Grant
    Filed: July 19, 1999
    Date of Patent: February 13, 2001
    Assignee: UOP LLC
    Inventors: Richard E. Marinangeli, R. Joe Lawson, Leonid B. Galperin, Thomas R. Fritsch
  • Patent number: 6177600
    Abstract: Gas and liquid products of an ethylene plant, steam cracking zone, are used for the coproduction of alkylated benzene. Dilute ethylene in typical concentrations of 7-20 mol percent is coproduced along with pure ethylene product. Impure benzene containing typically less than 8 wt % C6 and C7 non-aromatics is formed by hydratreating and fractionation of pyrolysis gasoline, rich in benzene and toluene, and also by hydrodealkylation of the toluene. The impure benzene reacts with dilute ethylene to form ethylbenzene and hydrogen rich vent gas. The impure benzene can be also a source for production of cumene, by reaction with propylene.
    Type: Grant
    Filed: December 10, 1998
    Date of Patent: January 23, 2001
    Inventor: David Netzer
  • Patent number: 6150578
    Abstract: A separation arrangement for a cumene process that operates with a relatively wet feed to an alkylation zone and relatively dry feed to a transalkylation zone reduces utilities and capital expenses for the separation and recycle of distinct wet and dry components by using an arrangement that first separates effluent from the trans alkylation and alkylation reaction zone in a benzene column before performing light ends and drying in a downstream depropanizer column. The arrangement uses a portion of the net overhead stream from the benzene column as a wet recycle stream for return to the alkylation reaction zone and sends another portion of the benzene net overhead to the depropanizer to supply a dry benzene recycle for the trans alkylation reaction zone.
    Type: Grant
    Filed: December 7, 1999
    Date of Patent: November 21, 2000
    Assignee: UOP LLC
    Inventors: Perry K. Ho, Russell C. Schulz
  • Patent number: 6133492
    Abstract: This invention is directed to a fluorine-containing mordenite catalyst and use thereof in the manufacture of linear alkylbenzene (LAB) by alkylation of benzene with an olefin. The olefin may have from about 10 to 14 carbons. The fluorine-containing mordenite is prepared typically by treatment with an aqueous hydrogen fluoride solution. The benzene alkylation may be conducted using reactive distillation. This invention is also directed to a process for production of LAB having a high 2-phenyl isomer content by use of the fluorine-containing mordenite in conjunction with a conventional solid LAB alkylation catalyst. The two catalysts may be used in a mixed catalyst bed or may be packed in series, with the relative proportions being adjusted to provide a desired 2-phenyl isomer content of in the final product.
    Type: Grant
    Filed: October 19, 1998
    Date of Patent: October 17, 2000
    Assignee: Huntsman Petrochemical Corporation
    Inventor: Prakasa Rao Anantaneni
  • Patent number: 6121501
    Abstract: A process for producing 2,6-dialkylnaphthalene from a hydrocarbon feedstock that contains at least one component selected from the group consisting of dialkylnaphthalene isomers, monoalkylnaphthalene isomers, polyalkylnaphthalenes, and naphthalene, is provided that includes the following steps:I. separating the hydrocarbon feedstock and/or a dealkylation product fed from step III into a naphthalene fraction, a monoalkylnaphthalene fraction, a dialkylnaphthalene fraction and a remaining products fraction;II. separating and purifying 2,6-dialkylnaphthalene from the dialkylnaphthalene fraction of step I;III. dealkylating the hydrocarbon feedstock and/or the remaining products fraction of step I and feeding the dealkylation product to step I; andIV. alkylating the naphthalene and monoalkylnaphthalene fractions of step I;wherein the hydrocarbon feedstock is fed to step I or step III.
    Type: Grant
    Filed: April 9, 1999
    Date of Patent: September 19, 2000
    Assignees: Kabushiki Kaisha Kobe Seiko Sho, Mobil Oil Corporation
    Inventors: Masahiro Motoyuki, Koji Yamamoto, Ajit Vishwanath Sapre, John Paul Mc Williams, Susan Patricia Donnelly
  • Patent number: 6096935
    Abstract: A process for producing alkyl aromatics using a transalkylation reaction zone and an alkylation reaction zone is disclosed. The transalkylation reaction zone effluent passes to the alkylation reaction zone where aromatics in the transalkylation reaction zone effluent are alkylated to the desired alkyl aromatics. This process decreases the capital and operating costs of recycling the aromatics in the transalkylation reaction zone effluent. This process is well suited for solid transalkylation and alkylation catalysts. Ethylbenzene and cumene may be produced by this process.
    Type: Grant
    Filed: July 28, 1998
    Date of Patent: August 1, 2000
    Assignee: UOP LLC
    Inventors: Russell C. Schulz, Gregory J. Gajda
  • Patent number: 6069285
    Abstract: An integrated alkylaromatic process using a solid alkylation catalyst and an aromatic rectifier is disclosed for alkylating aromatics with olefins and for regenerating the solid alkylation catalyst. The aromatic rectifier produces a relatively low-purity aromatic-containing overhead stream that is used in producing alkylaromatics, and an aromatic column produces a relatively high-purity aromatic-containing overhead stream that is used in regenerating the solid alkylation catalyst. In another embodiment, this process is further integrated with a paraffin dehydrogenation zone and an aromatic by-products removal zone. This invention produces the benzene-containing streams that are necessary for alkylating and for regenerating in a more economical manner than prior art processes.
    Type: Grant
    Filed: June 9, 1999
    Date of Patent: May 30, 2000
    Assignee: UOP LLC
    Inventors: Thomas R. Fritsch, Steven F. Eshelman, Dennis E. O'Brien
  • Patent number: 6063940
    Abstract: A 1-bromoalkylbenzene derivative is prepared by reacting a phenylalkene derivative with hydrogen bromide in the presence of a non-polar solvent. The phenylalkene derivative is prepared by reacting an alkenyl halide with metal magnesium to form a Grignard reagent, and then reacting the Grignard reagent with a benzyl halide derivative. An allyl Grignard reagent is prepared by reacting continuously an allyl halide derivative with metal magnesium in an organic solvent, in which the allyl halide derivative and metal magnesium are continuously added to the reaction system and the allyl Grignard reagent formed is continuously removed from the reaction system. The processes provide the intended compounds in high yields, high selectivities and high purities.
    Type: Grant
    Filed: February 13, 1997
    Date of Patent: May 16, 2000
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Hiroaki Fujishima, Yasunobu Miyamoto, Masayoshi Minai, Tsutomu Matsumoto, Hideki Ushio, Takayuk Higashii
  • Patent number: 6057487
    Abstract: A method is disclosed to produce 2,6-dimethylnaphthalene (2,6-DMN), used for the production of polyethylene naphthalate, at high purity and high yield from a mixture of dimethylnaphthalene isomers without limitation to the specific isomers present in the feed by a series of fractionation, crystallization and adsorption steps.
    Type: Grant
    Filed: December 30, 1997
    Date of Patent: May 2, 2000
    Assignee: Chevron Chemical Company
    Inventors: Curtis L. Munson, Patrick C. Bigot, Zunqing Alice He
  • Patent number: 6057485
    Abstract: Ethylbenzene is produced by alkylation over a split load of monoclinic silicalite alkylation catalysts having different silica/alumina ratios. A feedstock containing benzene and ethylene is applied to a multi-stage alkylation reaction zone having a plurality of series-connected catalyst beds. At least one catalyst bed contains a first monoclinic silicalite catalyst having a silica/alumina ratio of at least 275. At least one other catalyst bed contains a second monoclinic silicalite catalyst having a silica/alumina ratio of less than about 275. The alkylation reaction zone is operated at temperature and pressure conditions in which the benzene is in a gaseous phase to cause gas-phase alkylation of the aromatic substrate in the presence of the monoclinic silicalite catalysts to produce an alkylation product. The alkylation product is then withdrawn from the reaction zone for separation and recovery.
    Type: Grant
    Filed: November 17, 1998
    Date of Patent: May 2, 2000
    Assignee: Fina Technology, Inc.
    Inventors: James T. Merrill, James R. Butler, Ashim Kumar Ghosh
  • Patent number: 6034291
    Abstract: A catalytic composition is described for the alkylation and/or transalkylation of aromatic hydrocarbons consisting of beta zeolite, as such or modified by the isomorphous substitution of aluminum with boron, iron or gallium or by the introduction of alkaline and/or earth alkaline metals following an ion-exchange process, and an inorganic ligand, wherein the extrazeolite porosity, i.e. the porosity obtained by adding the mesoporosity and macroporosity fractions present in the catalytic composition itself, is such that a fraction of at least 25% is composed of pores with a radius higher than 100 .ANG., said composition being characterized by a total volume of extrazeolitic pores greater than or equal to 0.80 ml/g.
    Type: Grant
    Filed: December 10, 1997
    Date of Patent: March 7, 2000
    Assignee: Enichem S.p.A.
    Inventors: Gianni Girotti, Oscar Cappellazzo, Elena Bencini, Giannino Pazzuconi, Carlo Perego
  • Patent number: 6031143
    Abstract: Process for the production of styrene which comprises:a) feeding to an alkylation unit a stream of benzene and a stream of recycled product containing ethylene;b) mixing the stream at the outlet of the alkylation unit, containing ethylbenzene, with a stream consisting of ethane;c) feeding the mixture thus obtained to a dehydrogenation unit containing a catalyst capable of contemporaneously dehydrogenating ethane and ethylbenzene;d) feeding the product leaving the dehydrogenation unit to a separation section to produce a stream essentially consisting of styrene and a stream containing ethylene;e) recycling the stream containing ethylene to the alkylation unit.
    Type: Grant
    Filed: September 1, 1998
    Date of Patent: February 29, 2000
    Assignee: Snamprogetti S.p.A.
    Inventors: Franco Buonomo, Gianni Donati, Emilio Micheli, Lorenzo Tagliabue