Using Al Halide Catalyst Patents (Class 585/459)
  • Patent number: 8299310
    Abstract: Processes for conversion of lignin to products such as phenolic compounds and biofuels prepared from such phenolic compounds are disclosed and described. A process for conversion of a lignin material to bio-fuels can include subjecting the lignin material to a base catalyzed depolymerization reaction to produce a partially depolymerized lignin. The partially depolymerized lignin can then be subjected to a stabilization/partial hydrodeoxygenation reaction to form a partially hydrodeoxygenated product. Following partial hydrodeoxygenation, the partially hydrodeoxygenated product can be reacted in a hydroprocessing step to form a bio-fuel. Each of these reaction steps can be performed in single or multiple steps, depending on the design of the process. The production of an intermediate partially hydrodeoxygenation product and subsequent reaction thereof can significantly reduce or eliminate reactor plugging and catalyst coking.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: October 30, 2012
    Assignee: University of Utah Research Foundation
    Inventors: Wlodzimierz W. Zmierczak, Jan D. Miller
  • Patent number: 8288602
    Abstract: The present invention describes a cost-efficient method for preparing di-substituted fluorenes in high yield.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: October 16, 2012
    Assignee: Total Petrochemicals Research Feluy
    Inventors: Alexander Z. Voskoboynikov, Artyom Y. Le Bedev, Andrey F. Asachenko, Abbas Razavi
  • Publication number: 20110201863
    Abstract: This invention relates to a method wherein a high-purity paraxylene can be produced efficiently by using a catalyst having a molecular sieving action (or shape selectivity) and being excellent in the catalytic activity without isomerization and adsorption-separation steps. More particularly, it relates to a method of producing a high-purity paraxylene, characterized in that MFI type zeolite having a primary particle size of not more than 100 ?m, a structure defining agent and silica material having an average particle size of not less than 10 nm but less than 1.0 ?m are used as a starting material, and a synthetic zeolite catalyst produced by subjecting the MFI type zeolite to a coating treatment with an aqueous solution obtained by mixing so as to satisfy X×Y<0.05 (wherein X is a concentration of the silica material (mol %) and Y is a concentration of the structure defining agent (mol %)) is used in the alkylation or disproportionation of at least one of benzene and toluene as a starting material.
    Type: Application
    Filed: September 29, 2009
    Publication date: August 18, 2011
    Applicant: JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Koichi Matsushita, Chikanori Nakaoka, Norikazu Nishiyama
  • Publication number: 20110178355
    Abstract: The present invention relates to a method and a reactor system for preparing linear alpha-olefins by oligomerization of ethylene in the presence of an organic solvent and an oligomerization catalyst, wherein a product fraction of C10+ alpha-olefins contaminated with aromatic C9+ compounds is separated from a product main stream and transferred into a conversion reactor, where C10+ alpha-olefins and aromatic C9+ components are reacted in the presence of a Friedel-Crafts alkylation catalyst to produce aromatic C19+ compounds.
    Type: Application
    Filed: January 31, 2007
    Publication date: July 21, 2011
    Applicants: LINDE AG, SAUDI BASIC INDUSTRIES CORPORATION
    Inventors: Peter M. Fritz, Wolfgang Müller, Florian Winnkler
  • Patent number: 7737312
    Abstract: This invention relates to a process for producing linear alkyl benzene, the process including the steps of obtaining a hydrocarbon condensate containing olefins, paraffins and oxygenates from a low temperature Fischer-Tropsch reaction; a) fractionating a desired carbon number distribution from the hydrocarbon condensate to form a fractionated hydrocarbon condensate stream; b) extracting oxygenates from the fractionated hydrocarbon condensate stream from step (a) to form a stream containing olefins and paraffins; c) combining the stream containing olefins and paraffins from step (b) with the feed stream from step (g) to form a combined stream; d) alkylating olefins in the combined stream from step (c) with benzene in the presence of a suitable alkylation catalyst in an alkylation reactor; e) recovering linear alkyl benzene from the alkylation reactor; f) recovering unreacted paraffins from the alkylation reactor; g) dehydrogenating the unreacted paraffins in the presence of a suitable dehydrogenation catalyst
    Type: Grant
    Filed: March 10, 2004
    Date of Patent: June 15, 2010
    Assignee: Sasol Technology (Proprietary) Limited
    Inventors: Ivan Greager, Jan Hendrik Scholtz, Johan Pieter de Wet, Mieke Ann Desmet, Wilhelmina Jansen, Paul Jacobson, Luis Pablo Fidel Dancuart
  • Publication number: 20090036722
    Abstract: A process is described for producing an alkylaromatic compound, in which a first feed comprising an alkylatable aromatic compound and a second feed comprising an alkene are introduced into a first alkylation reaction zone comprising a first alkylation catalyst. The first alkylation reaction zone is operated under conditions effective to cause alkylation of the alkylatable aromatic compound by the alkene to produce said alkylaromatic compound, the conditions being such that the alkylatable aromatic compound is at least predominantly in the vapor phase. A first effluent comprising the alkylaromatic compound and unreacted alkylatable aromatic compound is withdrawn from the first alkylation reaction zone and at least part of the unreacted alkylatable aromatic compound is treated to remove catalyst poisons therefrom and produce a treated unreacted alkylatable aromatic stream.
    Type: Application
    Filed: July 30, 2007
    Publication date: February 5, 2009
    Inventors: Michael C. Clark, Vijay Nanda, Maruti Bhandarkar, Joseph C. Peters, Chung-Ming Chi, Brian Maerz
  • Publication number: 20090005622
    Abstract: Methods and systems for the production of linear alkylbenzens are described herein. The methods and systems incorporate the novel use of a high shear device to promote dispersion and mixing of one or more olefins (e.g. propylene) with an aromatic. The high shear device may allow for lower reaction temperatures and pressures and may also reduce reaction time with existing catalysts.
    Type: Application
    Filed: June 23, 2008
    Publication date: January 1, 2009
    Applicant: H R D CORPORATION
    Inventors: Abbas HASSAN, Ebrahim BAGHERZADEH, Rayford G. ANTHONY, Gregory BORSINGER, Aziz HASSAN
  • Patent number: 7297827
    Abstract: Disclosed is an alkylation reactor for preparing ethylbenzene. The reactor comprises a monolith catalyst system that includes a monolith support impregnated or co-formed with a catalyst suitable to catalyze the alkylation of benzene with ethylene. The catalyst may be selected from, for example, zeolites such as beta zeolite and MCM-22 zeolite, and fixed super acids. Also disclosed is a method of preparing ethylbenzene by alkylating a mixture of benzene and ethylene in an alkylation reactor comprising a monolith catalyst system, including a monolith support impregnated or co-formed with a suitable catalyst. In one embodiment the invention provides a convenient means of upgrading an existing reactor that has previously been used for conventional liquid phase alkylations such as those catalyzed by aluminum trichloride. The inventive alkylation method may be effectively and advantageously carried out under critical or near critical conditions, if desired.
    Type: Grant
    Filed: November 29, 2004
    Date of Patent: November 20, 2007
    Assignee: Fina Technology, Inc.
    Inventor: Kevin Kelly
  • Patent number: 7294420
    Abstract: A method of producing hydrogen for a fuel cell from a hydrocarbon fuel composition, by providing a hydrocarbon fuel composition, which is obtained by contacting a liquid hydrocarbon feed comprising an alkylating agent with an acidic catalyst, under conditions effective to alkylate at least a portion of the hydrocarbon feed; converting the hydrocarbon fuel composition into hydrogen; and optionally, introducing the hydrogen produced into a fuel cell. In a preferred embodiment the liquid hydrocarbon feed further comprises sulphur-containing impurities, at least a portion of which are alkylated during the alkylation step.
    Type: Grant
    Filed: August 28, 2002
    Date of Patent: November 13, 2007
    Assignee: BP P.L.C.
    Inventor: Michael Graham Hodges
  • Patent number: 7148388
    Abstract: In a process for preparing an olefinic hydrocarbon mixture comprising at least 5% by weight of mono-olefin oligomers of the empirical formula: CnH2n where n is greater than or equal to 6, a feedstock comprising n-butene and propylene in a molar ratio of about 1:0.01 to about 1:0.49 is contacted under oligomerization conditions with surface deactivated ZSM-23. The resultant mono-olefin oligomers comprise at least 20 percent by weight of olefins having at least 12 carbon atoms, wherein said olefins having at least 12 carbon atoms have an average of from about 0.8 to about 2.0 C1–C3 alkyl branches per carbon chain.
    Type: Grant
    Filed: March 28, 2003
    Date of Patent: December 12, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Stephen W. Beadle, Cesar M. Cheng-Guajardo, Carolyn B. Duncan, David Wayne Turner, Ramzi Y. Saleh
  • Patent number: 6787438
    Abstract: A microelectromechanical device is provided which includes a contact structure interposed between a pair of electrodes arranged beneath a beam. In some embodiments, the device may include additional contact structures interposed between the pair of electrodes. For example, the device may include at least three contact structures between the pair of electrodes. In some embodiments, the beam may be suspended above the pair of electrodes by a support structure affixed to a first end of the beam. Such a device may further include an additional support structure affixed to a second end of the beam. In some cases, the device may be adapted to pass a signal from the first end to the second end of the beam. In addition or alternatively, the device may be adapted to pass the signal between one or both ends of the beam and one or more of the contact structures.
    Type: Grant
    Filed: October 16, 2001
    Date of Patent: September 7, 2004
    Assignee: Teravieta Technologies, Inc.
    Inventor: Richard D. Nelson
  • Patent number: 6303840
    Abstract: A process for the alkylation of aromatic substrates under supercritical or near-critical reaction conditions is described. In particular, a method for performing Friedel-Crafts alkylation reactions is disclosed under those conditions. Friedel-Crafts reactions may be effected using a heterogeneous catalyst in a continuous flow reactor containing a supercritical or near-critical reaction medium. Selectivity of product formation can be achieved by varying one or more of temperature, pressure, catalyst, flow rates and also by varying the ratios of aromatic substrate to alkylating agent.
    Type: Grant
    Filed: June 18, 1999
    Date of Patent: October 16, 2001
    Assignee: Thomas Swan & Co., Limited
    Inventors: Martyn Poliakoff, Thomas M. Swan, Thomas Tacke, Martin G. Hitzler, Stephen K. Ross, Stefan Wieland, Fiona Ruth Smail
  • Patent number: 6218591
    Abstract: The present invention relates to new crystalline zeolite SSZ-36 prepared using a cyclic or polycyclic quaternary ammonium cation templating agent.
    Type: Grant
    Filed: June 11, 1999
    Date of Patent: April 17, 2001
    Assignee: Chevron U.S.A. Inc.
    Inventors: Gregory S. Lee, Stacey I. Zones, Yumi Nakagawa, Susan T. Evans
  • Patent number: 6096680
    Abstract: Liquid clathrate compositions useful as reusable aluminum catalysts in Friedel-Crafts reactions are described. In one embodiment, the liquid clathrate composition is formed from constituents comprising (i) at least one aluminum trihalide, (ii) at least one salt selected from alkali metal halide, alkaline earth metal halide, alkali metal pseudohalide, quaternary ammonium salt, quaternary phosphonium salt, or ternary sulfonium salt, or a mixture of any two or more of the foregoing, and (iii) at least one aromatic hydrocarbon compound.
    Type: Grant
    Filed: April 22, 1998
    Date of Patent: August 1, 2000
    Assignee: Albemarle Corporation
    Inventor: Won S. Park
  • Patent number: 6010617
    Abstract: A process for reducing the mutagenicity of a coal-tar-based product containing polynuclear aromatic compounds. The process includes the step of contacting the coal-tar-based product in the presence of an alkylating agent with an acid catalyst under alkylation conditions sufficient to reduce the mutagenicity of the polynuclear aromatic containing coal-tar-based material to a level less than the initial mutagenicity index value. Also provided are non-carcinogenic coal-tar-derived products.
    Type: Grant
    Filed: June 6, 1994
    Date of Patent: January 4, 2000
    Assignee: Mobil Oil Corporation
    Inventors: Carl R. Mackerer, Timothy A. Roy, Gary R. Blackburn
  • Patent number: 5994602
    Abstract: This invention relates to a process for the alkylation of aromatics by reacting an aromatic hydrocarbon with an olefin in the presence of an ionic liquid comprising (a) a compound of the formula R.sub.n MX.sub.3-n wherein R is a C1-C6 alkyl radical, M is aluminium or gallium, X is a halogen atom and n is 0, 1 or 2 and, (b) a hydrocarbyl substituted imidazolium halide or a hydrocarbyl substituted pyridinium halide wherein at least one of the said hydrocarbyl substituents in the imidazolium halide is an alkyl group having 1-18 carbon atoms. The process allows ready separation of reaction products from the ionic liquid and improves selectivity to alkylated products.
    Type: Grant
    Filed: July 29, 1997
    Date of Patent: November 30, 1999
    Assignee: BP Chemicals Limited
    Inventors: Ala'a K Abdul-Sada, Martin Philip Atkins, Brian Ellis, Philip Kenneth Gordon Hodgson, Mark Louis Michael Morgan, Kenneth Richard Seddon
  • Patent number: 5986155
    Abstract: Treating low reactivity alkylating agents in the vapor phase with catalysts converts the low reactivity alkylating agents to high reactivity alkylating agents. The alkylating agents are useful in synthesis of alkyl aromatics with Lewis acid catalysts.
    Type: Grant
    Filed: July 10, 1996
    Date of Patent: November 16, 1999
    Assignee: The Lubrizol Corporation
    Inventors: James D. Burrington, Stuart L. Bartley, Douglas C. Rhubright, Paul A. Lewis, Marvin B. DeTar, Alicia L. Kliever, Frank A. Del Greco, Lawrence T. Novak
  • Patent number: 5977422
    Abstract: This invention relates to an improved catalytic process for the alkylation of benzene or substituted benzene with alkyl halides for the continuous production of diarylalkanes or substituted derivatives thereof using ethylaluminum dichloride or methylaluminum dichloride as an organoaluminum dichloride catalyst. A process and apparatus are provided for reacting either benzene (or a substituted benzene compound) together with either an alkyl halide or an aromatic halide.
    Type: Grant
    Filed: June 9, 1997
    Date of Patent: November 2, 1999
    Assignee: The Dow Chemical Company
    Inventors: Steven A. Costello, Douglas L. Potts, Randall F. Pogue
  • Patent number: 5962760
    Abstract: A process for the alkylation of aromatic compounds with an olefin or alkyl halide having from 1 to 24 carbon atoms utilizes a novel catalyst comprising: a) a refractory inorganic oxide, b) the reaction product of a first metal halide and bound surface hydroxyl groups of the refractory inorganic oxide, c) a second metal cation, and d) optionally a zerovalent third metal. The refractory inorganic oxide is selected from the group consisting of alumina, titania, zirconia, chromia, silica, boria, silica-alumina, and combinations thereof and the first metal halide is a fluoride, chloride, or bromide of aluminum, gallium, zirconium, or boron. The second metal cation is selected from the group consisting of: monovalent metal cations in an amount from 0.0026 up to about 0.20 gram atoms per 100 grams refractory inorganic oxide for lithium, potassium, cerium, rubidium, silver, and copper, and from 0.012 to about 0.20 gram atoms for sodium; and alkaline earth metal cations in an amount from about 0.0013 up to about 0.
    Type: Grant
    Filed: August 4, 1997
    Date of Patent: October 5, 1999
    Assignee: UOP LLC
    Inventors: Joseph A. Kocal, Anil R. Oroskar
  • Patent number: 5955641
    Abstract: The method of the invention includes making dimethyinaphthalenes by first contacting, in an alkylation zone, at alkylation conditions, a toluene-containing stream with a pentene-containing stream in the presence of an acid alkylation catalyst. At least a portion of the toluene and pentenes react to form pentyltoluenes. At least a portion of the pentyltoluenes is then contacting in a reforming zone with reforming catalyst, at reforming conditions. At least a portion of the pentyltoluenes is converted to dimethylnaphthalenes.
    Type: Grant
    Filed: May 28, 1998
    Date of Patent: September 21, 1999
    Assignee: Chevron Chemical Company LLC
    Inventors: Cong-Yan Chen, William L. Schinski, Dennis J. O'Rear, Thomas V. Harris
  • Patent number: 5859302
    Abstract: Described are novel processes which employ reusable aluminum catalysts in Friedel-Crafts reactions.
    Type: Grant
    Filed: October 28, 1996
    Date of Patent: January 12, 1999
    Assignee: Albemarle Corporation
    Inventor: Won S. Park
  • Patent number: 5824832
    Abstract: A low temperature molten ionic liquid composition comprising a mixture of a metal halide and an alkyl-containing amine hydrohalide salt can be used in linear alkylbenzene formation. The metal halide is a covalently bonded metal halide which can contain a metal selected from the group comprised of aluminum, gallium, iron, copper, zinc, and indium, and is most preferably aluminum trichloride. The alkyl-containing amine hydrohalide salt may contain up to three alkyl groups, which are preferably lower alkyl, such as methyl and ethyl.
    Type: Grant
    Filed: March 27, 1997
    Date of Patent: October 20, 1998
    Assignee: Akzo Nobel NV
    Inventors: Fawzy G. Sherif, Lieh-Jiun Shyu, Carl C. Greco
  • Patent number: 5648580
    Abstract: A supported Lewis acid catalyst system for catalyzing hydrocarbon conversion reactions including cationic polymerization, alkylation, isomerization and cracking reactions is disclosed, wherein the catalyst system comprises an inorganic oxide support having immobilized thereon at least one relatively strong Lewis acid and at least one relatively weak Lewis acid.
    Type: Grant
    Filed: September 4, 1996
    Date of Patent: July 15, 1997
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Frank Joung-yei Chen, Christophe Le Deore, Roger Spitz, Alan Guyot
  • Patent number: 5574198
    Abstract: The present invention relates to an improved process for preparing linear alkylbenzenes falling within such range as used in detergency (C.sub.10 -C.sub.14), which process consists of alkylating aromatic hydrocarbons (above all, benzene) with n-olefins in the presence of AlCl.sub.3, wherein said n-olefins are obtained by dehydrogenating n-paraffins.
    Type: Grant
    Filed: April 10, 1995
    Date of Patent: November 12, 1996
    Assignee: Enichem Augusta S.p.A.
    Inventors: Pierino Radici, Pierluigi Cozzi, Giuseppe Giuffrida, Agostino Zatta
  • Patent number: 5488193
    Abstract: A process for reducing the mutagenicity of a polynuclear aromatic containing material containing from three to seven fused aromatic rings, especially a hydrocarbon refinery stream. The process reduces the initial mutagenicity index to a lower value by alkylating the compound with an alkylating agent which introduces an alkyl substituent having from three to five carbon atoms into the aromatic compound in the presence of an acid catalyst under alkylation conditions.
    Type: Grant
    Filed: January 25, 1995
    Date of Patent: January 30, 1996
    Assignee: Mobil Oil Corporation
    Inventors: Carl R. Mackerer, Timothy A. Roy, Gary R. Blackburn
  • Patent number: 5481054
    Abstract: Immobilized Lewis Acid catalyst comprising polymer having at least one Lewis Acid immobilized within the structure therein, said polymer having monomer units represented by the structural formula:--[A].sub.a --[B].sub.b --[C].sub.c --whereina represents about 1 to about 99 mole %b represents about 0 to about 50 mole %c represents about 1 to about 99 mole %a+b+c is preferably about 100%; ##STR1## C is selected from the group consisting of: ##STR2## (III) combinations thereof, wherein D is OH, halide, OR.sup.4, NH.sub.2, NHR.sup.3, OM', or OM";E is the residue of the reaction of at least one Lewis Acid with the D substituent of monomer unit B;R.sup.1 represents proton, C.sub.1 -C.sub.24 alkyl group, or C.sub.3 -C.sub.24 cycloalkyl;R.sup.2 represents C.sub.1 -C.sub.24 alkylene group, C.sub.3 -C.sub.24 cycloalkylene, C.sub.6 -C.sub.18 arylene, or C.sub.7 -C.sub.30 alkylarylene;R.sup.3 represents C.sub.1 -C.sub.24 alkyl, C.sub.3 -C.sub.24 cycloalkyl, C.sub.1 -C.sub.24 aryl, or C.sub.7 -C.sub.30 alkylaryl;R.sup.
    Type: Grant
    Filed: March 3, 1995
    Date of Patent: January 2, 1996
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Tze-Chiang Chung, Frank J. Chen, Jon E. Stanat, Alok Kumar
  • Patent number: 5476977
    Abstract: 1,1,2,3,4,4,6-Heptamethyl-1,2,3,4-tetrahydronaphthalene, a novel naphthalenic compound, is useful as an intermediate for the preparation of 5,6,7,8-tetrahydro-3,5,5,6,7,8,8-heptamethyl-2-naphthalenecarbaldehyde. It is prepared by a process consisting of the addition of an olefin of formula ##STR1## wherein R.sup.1 and R.sup.2 represent different substituents and each defines a hydrogen atom or a methyl radical, with p-cymene. 4,4-Dimethyl-2-pentene [compound (III): R.sup.1 =CH.sub.3 ; R.sup.2 =H] is obtained by the co-metathesis reaction of an olefin of formula ##STR2## wherein R.sup.1 and R.sup.2 represent identical substituents designating each a hydrogen atom or a methyl radical, with an olefin of formula ##STR3## wherein R.sup.3 and R.sup.4 identical or different, designate each a hydrogen atom or a methyl radical in the presence of an appropriate catalyst consisting of Re.sub.2 O.sub.7 on an inert solid carrier, or of WCl.sub.6 /(C.sub.2 H.sub.5))/Bu.sub.4 Sn.
    Type: Grant
    Filed: August 5, 1994
    Date of Patent: December 19, 1995
    Assignee: Firmenich SA
    Inventors: Jean-Paul Leresche, Yves Mentha
  • Patent number: 5430015
    Abstract: A method of acetylating 1,2,3,4,-tetrahydro-1,1,2,4,4,7-hexamethylnapthalene (HMT) to produce 6-acetyl-1,2,3,4-tetrahydro-1,1,2,4,4,7-hexamethlnaphthalene (acetyl-HMT), comprises subjecting a mixture of 1,2,3,4-tetrahydro-1,1,2,4,4,7-hexamethlnaphthalene and or one or more substituted indanes or substituted acetylindanes to a Friedel-Crafts acetylation reaction in the presence of a saturated hydrocarbon solvent.
    Type: Grant
    Filed: March 16, 1993
    Date of Patent: July 4, 1995
    Assignee: Unilever Patent Holdings, BV
    Inventors: Christopher P. Newman, Karen J. Rossiter, Terence L. Miller
  • Patent number: 5386072
    Abstract: Process for the preparation of linear alkylbenzenes, wherein the benzene is reacted, in the presence of aluminum chloride or aluminum in powder form, with a mixture composed of C.sub.7 -C.sub.20 n-olefins and C.sub.7 -C.sub.20 chloroparaffins, with a molar ratio n-olefins/chloroparaffins between 70:30 and 99:1.
    Type: Grant
    Filed: January 29, 1993
    Date of Patent: January 31, 1995
    Assignee: Enichem Augusta S.p.A.
    Inventors: Pierluigi Cozzi, Giuseppe Giuffrida, Tullio Pellizzon, Pierino Radici
  • Patent number: 5210353
    Abstract: A process is provided for transaralkylating a class of starting compounds comprised of aryl-substituted lower alkanes and aryl-substituted fused alkylene ring compounds to produce derivatives of such compounds wherein benzyl substituents thereof have different alkyl substituents compared to the starting compounds. The process is carried out by admixing such a starting compound with a lower alkyl-substituted aromatic compound under liquid phase conditions in the presence of a catalytically effective amount of a Friedel-Crafts catalyst. The process makes possible new and economical routes for synthesizing desired lower alkyl-substituted benzyl group containing compounds, such as 2,2-di(lower alkyl-substituted) phenyl propanes and 1,3,3-trimethyl-1-(lower alkyl-substituted)-phenyl indans. Thus, there is provided a three-step process for making dixylylpropane from alpha methyl styrene and also a two-step process for making 1,3,3,6-tetramethyl-1-o-xylyl indan from alpha-4-dimethyl styrene.
    Type: Grant
    Filed: November 30, 1990
    Date of Patent: May 11, 1993
    Assignee: Amoco Corporation
    Inventors: Carl A. Udovich, E. William Breder, Jr., Ibrahim Ghanayem, Mark W. Meszaros, Thomas E. Nemo, Thomas G. Smith
  • Patent number: 5191136
    Abstract: A process for production of sec-butylbenzene is disclosed, comprising reacting benzene and n-butene in the presence of a liquid aluminum chloride complex catalyst is disclosed, wherein the reaction is carried out under conditions satisfying formulae (1) to (4):40>C.times.T.times.2.sup.(K-20)/10 > (1)C.ltoreq.0.9 (2)T.ltoreq.0.7 (3)K.gtoreq.80 (4)wherein C is a concentration (% by weight) of a complex catalyst in the reaction mixture; T is a reaction time (hr); and K is a reaction temperature (.degree.C). sec-Butylbenzene is produced in high yield while suppressing the amount of isobutylbenzene formed as a by-product.
    Type: Grant
    Filed: September 9, 1991
    Date of Patent: March 2, 1993
    Assignee: Sumitomo Chemical Co., Ltd.
    Inventors: Kazuteru Takahashi, Yasuhiko Higashio
  • Patent number: 5132478
    Abstract: Aromatic compounds are alkylated with C.sub.20 -C.sub.1300 olefinic oligomers using an acidic alkylation catalyst to produce alkylated aromatic products, usually alkylaromatic hydrocarbons. The olefinic oligomers used as alkylating agents are prepared from 1-alkene oligomerization in contact with reduced metal oxide catalyst, preferably reduced chromium oxide on a silica support. The alkylated aromatic hydrocarbons retain the unique features of the alkylating olefinic oligomer and exhibit high viscosity index and low pour point. If the alkylation is carried out under certain combinations of conditions, especially using a Lewis acid catalysts such as aluminum trichloride and at higher temperatures, the alkyl portion of the product will undergo isomerization. The alkylaromatic compositions show improved thermal stability and are useful as lubricant basestocks and additives for improved antiwear properties, antioxidant and other properties.
    Type: Grant
    Filed: December 19, 1990
    Date of Patent: July 21, 1992
    Assignee: Mobil Oil Corporation
    Inventors: Suzzy C. Ho, Margaret M. Wu
  • Patent number: 5087785
    Abstract: Improved processes for the production of secondary alkyl indanes, particularly mixtures of 1,1,3,5-tetramethyl-3-isopropylindanes and 1,3,3,5-tetramethyl-3-isopropylindane, and alkylated tetrahydronaphthalenes, particularly mixtures of 1,1,3,4,4,6-hexametyl-1,2,3,4-tetrahydronaphthalene and 1,1,2,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene, are described. In the processes of the invention, alkylated tetrahydronaphthalenes or secondary alkyl indanes are isomerized in the presence of a Lewis acid and a solvent which may be a halogenated or unhalogenated solvent and, optionally, a phase transfer agent, to produce, in the case of an alkylated tetrahydronaphthalene starting material, a secondary alkyl indane, and in the case of a secondary alkyl indane starting material, an aklylated tetrahydronaphthalene. The Lewis acid is present in the reaction medium in an amount of less than about 50 mole percent based on the amount of the alkylated tetrahydronaphthalene or secondary alkylindane charged.
    Type: Grant
    Filed: December 3, 1990
    Date of Patent: February 11, 1992
    Assignee: Union Camp Corporation
    Inventor: Walter C. Frank
  • Patent number: 5059736
    Abstract: A process for production of sec-butylbenzene from benzene and n-butene in the presence of a liquid aluminum chloride complex catalyst is disclosed, wherein the amount of aluminum chloride used as a component of the complex catalyst is from 0.3 to 5 wt % of the benzene used, the reaction temperature is from 20.degree. to 90.degree. C., and the weight ratio of isobutylbenzene formed as a by-product to sec-butylbenzene formed is not more than 0.01:1.
    Type: Grant
    Filed: April 24, 1990
    Date of Patent: October 22, 1991
    Assignee: Sumitomo Chemical Co., Ltd.
    Inventors: Mitsuhisa Tamura, Kazuhiro Yamauchi, Yasuhiko Higashio, Kazuteru Takahashi
  • Patent number: 4943668
    Abstract: A process for producing an alkylated aromatic product having high selectivity to the thermodynamically preferred isomer by contacting meta-xylene and a C.sub.13 to C.sub.20 alpha-olefinic compound at a reaction temperature of about 40.degree. to about 80.degree. C. in the presence of a catalyst comprising an aluminum halide and elemental iodine.
    Type: Grant
    Filed: August 29, 1988
    Date of Patent: July 24, 1990
    Assignee: Phillips Petroleum Company
    Inventor: Michael S. Matson
  • Patent number: 4913178
    Abstract: Disclosed is a process for removing polychlorinated biphenyls from electrical apparatus, particularly transformers, to achieve concentration levels of 50 ppm or less as required by the EPA. A dielectric fluid having a relatively low boiling point as compared to polychlorinated biphenyls and other contaminants and in which PCB's are soluble is selected. There is an external cooling loop through which the dielectric fluid is circulated maintaining the temperature and pressure of the transformer within its design limits. There is an external distillation loop where the liquid removed from the transformer is heated to boiling point of the selected dielectric fluid thereby vaporizing the dielectric fluid and leaving the polychlorinated biphenyls in liquid phase in the distillation vessel. The dielectric fluid vapor is then condensed and returned to solubilize remaining PCB's in the transformer.
    Type: Grant
    Filed: August 18, 1988
    Date of Patent: April 3, 1990
    Assignee: Quadrex HPS Inc.
    Inventor: David E. Fowler
  • Patent number: 4877916
    Abstract: A process is disclosed for the production of polyalkyl tetrahydronaphthalenes wherein a cyclialkylation reaction between an olefinic compound of the general formula ##STR1## where R.sup.4, R.sup.5, R.sup.6 and R.sup.7 are independently defined and each is a substituent which does not interfere substantially with a Friedel-Crafts reaction, and a substituted benzene compound is carried out in the presence of a hydride abstracting reagent, an alkyl halide or hydrogen halide, a Lewis acid, and, optionally, a phase transfer agent. In some embodiments, the subject process is specifically carried out in the absence of elemental iodine. The subject process, which may be practiced in an unhalogenated hydrocarbon solvent, produces the desired compounds in a surprisingly high yield, with a surprisingly high selectivity to the desired product, and at a relatively high rate of reaction, using better, more convenient or less expensive process methodology than many processes known heretofore.
    Type: Grant
    Filed: January 27, 1989
    Date of Patent: October 31, 1989
    Assignee: Union Camp Corporation
    Inventor: Walter C. Frank
  • Patent number: 4877910
    Abstract: A process is disclosed for the production of polyalkyl tetrahydronaphthalenes is disclosed wherein a cyclialkylation reaction between an olefinic compound of the general Formula ##STR1## wherein R.sup.4, R.sup.5, and R.sup.6 are independently defined and each represents a substituent which does not substantially interfere with a Friedel-Crafts type reaction and where R.sup.5 and R.sup.6 are other than H, and a substituted benzene compound is carried out in the presence of a hydride abstracting reagent, an alkyl halide or hydrogen halide, a Lewis acid, and, optionally, a phase transfer agent. In some embodiments, the subject process is specifically carried out in the absence of elemental iodine. The subject process produces the desired compounds in a surprisingly high yield, with a surprisingly high selectivity to the desired product, and at a relatively high rate of reaction, using better, more convenient, or less expensive process methodology than many processes known heretofore.
    Type: Grant
    Filed: January 27, 1989
    Date of Patent: October 31, 1989
    Assignee: Union Camp Corporation
    Inventor: Walter C. Frank
  • Patent number: 4877915
    Abstract: A process is disclosed for the production of polyalkyl tetrahydronaphthalenes wherein a cyclialkylation reaction between an olefinic compound of the general formula ##STR1## wherein R.sup.4, R.sup.5, and R.sup.6 are substituents which do not interfere with a Friedel-Crafts-type reaction and R.sup.5 and R.sup.6 are other than H, and a substituted benzene compound is carried out in the presence of a hydride abstracting reagent, a Lewis acid, and, optionally, a phase transfer agent. In some embodiments, the subject process is specifically carried out in the absence of elemental iodine. The subject process produces the desired compounds in a surprisingly high yield, with a surprisingly high selectivity to the desired product, and at a relatively high rate of reaction, using better, more convenient or less expensive process methodology than many processes known heretofore.
    Type: Grant
    Filed: January 27, 1989
    Date of Patent: October 31, 1989
    Assignee: Union Camp Corporation
    Inventor: Walter C. Frank
  • Patent number: 4877914
    Abstract: A process is disclosed for the production of polyalkyl tetrahydronaphthalenes is disclosed wherein a cyclialkylation reaction between an olefinic compound of the general Formula ##STR1## wherein R.sup.4, R.sup.5 and R.sup.6 are independently defined and each represents a substituent which does not interfere substantially in Friedel-Crafts type reactions and R.sup.5 and R.sup.6 are other than H, and a substituted benzene compound is carried out in the presence of an alkyl halide, a Lewis acid and a phase transfer agent. The subject process produces the desired compounds in a surprisingly high yield, with a surprisingly high selectivity to the desired product, and at a relatively high rate of reaction, using better, more convenient, or less expensive process methodology than many processes known heretofore.
    Type: Grant
    Filed: January 27, 1989
    Date of Patent: October 31, 1989
    Assignee: Union Camp Corporation
    Inventor: Walter C. Frank
  • Patent number: 4877911
    Abstract: A process for the production of polyalkyl tetrahydronaphthalenes is disclosed wherein a cyclialkylation reaction between an olefinic compound of the general Formula ##STR1## wherein R.sup.5, R.sup.6 and R.sup.7 are independently defined and each is a substituent which does not interfere with a Friedel-Crafts type alkylation reaction, and a substituted benzene compound is carried out in the presence of an alkyl halide, a Lewis acid and a phase transfer agent. The subject process, which may be practiced in an unhalogenated hydrocarbon solvent, produces the desired compounds in a surprisingly high yield, with a surprisingly high selectivity to the desired product, and at a relatively high rate of reaction, using safer solvents and better, more convenient, or less expensive process methodology than many processes known heretofore.
    Type: Grant
    Filed: January 27, 1989
    Date of Patent: October 31, 1989
    Assignee: Union Camp Corporation
    Inventor: Walter C. Frank
  • Patent number: 4877913
    Abstract: A process is disclosed for the production of polyalkyl tetrahydronaphthalenes wherein a cyclialkylation reaction between an olefinic compound of the general formula ##STR1## and a substituted benzene compound is carried out in the presence of a hydride abstracting reagent, a Lewis acid, and, optionally, a phase transfer agent. In some embodiments, the subject process is specifically carried out in the absence of elemental iodine. The subject process, which may be practiced in an unhalogenated hydrocarbon solvent, produces the desired compounds in a surprisingly high yield, with a surprisingly high selectivity to the desired product, and at a relatively high rate of reaction, using better, more convenient or less expensive process methodology than many processes known heretofore.
    Type: Grant
    Filed: January 27, 1989
    Date of Patent: October 31, 1989
    Assignee: Union Camp Corporation
    Inventor: Walter C. Frank
  • Patent number: 4877912
    Abstract: A process is disclosed for the production of 1,1,3,4,4,6-Hexamethyl-1,2,3,4-Tetrahydronaphthalene comprising reacting para-cymene with an olefinic compound selected from the group consisting of 2,3-dimethyl-1-butene and neohexene, in the presence of a reagent of the formula ##STR1## and further in the presence of an aluminum halide and I.sub.2, wherein in the above formula, R.sup.1, R.sup.2, R.sup.3, R.sup.4, R.sup.5 and R.sup.6, independently, are H or a C.sub.1 -C.sub.3 straight chain, or branched alkyl, provided that no more than one of R.sup.1, R.sup.2 and R.sup.3 are H, and no more than one of R.sup.4, R.sup.5 and R.sup.6 are H.The subject process produces the desired compound in a surprisingly high yield, with a surprisingly high selectivity, and at a relatively high rate of reaction, using better, more convenient and/or less expensive process methodology than many processes known heretofore.
    Type: Grant
    Filed: January 27, 1989
    Date of Patent: October 31, 1989
    Assignee: Union Camp Corporation
    Inventor: Walter C. Frank
  • Patent number: 4734528
    Abstract: The present invention provides a method for preparing 3-ethylbenzophenone in a high purity which comprises the steps of alkylating benzene with ethylene in the presence of an alkylating catalyst to obtain an alkylated product composed mainly of unreacted benzene, ethylbenzene, polyethylbenzenes and heavier substances; subjecting the alkylated product to rectification in order to recover therefrom a fraction which has a temperature range of boiling points within the range of 275.degree. to 310.degree. C.
    Type: Grant
    Filed: September 8, 1986
    Date of Patent: March 29, 1988
    Assignee: Nippon Petrochemicals Co., Ltd.
    Inventors: Isoo Shimizu, Yasuo Matsumura, Atsushi Sato
  • Patent number: 4731483
    Abstract: The present invention provides a method for preparing 3-ethylbenzophenone in a high purity which comprises the steps of alkylating benzene with ethylene with the aid of an alkylating catalyst to obtain an alkylated product composed mainly of unreacted benzene, ethylbenzene, polyethylbenzenes and heavier by-products; subjecting the alkylated product to distillation in order to recover therefrom a fraction which has a temperature range of boiling points within the range of 275.degree. to 310.degree. C. (in terms of atmospheric pressure); dehydrogenating the recovered fraction at a reaction temperature within the range of 200.degree. to 700.degree. C.
    Type: Grant
    Filed: September 8, 1986
    Date of Patent: March 15, 1988
    Assignee: Nippon Petrochemicals Co., Ltd.
    Inventors: Isoo Shimizu, Yasuo Matsumura, Shigenobu Kawakami, Atsushi Sato
  • Patent number: 4714794
    Abstract: A synthetic oil having excellent oxidation stability, comprising a mixture of monoalkylnaphthalenes which have each a secondary alkyl group of 6 to 24 carbon atoms and in which the specific molar ratio of .alpha.- to .beta.-substituted monalkylnaphthalenes is at least 1.0. The synthetic oil is useful as a thermal medium oil or as the main component of a synthetic lubricating oil.
    Type: Grant
    Filed: May 15, 1987
    Date of Patent: December 22, 1987
    Assignee: Nippon Oil Co., Ltd.
    Inventors: Toshio Yoshida, Harumichi Watanabe
  • Patent number: 4668835
    Abstract: The alkylation of para-substituted isopropyl benzenes with dipentenes employing an aluminum halide catalyst system produces novel tetracyclic compounds.
    Type: Grant
    Filed: October 4, 1985
    Date of Patent: May 26, 1987
    Assignee: Phillips Petroleum Co.
    Inventor: Raymond L. Cobb
  • Patent number: 4665275
    Abstract: A thermal medium oil comprising at least one monosubstituted naphthalene derivative such as .beta.-(1,1-dimethyloctyl) naphthalene, .beta.-(1,1-dimethylhexyl) naphthalene and 2-t.-amylnaphthalene.
    Type: Grant
    Filed: June 17, 1985
    Date of Patent: May 12, 1987
    Assignee: Nippon Oil Co., Ltd.
    Inventors: Toshio Yoshida, Harumichi Watanabe
  • Patent number: 4599472
    Abstract: Hydrocarbon solutions containing iodine or iodine-containing impurities are rendered essentially color-free by distillation in the presence of small amounts of a hydrocarbon soluble organometallic compound.
    Type: Grant
    Filed: June 27, 1985
    Date of Patent: July 8, 1986
    Assignee: Phillips Petroleum Company
    Inventor: Raymond L. Cobb
  • Patent number: 4551573
    Abstract: The alkylation of aromatic compounds with olefinic compounds is catalyzed by catalyst consisting essentially of aluminum halide and elemental iodine.
    Type: Grant
    Filed: October 1, 1984
    Date of Patent: November 5, 1985
    Assignee: Phillips Petroleum Company
    Inventor: Raymond L. Cobb