From Nonhydrocarbon Feed Patents (Class 585/469)
  • Publication number: 20130217940
    Abstract: The present inventors have surprisingly discovered that paraxylene selectivity is found to increase as the amount of coke on catalyst increases. In embodiments the paraxylene selectivity and productivity is maximized by controlling the amount of coke on the catalyst while maintaining xylene yield at an acceptable value. The control of coke may be achieved by one or a combination of the following techniques: increasing catalyst on-oil time, decreasing catalyst residence time in the regenerator, reducing the air or oxygen supply to the regenerator, and decreasing catalyst circulation rate, or a combination thereof.
    Type: Application
    Filed: May 30, 2012
    Publication date: August 22, 2013
    Inventors: Xiaobo Zheng, John Di-Yi Ou, Mark P. Hagemeister
  • Publication number: 20130211106
    Abstract: Microwave irradiation is used to synthesize graphene and metallic nanocatalysts supported on graphene either by solid or solution phase. In solid phase methods, no solvents or additional reducing agents are required so the methods are “environmentally friendly” and economical, and the graphene and nanocatalysts are substantially free of residual contaminants. Recyclable, high efficiency Pd nanocatylysts are prepared by these methods.
    Type: Application
    Filed: March 25, 2011
    Publication date: August 15, 2013
    Inventors: M. Samy El-Shall, Victor Abdelsayed, Hassan M.A. Hassan, Abd EI Rahman S. Khder, Khaled M. Abouzeid, Qilin Dai, Parichehr Afshani, Frank Gupton, Ali R. Siamaki, Zeid Abdullah M. Alothman, Hamad Zaid Alkhathlan
  • Patent number: 8507744
    Abstract: The proposed process uses crystallization technology to purify paraxylene simultaneously of large concentrations of C8 aromatics and also small concentrations of oxygenated species.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: August 13, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Mark Paul Hagemeister, David Lee Johnson, John Joseph Monson
  • Patent number: 8506658
    Abstract: A process and system for separating a light fraction, a bio-distillate fraction, and a heavy fraction from a bio-oil, and for producing a renewable distillate including at least in part the bio-distillate fraction and a stabilizing additive, is provided. The process comprises separating bio-oil into light, bio-distillate, and heavy fractions based on their boiling points. At least a portion of the bio-distillate fraction and a stabilizing additive are blended with a petroleum-derived-diesel-range stream, without any prior hydrotreatment, to thereby provide a renewable distillate composition.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: August 13, 2013
    Assignee: KiOR, Inc.
    Inventors: Maria Magdalena Ramirez Corredores, Jennifer Sorrells, Changan Zhang
  • Patent number: 8501036
    Abstract: The invention relates to Group 1 metal/silica gel compositions comprising silica gel and an alkali metal or alloy, wherein Group 1 metals or alloys are absorbed into the silica gel pores. The invention relates to producing hydrogen gas comprising contacting a Group 1 metal/silica gel composition with water, and further relates to an alkali metal reduction of an organic compound, the improvement comprising contacting the organic compound with a Group 1 metal/silica gel composition. In these embodiments, the Group 1 metal/silica gel composition reacts with dry O2. The invention also relates to producing hydrogen gas comprising contacting a Group 1 metal/silica gel composition with water, and further relates to an alkali metal reduction of an organic compound, the improvement comprising contacting the organic compound with a Group 1 metal/silica gel composition. In these embodiments, the Group 1 metal/silica gel composition produced does not react with dry O2.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: August 6, 2013
    Assignees: SiGNa Chemistry, Inc., Board of Trustees of Michigan State University
    Inventors: Michael Lefenfeld, James L. Dye
  • Publication number: 20130197289
    Abstract: A process is provided that is directed to a steam pyrolysis zone integrated with a solvent deasphalting zone to permit direct processing of crude oil feedstocks to produce petrochemicals including olefins and aromatics. The integrated solvent deasphalting and steam pyrolysis process for the direct processing of a crude oil to produce olefinic and aromatic petrochemicals comprises charging the crude oil to a solvent deasphalting zone with an effective amount of solvent to produce a deasphalted and demetalized oil stream and a bottom asphalt phase; thermally cracking the deasphalted and demetalized oil stream in the presence of steam to produce a mixed product stream; separating the mixed product stream; recovering olefins and aromatics from the separated mixed product stream; and recovering pyrolysis fuel oil from the separated mixed product stream.
    Type: Application
    Filed: January 28, 2013
    Publication date: August 1, 2013
    Applicant: SAUDI ARABIAN OIL COMPANY
    Inventors: Abdennour BOURANE, Raheel SHAFI, Essam SAYED, Ibrahim A. ABBA, Abdul Rahman Zafer AKHRAS
  • Patent number: 8492602
    Abstract: This disclosure relates to a process for alkylating an aromatic hydrocarbon with an alkylating agent to produce an alkylated aromatic product, said process comprising contacting said aromatic hydrocarbon and said alkylating agent with a catalyst composition under alkylation conditions effective to alkylate said aromatic hydrocarbon with said alkylating agent to form an effluent comprising said alkylated aromatic product, wherein said catalyst composition comprising (a) MCM-22 family material; and (b) a binder comprising at least 1 wt. % of a titanium compound based on the weight of said catalyst composition, wherein said titanium compound was anatase and rutile phases.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: July 23, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Christine N. Elia, Frederick Y. Lo, Jeffrey T. Elks, Darryl D. Lacy, Mohan Kalyanaraman
  • Publication number: 20130178650
    Abstract: A method of manufacturing aromatic hydrocarbons, which are suitable for the production of terephthalic acid, from tall oil-based raw material. According to the invention, the raw material that contains tall oil or its fraction is catalytically deoxygenated with hydrogen, and one or more aromatic hydrocarbons that can be converted into terephthalic acid are separated from the deoxygenated reaction yield. The deoxygenation catalyst is a NiMo catalyst and, in addition, a cracking catalyst can be used, such as an acidic zeolite catalyst. The separated hydrocarbon can be p-xylene, o-xylene or p-cymene. According to the invention, these can be converted by oxidation and, when needed, by a re-arrangement reaction into terephthalic acid that is suitable for the source material of the manufacture of bio-based polyethylene terephthalate.
    Type: Application
    Filed: June 3, 2011
    Publication date: July 11, 2013
    Applicant: STORA ENSO OYJ
    Inventors: Ali Harlin, Jari Räsänen, Tapani Penttinen
  • Publication number: 20130158324
    Abstract: Process and system that include the conversion of alkyl bromides to higher molecular weight hydrocarbons in circulating catalyst reactor-regenerator systems. Alkyl bromides may be reacted over a catalyst in at least one conversion reactor to produce at least an effluent stream comprising higher molecular weight hydrocarbons and hydrogen bromide. A portion of the catalyst may be removed from the conversion reactor. The portion of the catalyst may be contacted with a stripping gas to displace hydrocarbons from the portion of the catalyst. The portion of the catalyst may be contacted a first inert gas. The portion of the catalyst may be contacted with oxygen to form a regenerated catalyst by removal of coke. The regenerated catalyst may be contacted with a second inert gas. At least a portion of the regenerated catalyst may be introduced into the conversion reactor.
    Type: Application
    Filed: December 4, 2012
    Publication date: June 20, 2013
    Applicant: MARATHON GTF TECHNOLOGY, LTD.
    Inventor: Marathon GTF Technology, Ltd.
  • Patent number: 8450548
    Abstract: The invention relates to a process for converting a feed stream comprising oxygenated lower aliphatic hydrocarbon compounds, especially methanol, to a product stream comprising aromatic hydrocarbons, especially BTX, which process comprises a step of contacting said feed with a catalyst composition La-M/zeolite, which consists essentially of from 0.0001 to 20 mass % (based on total catalyst composition) of lanthanum; from 0.0001 to 20 mass % of at least one element M selected from the group consisting of molybdenum, copper, cerium and caesium; zeolite in hydrogen form; and optionally a binder.
    Type: Grant
    Filed: August 13, 2008
    Date of Patent: May 28, 2013
    Assignee: Saudi Basic Industries Corporation
    Inventors: Khalid Karim, Naif Al-Otaibi, Syed Zaheer, Abdulkareem Al-Shabnan
  • Patent number: 8445738
    Abstract: A process is described for producing cumene comprising contacting a feed stream comprising benzene and a further feed stream comprising isopropanol or a mixture of isopropanol and propylene in the presence of an alkylation catalyst comprising at least a molecular sieve of the MCM-22, family in an alkylation zone under alkylation conditions of at least partial liquid phase and with a water concentration in the liquid phase of at least 50 ppm to react at least part of said isopropanol and benzene to produce an effluent stream containing cumene.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: May 21, 2013
    Assignee: Badger Licensing LLC
    Inventors: Shyh-Yuan Hwang, Dana E. Johnson, Joseph C. Peters, Chung-Ming Chi, Kevin J. Fallon, Francis A. Demers
  • Publication number: 20130115661
    Abstract: A method for utilizing cultivated plant biomass components, namely cellulose, hemicellose, and lignin, and converting them to value-added biobased chemical products is described herein. The present method provides treatments to obtain a plurality of component streams from cultivated plant biomass for producing derivative products while minimizing waste products.
    Type: Application
    Filed: November 9, 2011
    Publication date: May 9, 2013
    Applicant: THESIS CHEMISTRY, LLC
    Inventors: John R. Peterson, Christopher M. Yost, Jian Wu
  • Patent number: 8436220
    Abstract: Process and systems for converting lower molecular weight alkanes to higher molecular weight hydrocarbons that include demethanization of brominated hydrocarbons, wherein the brominated hydrocarbons are formed by reaction of the lower molecular weight alkanes with bromine.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: May 7, 2013
    Assignee: Marathon GTF Technology, Ltd.
    Inventors: Sabah A. Kurukchi, Yijun Liu, Anand Moodley
  • Patent number: 8425766
    Abstract: Aspects of the present invention relate to methods, systems, and compositions for preparing a solid biomass for fast pyrolysis. The method includes contacting the solid biomass with an inorganic material present in an effective amount for increasing fast pyrolysis yield of an organic liquid product (e.g., bio-oil). In various embodiments, the inorganic material is selected from the group consisting of aluminum sulfate, aluminum nitrate, aluminum chloride, aluminum hydroxide, ammonium hydroxide, magnesium hydroxide, potassium hydroxide, and combinations thereof.
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: April 23, 2013
    Assignee: KiOR, Inc.
    Inventors: Robert Bartek, Michael Brady, Dennis Stamires
  • Publication number: 20130095605
    Abstract: A leaving substituent-containing compound represented by General Formula (I), wherein the leaving substituent-containing compound can be converted to a compound represented by General Formula (Ia) and a compound represented by General Formula (II), by applying energy to the leaving substituent-containing compound, in General Formulas (I), (Ia) and (II), X and Y each represent a hydrogen atom or a leaving substituent, where one of X and Y is the leaving substituent and the other is the hydrogen atom; Q2 to Q5 each represent a hydrogen atom, a halogen atom or a monovalent organic group; Q1 and Q6 each represent a hydrogen atom or a monovalent organic group other than the leaving substituent; and among the monovalent organic groups represented by Q1 to Q6, adjacent monovalent organic groups may be linked together to form a ring.
    Type: Application
    Filed: June 14, 2011
    Publication date: April 18, 2013
    Applicant: RICOH COMPANY, LTD.
    Inventors: Daisuke Goto, Satoshi Yamamoto, Toshiya Sagisaka, Takuji Kato, Takanori Tano, Masato Shinoda, Shinji Matsumoto, Masataka Mohri, Keiichiro Yutani
  • Patent number: 8409303
    Abstract: In the processes for treating municipal sewage and storm water containing biosolids to discharge standards, biosolids, even after dewatering, contain typically about 80% water bound in the dead cells of the biosolids, which gives biosolids a negative heating value. It can be incinerated only at the expense of purchased fuel. Biosolids are heated to a temperature at which their cell structure is destroyed and, preferably, at which carbon dioxide is split off to lower the oxygen content of the biosolids. The resulting char is not hydrophilic, and it can be efficiently dewatered and/or dried and is a viable renewable fuel. This renewable fuel can be supplemented by also charging conventional biomass (yard and crop waste, etc.) in the same or in parallel facilities. Similarly, non-renewable hydrophilic fuels can be so processed in conjunction with the processing of biosolids to further augment the energy supply.
    Type: Grant
    Filed: February 11, 2011
    Date of Patent: April 2, 2013
    Assignee: SGC Advisors, LLC
    Inventors: Norman L. Dickinson, Kevin M. Bolin, Edward Overstreet, Brian Dooley
  • Publication number: 20130079530
    Abstract: The present invention provides a 6,13-dihalogen-5,14-dihydropentacene derivative and a method for production thereof. Compounds (b) and (c) are reacted through cross-coupling reaction in the presence of a metal compound and a lithiating agent to synthesize compound (d), which is then halogenated to thereby obtain a 6,13-dihalogen-5,14-dihydropentacene derivative (compound (e)). [wherein X1 and X2 are each a halogen atom, and R1, R2, R3, R4, R5, R6, R7, R8, R9 and R10 are each a hydrogen atom, an optionally substituted C1-C20 hydrocarbon group, etc.
    Type: Application
    Filed: March 4, 2011
    Publication date: March 28, 2013
    Inventors: Tamotsu Takahashi, Ken-ichiro Kanno, Shi Li
  • Patent number: 8399727
    Abstract: In a process for the production of para-xylene, an aromatic feedstock comprising toluene and/or benzene is reacted with methanol under alkylation conditions in a reactor in the presence of a fluidized bed of solid catalyst particles to produce a vapor phase effluent comprising para-xylene, water, unreacted toluene and/or benzene and solid catalyst fines. The vapor phase effluent is contacted with a liquid hydrocarbon quench stream under conditions to condense a minor portion of the vapor phase effluent and produce a condensate which contains at least some of the catalyst fines and which is substantially free of an aqueous phase. The condensate containing said catalyst fines is then separated from the remainder of the vapor phase effluent.
    Type: Grant
    Filed: October 6, 2010
    Date of Patent: March 19, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James R. Lattner, Mark P. Hagemeister, Christopher Gordon Smalley, Jon Edmond Randolph Stanat, Timothy Paul Bender, Masaaki Sugita, Rathna P. Davuluri, Lu Han
  • Publication number: 20130066127
    Abstract: This invention relates to methods for producing cycloheptatriene from at least 7,7-dichloronorcarane and a liquid component comprising a C8 to C30 succinic anhydride, a carboxylic acid, or a C8 to C30 alkyldimethylamine at about 205 deg. C. to about 230 deg. C.
    Type: Application
    Filed: February 22, 2011
    Publication date: March 14, 2013
    Applicant: ALBEMARLE CORPORATION
    Inventors: Richmond M. Starrett, Christopher D. Claeboe, Anthony F. Skufca, Joseph H. Miller
  • Patent number: 8389781
    Abstract: The catalyst comprises at least a metal component and at least a non-metallic conducting component as supplement component. The metal component generally contains one or more metals of the groups VIb, VIIb or VIIIb of the periodic table. The supplement component is e.g. a conducting carbon material like graphite, a conducting polymer or a conducting metal oxide. Preferably it is hydrophobic or made hydrophobic. The catalyst is used for hydroprocessing of bio-feedstock like vegetable oils to produce fuels, which are aliphatic hydrocarbons comparable to conventional fuel from mineral oil.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: March 5, 2013
    Assignee: Aggregate Energy, LLC
    Inventors: Gerd Sandstede, Thomas Lehmann
  • Patent number: 8378159
    Abstract: A method of producing a hydrocarbon fuel from a hydrocarbon-containing gas is disclosed and described. A hydrocarbon-containing gas is produced (10) containing from about 25% to about 50% carbon dioxide and can be reformed (12) with a steam gas to form a mixture of hydrogen, carbon monoxide and carbon dioxide. The reforming can be a composite dry-wet reforming or a tri-reforming step. The mixture of hydrogen, carbon monoxide and carbon dioxide can be at least partially converted (14) to a methanol product. The methanol product can be converted to the hydrocarbon fuel (18), optionally via DME synthesis (16). The method allows for effective fuel production with low catalyst fouling rates and for operation in an unmanned, self-contained unit at the source of the hydrocarbon-producing gas.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: February 19, 2013
    Assignee: Oberon Fuels, Inc.
    Inventors: Andrew Corradini, Jarod McCormick
  • Patent number: 8377288
    Abstract: This invention relates to methods and units for mitigation of carbon oxides during hydrotreating hydrocarbons including mineral oil based streams and biological oil based streams. A hydrotreating unit includes a first hydrotreating reactor for receiving a mineral oil based hydrocarbon stream and forming a first hydrotreated product stream, and a second hydrotreating reactor for receiving a biological oil based hydrocarbon stream and forming a second hydrotreated product stream.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: February 19, 2013
    Assignee: BP Corporation North America Inc.
    Inventors: Nicholas J. Gudde, John W. Shabaker
  • Publication number: 20130041155
    Abstract: This invention provides: a compound for accurately forming a carbon nanoring that contains a specific number of organic rings and has a definite diameter; a method for producing the compound; a method for efficiently producing a carbon nanoring; and a cycloparaphenylene obtained by the production method. The carbon nanoring of the present invention is a compound obtained by bonding a specific number of organic ring groups. The method for producing a carbon nanoring of the present invention comprises a modification step wherein a halogen atom in a U-shaped compound is modified into a boron compound, and a coupling step wherein the U-shaped compound is subjected to a coupling reaction. The U-shaped compound is a novel compound that has cyclohexane rings, benzene rings, and specific organic ring groups.
    Type: Application
    Filed: February 10, 2011
    Publication date: February 14, 2013
    Applicant: NATIONAL UNIVERSITY CORPORATION NAGOYA UNIVERSITY
    Inventors: Kenichiro Itami, Yasutomo Segawa, Haruka Omachi, Sanae Matsuura, Katsuma Matsui
  • Patent number: 8367884
    Abstract: Processes and systems for synthesizing hydrocarbon products, such as high molecular weight hydrocarbons, olefins or mixtures thereof, from alkyl bromides wherein one or more streams of alkyl bromides may be reacted in sequential or concurrent stages at different temperatures. The catalyst used in the synthesis stages may be the same or different and at least in one instance is chosen to form hydrocarbon products having a significant C6+ paraffin content. The stages may be conducted in one or more reactors and the catalyst may be deployed in fixed beds or fluidized beds.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: February 5, 2013
    Assignee: Marathon GTF Technology, Ltd.
    Inventor: John J Waycuilis
  • Publication number: 20130006029
    Abstract: A process for hydrotreating a first aromatics- and sulfur-containing hydrocarbon feed using a fresh supported CoMo catalyst, includes treating the fresh catalyst under first hydrotreating conditions with a second hydrocarbon feed having a lower aromatics content than the first feed.
    Type: Application
    Filed: February 21, 2011
    Publication date: January 3, 2013
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERINGCOMPANY
    Inventors: Gabor Kiss, Iulian Nistor, John Zengel, Sabato Miseo, Roman Krycak, Teh C. Ho
  • Patent number: 8344197
    Abstract: In a process for the production of para-xylene, methanol is preheated to a first temperature, an aromatic feedstock comprising toluene and/or benzene is preheated to a second temperature and the preheated methanol and aromatic feedstocks are fed to a reactor at a first methanol to aromatic feedstock molar ratio. The preheated aromatic feedstock is contacted with the preheated methanol under alkylation conditions in the reactor in the presence of a catalyst so that the methanol reacts with the aromatic feedstock to produce an effluent comprising para-xylene. During the reaction, a temperature is measured within the reactor and is compared with a predetermined optimal temperature. The methanol to aromatic feedstock molar ratio is then adjusted in a manner to reduce any difference between the measured and predetermined optimal temperatures in the reactor.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: January 1, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James R. Lattner, Mark P. Hagemeister, Jon Edmond Randolph Stanat, John Di-Yi Ou, Xiaobo Zheng, Lu Han
  • Patent number: 8338655
    Abstract: A process for converting a dilute ethanol solution to liquid hydrocarbon fuels such as LPG and gasoline by preferentially driving-off the ethanol molecules in the solution across the liquid-air interface and streaming same into a heating and catalytic reacting system maintained at the conversion conditions. The concentration of the dilute ethanol solutions are in the range of from 5% to 15% ethanol and the reacting system comprises a zeolite type of catalyst such as ZSM-5.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: December 25, 2012
    Inventors: Martin Ming Yang Chang, Jyh-Cherng Shieh, Sheng-Meng Wang
  • Publication number: 20120316376
    Abstract: Biomass (e.g., plant biomass, animal biomass, microbial, and municipal waste biomass) is processed to produce useful products, such as food products and amino acids.
    Type: Application
    Filed: August 20, 2012
    Publication date: December 13, 2012
    Applicant: XYLECO, INC.
    Inventor: Marshall Medoff
  • Patent number: 8329969
    Abstract: A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: December 11, 2012
    Assignee: UOP LLC
    Inventors: Michael J. McCall, Timothy A. Brandvold, Douglas C. Elliott
  • Patent number: 8318999
    Abstract: A process is disclosed for making styrene or ethylbenzene by reacting toluene with a C1 source that is selected from the group consisting of methanol, formaldehyde, formalin, trioxane, methylformcel, paraformaldehyde, methylal, and combinations thereof.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: November 27, 2012
    Assignee: Fina Technology Inc.
    Inventors: Sivadinarayana Chinta, Joseph Thorman, James Butler
  • Patent number: 8299315
    Abstract: The present invention relates to a method and apparatus for intensifying the energy content of an organic material by converting the material into hydrocarbons and the resulting product thereof. A method for converting an organic material into hydrocarbon fuels is disclosed. The method comprising the steps of pressurizing said organic material being in a fluid to a pressure above 225 bar, heating said organic material in said fluid to a temperature above 200 C in the presence of a homogeneous catalyst comprising a compound of at least one element of group IA of the periodic table of elements. The disclosed method further comprises the steps of contacting said organic material in said fluid with a heterogeneous catalyst comprising a compound of at least one element of group IVB of the periodic table and/or alpha-alumina assuring that said fluid has initially a pH value of above 7.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: October 30, 2012
    Assignee: Altaca Insaat ve dis Ticaret A.S.
    Inventors: Steen Brummerstedt Iversen, Karsten Felsvang, Tommy Larsen, Viggo Lüthje
  • Publication number: 20120264988
    Abstract: The present invention relates to a process for producing unsaturated cyclic and/or aromatic compounds from 1,8-cineole, the process comprising pyrolysing 1,8-cineole in the presence of gamma-alumina supported transition metal catalyst.
    Type: Application
    Filed: February 26, 2010
    Publication date: October 18, 2012
    Inventors: Benjamin Aldo Leita, Peter Gray, Nicholas Richard Burke, Michael Shane O'shea, David Lawrence Trimm, Garbriella Maria Furtenbach
  • Patent number: 8288604
    Abstract: A method of rapid methylation of an aromatic compound or an alkenyl compound, which is capable of obtaining an aromatic compound or an alkenyl compound labeled with a methyl group or a fluoromethyl group under a mild condition rapidly in high yield using an organic boron compound whose toxicity is not so high as a substrate. A kit for preparing a PET tracer and a method of producing a PET tracer can be practiced using the rapid methylation method. In an aprotic polar solvent, methyl iodide or X—CH2F (wherein X is a functional group which can be easily released as an anion), and an organic boron compound in which an aromatic ring or an alkenyl group is attached to boron are subjected to cross-coupling in the presence of a palladium(0) complex, a phosphine ligand, and a base.
    Type: Grant
    Filed: August 24, 2007
    Date of Patent: October 16, 2012
    Assignees: Gifu University, Riken, Hamamatsu Photonics K.K.
    Inventors: Masaaki Suzuki, Hisashi Doi, Hideo Tsukada
  • Patent number: 8288605
    Abstract: The novel C dialdehyde compound which can be efficiently utilized in the synthesis of carotenoid compounds based on the sulfone chemistry, the preparation method of the same, and the expeditious and practical synthetic processes for lycopene and ?-carotene by the use of the above novel compound are disclosed. The syntheses of lycopene and ?-carotene are characterized by the processes of the coupling reaction between two equivalents of geranyl sulfone or cyclic geranyl sulfone and the above C dialdehyde, the functional group transformation reactions of the diol in the resulting C 40 coupling products to X's (either halogens or ethers), and the double elimination reactions of the functional groups of the benzenesulfonyl and X to produce the fully conjugated polyene chain of the carotenoids.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: October 16, 2012
    Assignee: Myongji University Industry and Academia Cooperation
    Inventors: Sang Ho Koo, Eun Ho Choi, Joo-Won Suh
  • Patent number: 8283508
    Abstract: The present invention is a method for producing an aromatic compound by substituting the sulfonic acid group in a sulfonic acid aromatic-ester with a hydrogen atom in the presence of a platinum group metal catalyst, wherein an alkali metal carboxylate and/or an ammonium formate are made to coexist in the system. According to the present invention, an aromatic compound where the sulfonic acid group in a sulfonic acid aromatic-ester is substituted with a hydrogen atom, can be produced efficiently with good operability without using metal magnesium.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: October 9, 2012
    Assignee: Ube Industries, Ltd.
    Inventors: Koji Abe, Yoshihiro Ushigoe, Yuichi Kotou, Ken Ikuno, Takashi Hosomi, Toyoaki Ihara
  • Patent number: 8278493
    Abstract: A method of synthesizing hydrocarbons from smaller hydrocarbons includes the steps of hydrocarbon halogenation, simultaneous oligomerization and hydrogen halide neutralization, and product recovery, with a metal-oxygen cataloreactant used to facilitate carbon-carbon coupling. Treatment with air or oxygen liberates halogen and regenerates the cataloreactant.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: October 2, 2012
    Assignee: GRT, Inc.
    Inventor: Ivan M. Lorkovic
  • Patent number: 8277643
    Abstract: This invention relates to compositions and methods for fluid hydrocarbon product, and more specifically, to compositions and methods for fluid hydrocarbon product via catalytic pyrolysis. Some embodiments relate to methods for the production of specific aromatic products (e.g., benzene, toluene, naphthalene, xylene, etc.) via catalytic pyrolysis. Some such methods may involve the use of a composition comprising a mixture of a solid hydrocarbonaceous material and a heterogeneous pyrolytic catalyst component. In some embodiments, the mixture may be pyrolyzed at high temperatures (e.g., between 500° C. and 1000° C.). The pyrolysis may be conducted for an amount of time at least partially sufficient for production of discrete, identifiable biofuel compounds. Some embodiments involve heating the mixture of catalyst and hydrocarbonaceous material at high rates (e.g., from about 50° C. per second to about 1000° C. per second). The methods described herein may also involve the use of specialized catalysts.
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: October 2, 2012
    Assignee: University of Massachusetts
    Inventors: George W. Huber, Yu-Ting Cheng, Torren Carlson, Tushar Vispute, Jungho Jae, Geoff Tompsett
  • Publication number: 20120245348
    Abstract: Disclosed herein are phosphine compounds represented by the general formula (4): and corresponding phosphonium salts represented by the general formula (4a): Also disclosed are processes for the preparation of these phosphines and phosphonium salts as well as their use as ligands in catalytic reactions.
    Type: Application
    Filed: April 2, 2012
    Publication date: September 27, 2012
    Inventors: Herbert PLENIO, Christoph FLECKENSTEIN, Renat KADYROV, Juan ALMENA, Axel MONSEES, Thomas RIERMEIER
  • Patent number: 8273932
    Abstract: The process for producing alkylated aromatic compounds includes feeding raw materials including an aromatic compound, a ketone and hydrogen in a gas-liquid downward concurrent flow mode to a fixed-bed reactor packed with a catalyst thereby to produce an alkylated aromatic compound, wherein the catalyst includes a solid acid component and a metal component, the catalyst is loaded in the fixed-bed reactor such that the catalyst forms a catalyst layer, and the reaction gas flow rate defined by Equation (1) below is not less than 0.05 at an entrance of a layer containing the solid acid: ?g·ug·[?air·?water/(?g·?l)]1/2 (kgm?2s?1).
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: September 25, 2012
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Shinji Senoo, Kazuhiko Kato, Kenji Doi, Katsunari Higashi
  • Publication number: 20120238789
    Abstract: A method for the production of styrene comprising reacting toluene and syngas in one or more reactors is disclosed.
    Type: Application
    Filed: June 1, 2012
    Publication date: September 20, 2012
    Applicant: FINA TECHNOLOGY, INC.
    Inventors: Joseph E. Pelati, James R. Butler
  • Publication number: 20120232310
    Abstract: Disclosed are: a novel palladium catalyst which does not undergo leakage, can be recycled, does not require the use of any phosphorus-containing ligand, and has a high catalytic activity; and a process for producing a novel bisaryl compound using the palladium catalyst. In the production of a bisaryl compound by reacting an aromatic halide with an aromatic boronic acid in the presence of a palladium catalyst and a base, the palladium catalyst comprises a dendrimer containing a silica particle as a core and a palladium compound dissolved in an ionic liquid and supported on the dendrimer.
    Type: Application
    Filed: November 11, 2010
    Publication date: September 13, 2012
    Applicant: Niigata University
    Inventors: Hisahiro Hagiwara, Norio Tsubokawa
  • Patent number: 8258359
    Abstract: A process is disclosed for making styrene and/or ethylbenzene by reacting toluene with a C1 source over a catalyst in one or more reactors to form a product stream comprising styrene and/or ethylbenzene where the catalyst time on stream prior to regeneration is less than 1 hour.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: September 4, 2012
    Assignee: Fina Technology, Inc.
    Inventors: Joseph Thorman, James Butler, Sivadinarayana Chinta
  • Patent number: 8252967
    Abstract: The proposed process uses crystallization technology to purify paraxylene simultaneously of large concentrations of C8 aromatics and also small concentrations of oxygenated species.
    Type: Grant
    Filed: April 7, 2010
    Date of Patent: August 28, 2012
    Assignee: Exxonmobil Chemical Patents Inc.
    Inventors: Mark Paul Hagemeister, David Lee Johnson, John Joseph Monson
  • Publication number: 20120214724
    Abstract: The invention is directed to mixtures comprising C10-C13 alkylphenyl sulfonates having alkyl groups in a particular distribution (e.g., bimodal, peaked, and skewed). These C10-C13 alkylphenyl sulfonates are optionally renewable and unexpectedly provide superior results when used in consumer product cleaning and personal care compositions (e.g., dishcare, laundry, hard surface cleaners, shampoos, conditioners, and soaps). The invention is further directed to a method of making a mixture of partially or wholly renewable C10-C13 alkylphenyl sulfonates having a particular alkyl group distribution.
    Type: Application
    Filed: February 17, 2012
    Publication date: August 23, 2012
    Inventors: Jeffrey John Scheibel, Phillip Richard Green, Jiten Odhavji Dihora, Phillip Kyle Vinson, Stephanie Ann Urbin, Dimitris Ioannis Collias
  • Publication number: 20120203042
    Abstract: This invention relates to compositions and methods for fluid hydrocarbon product, and more specifically, to compositions and methods for fluid hydrocarbon product via catalytic pyrolysis. Some embodiments relate to methods for the production of specific aromatic products (e.g., benzene, toluene, naphthalene, xylene, etc.) via catalytic pyrolysis. Some such methods may involve the use of a composition comprising a mixture of a solid hydrocarbonaceous material and a heterogeneous pyrolytic catalyst component. In some embodiments, an olefin compound may be co-fed to the reactor and/or separated from a product stream and recycled to the reactor to improve yield and/or selectivity of certain products. The methods described herein may also involve the use of specialized catalysts. For example, in some cases, zeolite catalysts may be used. In some instances, the catalysts are characterized by particle sizes in certain identified ranges that can lead to improve yield and/or selectivity of certain products.
    Type: Application
    Filed: September 9, 2010
    Publication date: August 9, 2012
    Applicants: ANELLOTECH, INC., UNIVERSITY OF MASSACHUSETTS
    Inventors: George W. Huber, Anne Mae Gaffney, Jungho Jae, Yu-Ting Cheng
  • Patent number: 8236173
    Abstract: Aspects of the present invention relate to methods, systems, and compositions for preparing a solid biomass for fast pyrolysis. The method includes contacting the solid biomass with an inorganic material present in an effective amount for increasing fast pyrolysis yield of an organic liquid product (e.g., bio-oil). In various embodiments, the inorganic material is selected from the group consisting of aluminum sulfate, aluminum nitrate, aluminum chloride, aluminum hydroxide, ammonium hydroxide, magnesium hydroxide, potassium hydroxide, and combinations thereof.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: August 7, 2012
    Assignee: KiOR, Inc.
    Inventors: Robert Bartek, Michael Brady, Dennis Stamires
  • Patent number: 8237002
    Abstract: A method for producing an unsaturated organic compound represented by the formula (3): (Y1)m-1—R1—R2—(Y2)n-1??(3) wherein Y1 represents R2 or X1, and Y2 represents R1 or B(X2)2, which comprises reacting a compound represented by the formula (1): R1(X1)m??(1) wherein R1 represents an aromatic group or the like, X1 represents a leaving group and m represents 1 or 2, with a compound represented by the formula (2): R2{B(X2)2}n??(2) wherein R2 represents an aromatic group or the like, X2 represents a hydroxyl group or the like, and n represents 1 or 2, in the presence of (a) a nickel compound selected from a nickel carboxylate, nickel nitrate and a nickel halide, (b) a phosphine compound such as 1,4-bis(dicyclohexylphosphino) butane, (c) an amine selected from a primary amine and a diamine such as N,N,N?,N?-tetramethyl-1,2-ethanediamine, and (d) an inorganic base.
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: August 7, 2012
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Taku Asaumi, Takashi Kamikawa
  • Publication number: 20120197051
    Abstract: In various embodiments, the present disclosure describes processes for preparing functionalized graphene nanoribbons from carbon nanotubes. In general, the processes include exposing a plurality of carbon nanotubes to an alkali metal source in the absence of a solvent and thereafter adding an electrophile to form functionalized graphene nanoribbons. Exposing the carbon nanotubes to an alkali metal source in the absence of a solvent, generally while being heated, results in opening of the carbon nanotubes substantially parallel to their longitudinal axis, which may occur in a spiralwise manner in an embodiment. The graphene nanoribbons of the present disclosure are functionalized on at least their edges and are substantially defect free. As a result, the functionalized graphene nanoribbons described herein display a very high electrical conductivity that is comparable to that of mechanically exfoliated graphene.
    Type: Application
    Filed: June 11, 2010
    Publication date: August 2, 2012
    Applicant: WILLIAM MARSH RICE UNIVERSITY
    Inventors: James M. Tour, Dmitry Kosynkin
  • Patent number: 8232441
    Abstract: A process for converting gaseous alkanes to liquid hydrocarbons wherein a gaseous feed containing alkanes is reacted with a dry bromine vapor to form alkyl bromides and hydrobromic acid vapor. The mixture of alkyl bromides and hydrobromic acid are then reacted over a synthetic crystalline alumino-silicate catalyst, such as a ZSM-5 zeolite, at a temperature of from about 150° C. to about 450° C. so as to form higher molecular weight hydrocarbons and hydrobromic acid vapor. Propane and butane which comprise a portion of the products may be recovered or recycled back through the process to form additional C5+ hydrocarbons. Various methods are disclosed to remove the hydrobromic acid vapor from the higher molecular weight hydrocarbons and to generate bromine from the hydrobromic acid for use in the process.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: July 31, 2012
    Assignee: Marathon GTF Technology, Ltd.
    Inventor: John J. Waycuilis
  • Publication number: 20120178951
    Abstract: The invention relates to an apparatus for continuously carrying out heterogeneously catalyzed chemical reactions, comprising a microwave-transparent tube, the longitudinal axis of which extends in the direction of propagation of the microwaves of a single-mode microwave applicator and which is filled with an open-cell foam that carries or is made of catalytically active species.
    Type: Application
    Filed: September 3, 2010
    Publication date: July 12, 2012
    Applicant: CLARIANT FINANCE (BVI) LIMITED
    Inventors: Matthias Krull, Roman Morschhaeuser, Hans-Juergen Scholz